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We adopt a utilitarian perspective on social choice, assuming that agents have (possibly latent) utility func-
tions over some space of alternatives. For many reasons one might consider mechanisms, or social choice
functions, that only have access to the ordinal rankings of alternatives by the individual agents rather than
their utility functions. In this context, one possible objective for a social choice function is the maximiza-
tion of (expected) social welfare relative to the information contained in these rankings. We study such
optimal social choice functions under three different models, and underscore the important role played by
scoring functions. In our worst-case model, no assumptions are made about the underlying distribution and
we analyze the worst-case distortion—or degree to which the selected alternative does not maximize social
welfare—of optimal social choice functions. In our average-case model, we derive optimal functions under
neutral (or impartial culture) distributional models. Finally, a very general learning-theoretic model allows
for the computation of optimal social choice functions (i.e., that maximize expected social welfare) under
arbitrary, sampleable distributions. In the latter case, we provide both algorithms and sample complexity
results for the class of scoring functions, and further validate the approach empirically.

1. INTRODUCTION
Classic models in social choice theory assume that the preferences of a set of agents
over a set of alternatives are represented as linear orders; a social choice function,
given these preferences as input, outputs a single socially desirable alternative. A host
of clever social choice functions have been designed to satisfy various normative crite-
ria. Most work in computational social choice studies computational aspects of these
models, addressing questions such as the complexity of computing social choice func-
tions [Bartholdi et al. 1989; Hemaspaandra et al. 1997] or manipulating them (see the
survey by Faliszewski and Procaccia [2010]).

Under ordinal preferences, an axiomatic approach to obtaining a socially desirable
outcome seems—on the face of it—necessary, absent concrete measures of the quality
of an alternative. In contrast, most work in economics assumes cardinal preferences
and takes a utilitarian approach. This viewpoint dates to the work of Bentham at the
end of the 18th century, who argued that “it is the greatest happiness of the greatest
number that is the measure of right and wrong.” This axiom suggests that happiness
can be quantified, and indeed, having coined the term utility, Bentham proposed that
the goal of government is to maximize the sum of individual utilities—the social wel-
fare (defying contemporary wisdom that the goal of government is to enrich the coffers
of the ruler). The utilitarian approach is prevalent, for example, in mechanism design,
and perhaps even more so in algorithmic mechanism design [Nisan 2007].
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In this paper we view the social choice problem through this utilitarian lens. Our
premise is that agents have (possibly implicit) utility functions, and the goal of a social
choice function is to maximize the social welfare—i.e., (possibly weighted) sum of agent
utilities—of the selected alternative. The utilitarian perspective is not appropriate for
all social choice problems (a point we discuss further below). However, the methods
of social choice—especially voting systems—are finding increasing application in rec-
ommender systems, web search, product design, and many more practical domains, in
which the primary aim is often, as in much of mechanism design, to aggregate pref-
erences so that utility or efficiency is maximized. Indeed, one motivation for our work
is the development of group recommendation systems for a variety of domains, includ-
ing low-stakes consumer applications and higher profile public policy and corporate
decisions. Our work can be viewed as a step toward supporting groups of users mak-
ing decisions using social choice functions that are automatically optimized for their
needs. In these settings, a utilitarian perspective is often called for.

If we could directly access the utilities of agents, the socially desirable alternative
could be easily identified. However, such access is often not feasible for a variety of rea-
sons. As a result, we use agent preference orders as a proxy for their utility functions;
and the social choice function, taking preference orders as input, should perform well
with respect to the underlying utilities. From this point of view, a social choice func-
tion is optimal if it maximizes social welfare given the available information. Using
a preference order as proxy for utility in this fashion serves several purposes. First,
behavioral economists have argued that people find it difficult to construct utilities
for alternatives. Second, the cognitive and communication burden of articulating pre-
cise utilities has long been recognized within decision analysis, behavioral economics,
and psychology. By contrast, simply comparing and ordering alternatives is consider-
ably easier for most people, which makes soliciting preference orders more practical
than eliciting utilities. Furthermore, choice behavior among alternatives can often be
interpreted as revealing ordinal (rather than cardinal) preference information, provid-
ing ready access to (sometimes incomplete) orders in many of the domains described
above. Hence we content ourselves with orders as inputs.

Our Results
Our study of optimal social choice functions incorporates three distinct but related
models, each with its own assumptions regarding available information and therefore
its own notion of optimality. One common thread is that the family of scoring func-
tions—social choice functions that score alternatives only based on their position in
each agent’s preference order—plays a key role in optimizing social welfare.

In Section 3 we study a model where no information about agents’ utility functions
is available when constructing the social choice function. A worst-case analysis is thus
called for. We believe that the study of this model is of theoretical interest, but it
is certainly the least practical of our three models. Specifically, given a collection of
agents’ preferences—a preference profile—there are many consistent collections of util-
ity functions—utility profiles—that induce this preference profile in the natural way
(by ranking alternatives with higher utility closer to the top). The distortion of a social
choice function on a preference profile is the worst-case ratio (over feasible utility pro-
files) of the social welfare of the best alternative to the social welfare of the alternative
that is selected by the function. A worst-case optimal social choice function minimizes
the distortion on every preference profile.

We first derive upper and lower bounds on the least distortion that one can hope
for, focusing on randomized social choice functions. We show that there exists a pref-
erence profile where every randomized social choice function must have distortion at
least Ω(

√
m), where m is the number of alternatives. We complement this result with
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a randomized social choice function whose distortion on every preference profile is
O(
√
m log∗(m)). A slightly weaker upper bound is obtained via a randomized varia-

tion of a natural scoring function that we call the harmonic scoring function (a new
canonical scoring function that may be of independent interest). Finally, we establish
that the worst-case optimal social choice function (which achieves minimum distortion
on every profile) is polynomial-time computable. The proof is based on linear program-
ming, and (roughly speaking) relies on embedding the dual of a sub-problem within a
carefully constructed larger LP, in order to avoid quadratic constraints.

In Section 4 we study an average-case model, assuming a known distribution D over
utility functions. We assume that the utility function of each agent is drawn indepen-
dently from D. Given reported agent preferences, one can compute the expected utility
any agent has for an alternative with respect to D. An average-case optimal social
choice function selects an alternative that maximizes expected social welfare given the
reported profile. We show that when D is neutral, i.e., symmetric with respect to al-
ternatives, the average-case optimal social choice function must be a scoring function.
The proof leverages Young’s [1975] characterization of the family of scoring functions.
As a corollary, we show that when D is uniform over an interval, the average-case
optimal social choice function is the famous scoring function known as Borda count.

In Section 5 we develop and analyze a learning-theoretic model. Rather than assum-
ing a known distribution D over utility profiles, we have access only to sampled utility
profiles from D. We use these profiles to compute sample-optimal social choice func-
tions. The quality of a sample-optimal function is measured by comparing its expected
social welfare to that of the (truly) optimal social choice function for D. We address two
natural questions. First we derive sample complexity results for two classes of social
choice functions, k-approval functions and more general scoring functions; specifically,
we derive necessary and sufficient bounds on the number of samples such that the
sample-optimal function in this class will have social welfare that is within a small
tolerance of the optimal choice function with high probability. Second, we show that
computing the sample-optimal scoring function is APX -hard, but describe a mixed in-
teger programming formulation of this problem that solves it in practice. Empirical
results on a random utility model and a real data set suggest that sample-optimal
scoring functions (as well as several more stylized functions, including Borda count)
have very low expected distortion.

Perspective and Related Work
While the utilitarian perspective on social choice—especially the goal of optimizing the
(possibly weighted) sum of individual utilities—has been overshadowed by the more
axiomatic perspective to a great extent, its foundations are nonetheless firm [Harsanyi
1955], and it does have its advocates. Our work adopts this utilitarian perspective, and
assumes that social welfare is measured using the sum of individual agent utilities in
the classic “Benthamite” fashion. Naturally, this position requires making a number
of assumptions about the problem domain including: the existence of agent (cardinal)
utility functions; the validity of interpersonal comparison of utilities; and having as
one’s goal the maximization of the sum of individual utilities.

None of these assumptions is valid in all social choice settings. The foundations of
von Neumann and Morgenstern [2003] expected utility theory treat the strength of
preference for alternatives expressed by a utility function as representing an individ-
ual’s (ordinal) preferences over lotteries or gambles involving those alternatives. While
this theory can be operationalized to (roughly) determine an individual’s utility func-
tion (e.g., using standard gamble queries, as is common in decision analysis), it pro-
vides little foundation for a satisfactory account of interpersonal utility comparison.
Furthermore, even if one accepts that such interpersonal comparisons are meaningful,
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many social choice functions and voting schemes studied in the social choice literature
cannot, in any sense, be interpreted as maximizing the sum of individual utilities, or
as assuming that individual utilities even exist.

Despite this, the three key assumptions above hold (at least approximately) in many
settings, including those of interest in computational economics, algorithmic mecha-
nism design, and e-commerce. Most work in mechanism design assumes that agent’s
possess real-valued utility or valuation functions over alternatives, and while arbi-
trary social choice functions may be considered, one of the most common is social wel-
fare maximization (which is, for example, the social choice function implemented by
the celebrated VCG mechanism [Nisan 2007]). In this light, our work can be viewed
as providing the means to approximately maximize social welfare, while reducing the
elicitation burden of classic mechanisms by having agents rank alternatives rather
than specify valuations.

While many of our results on the optimality of scoring rules in the worst-case and
average-case models depend on using the sum of utilities as our social choice func-
tion, our learning-theoretic model and corresponding empirical optimization frame-
work could, in principle, be adapted to other measures of social welfare (including the
“Rawlsian” maximin and other measures) that take as input the utility functions of a
collection of agents. In this sense, our framework does not require a commitment to
maximizing the sum of individual utilities.

Some researchers argue that agents should express their preferences by explicitly
reporting utilities. While very common in decision analysis, this perspective is also
sometimes adopted in social choice. For example, utilitarian voting [Hillinger 2005]
(or range voting) allows voters to express utilities for alternatives in some prede-
fined range, e.g., {1, . . . , 10}, {−1, 0, 1}, or {0, 1} (the last coincides with approval vot-
ing [Brams and Fishburn 2007]). While utilitarian in approach, such work differs from
ours, as we take the (prevalent) view that human voters are far more comfortable
expressing ordinal preferences—we seek to optimize the choice of alternative with re-
spect to implicit utility functions.

The worst-case model in Section 3 is closely related to work by Procaccia and Rosen-
schein [2006]. Their work shares the premise that ordinal utilities are a proxy for
underlying cardinal utilities. They too argue that a social choice function should max-
imize social welfare, and introduce the notion of distortion to quantify the gap be-
tween optimum social welfare and the total utility of the social choice based on the
induced preference orders. The main difference from our approach is that they con-
sider deterministic social choice functions, whereas we focus on randomized functions.
Deterministic functions inevitably have trivially high distortion, which Procaccia and
Rosenschein mitigate by focusing attention on highly structured utility functions. In
contrast, our study provides rich theoretical results under a very mild assumption on
utility functions.

A recent paper by Caragiannis and Procaccia [2011] builds on [Procaccia and Rosen-
schein 2006], and is also closely related to our worst-case results. Although they also
aim to optimize social welfare, their work is fundamentally different on a conceptual
level: they consider settings where agents are software agents that can easily compute
exact utilities for alternatives, and the need for voting arises because of communica-
tion restrictions. Hence they focus on simple, fixed social choice functions with low
communication requirements, and optimize the embedding by which agents translate
their utility functions into reported votes. While such embeddings are well-motivated
in cooperative multiagent systems, in our setting, agents may be people whose utility
functions are translated into preference orders in the natural way; thus we optimize
the social choice function. Fig. 1 illustrates the two different optimization processes.
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utility profile ~u preference profile ~σ selected alternative f(~σ) max social welfare
social welfare of f(~σ)

rank by utility

optimize embedding

optimize SCF f

simple SCF f

Fig. 1. A comparison of our worst-case model (Section 3) with Caragiannis and Procaccia [2011]. The text
above (resp., below) the arrows describes our (resp., their) work. SCF stands for social choice function.

Our average-case model in Section 4 is related to the unpublished work of We-
ber [1978]. His motivation is similar to ours, but his model and results differ in several
important ways. First, he optimizes a measure different from ours. Second, he restricts
attention to (a slight generalization of) the family of scoring functions (whereas we
identify optimal social choice functions, which just happen to be scoring functions).
Third, he assumes that the utility of each agent for each alternative is independently
and uniformly distributed on an interval, while our assumptions are less restrictive.
Weber’s main result is that Borda count is asymptotically optimal (w.r.t. his measure)
among scoring functions. Interestingly, under his more restrictive assumptions we
show that Borda count is average-case (exactly) optimal (w.r.t. our measure, expected
social welfare of the winner) among all social choice functions.

The learning-theoretic model in Section 5 is related to a study of the learnability of
social choice functions by Procaccia et al. [2009]. They consider the reconstruction of
a scoring function based on examples, where an example is a preference profile and a
winning alternative for that profile. In contrast, in our learning-theoretic setting we
optimize expected social welfare, and examples are utility profiles. On a conceptual
level, their motivation is fundamentally different; on a technical level, we require new
tools, but leverage some of their results to derive novel results in our setting.

Finally, we are seeing increasingly more work in computational social choice that
views the social choice problem as an optimization problem [Lu and Boutilier 2010;
Elkind et al. 2009]. One such approach views social choice functions as maximum like-
lihood estimators [Conitzer et al. 2009]. This line of work, dating to the 18th century,
was revived by Young [1995], who studied “optimal” voting rules, but his notion of op-
timality is very different from ours. Specifically, the maximum likelihood perspective
assumes that agents order alternatives reflecting their personal assessment of the rel-
ative likelihood that particular alternatives are “objectively best”. Voting is intended
to determine the alternative (or ranking) with maximum likelihood given these as-
sessments, assuming that each agent is more likely to rank any pair of alternatives
correctly than incorrectly. Young’s view of optimality (and the MLE perspective more
broadly) is thus purely statistical and does not address issues of social welfare or util-
ity maximization.1

2. PRELIMINARIES
Let N = {1, . . . , n} be a set of agents and A = {a1, . . . , am} a set of alternatives. Each
agent has a preference order overA, which is a strict total order. Letting [k] = {1, . . . , k},
we can equivalently view a preference order as a bijection σ : A → [m] mapping each
alternative to its rank, and thus treat permutations on [m] and rankings over A in-
terchangeably. Let Sm be the set of permutations on [m]. The alternative ranked in
position k under ranking σ is given by σ−1(k).

For each i ∈ N , let σi be the preference order of agent i. The vector of agent
preferences ~σ = (σ1, . . . , σn) ∈ (Sm)n is a preference profile. A social choice function
f : (Sm)n → A maps preference profiles to alternatives. We draw special attention

1Even in his discussion of compromise among preference orderings using Kemeny’s rule, Young appeals to a
statistical justification, namely, the median relative to Kemeny’s distance metric.
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to a class of social choice functions known as scoring functions. A scoring function is
defined by a vector ~s = (s1, . . . , sm). Given preference profile ~σ, the score of a ∈ A is∑
i∈N sσi(a), i.e., a is awarded sk points for each agent who ranks it in position k. The

scoring function f~s induced by ~s selects some a ∈ A with maximum score with ties bro-
ken in some fashion (we revisit tie breaking as it becomes relevant). The well-known
Borda scoring function (or count) is induced by the vector (m− 1,m− 2, . . . , 0).

Unlike classical social choice models, we assume that agents have utility functions
over alternatives. As discussed above, however, these are not reported or used by the
social choice function. Let u : A → R+ be a utility function. We say a ranking σ is
consistent with u if u(a) > u(a′) implies σ(a) < σ(a′); i.e., alternatives with higher
utility must be ranked higher than those with lower utility.

Let p(u) be the set of rankings consistent with (or induced by) u; p(u) is a set to ac-
count for ties in utility. We occasionally presume agents use some (randomized) method
for selecting a specific ranking σ ∈ p(u) when they possess utility function u; in such
a case, we use σ(u) to denote the corresponding random variable (with domain p(u)).
Abusing notation slightly, let p−1(σ) be the set of utility functions u such that σ ∈ p(u),
i.e., the set of utility functions consistent with σ. The vector ~u = (u1, . . . , un) of agent
utility functions is a utility profile. Let p(~u) = (p(u1), . . . , p(un)) be the set of preference
profiles consistent with ~u. Similarly, let ~σ(~u) denote the random variable over p(~u) rep-
resenting the (joint) choice of rankings, and p−1(~σ) denote the set of utility profiles
consistent with preference profile ~σ.

Positing a utility model allows one to quantify the social welfare of an alternative.
For utility profile ~u, let sw(a, ~u) =

∑
i∈N ui(a) be the (utilitarian) social welfare of a.

3. THE WORST-CASE MODEL
We begin our study of optimal social choice functions with a worst-case model. A social
choice function has access only to a preference profile, but this preference profile is
induced by some unknown utility profile. To quantify the quality of a social choice
function, we use the notion of distortion [Procaccia and Rosenschein 2006; Caragiannis
and Procaccia 2011], which reflects the degree to which the social choice can become
distorted when cardinal preferences are mapped to ordinal preferences. More precisely,
the distortion of social choice function f on a preference profile ~σ is given by

dist(f, ~σ) = sup
~u∈p−1(~σ)

maxa∈A sw(a, ~u)

sw(f(~σ), ~u)
.

In other words, distortion is the worst-case ratio (over consistent utility profiles) of the
social welfare of the optimal alternative to that of the alternative selected by f .

As observed by Procaccia and Rosenschein [2006], deterministic social choice func-
tions must have high distortion. For example, consider a preference profile where n/2
agents rank a first, and n/2 agents rank b first. Assume (w.l.o.g.) a social choice function
selects a. Suppose the agents that rank b first have utility 1 for b and 0 for other alter-
natives, while agents that rank a first have utility 1/m for all alternatives. The ratio
between the social welfare of b and a is Ω(m). To reduce potential distortion, Procaccia
and Rosenschein [2006] adopt an extremely restrictive assumption on utility functions
(specifically, that utilities are Borda scores). We instead turn to randomization.

We consider randomized social choice functions, in which f(~σ) is a distribution (or
random variable) over A. We extend the definition of distortion to randomized func-
tions in the natural way:

dist(f, ~σ) = sup
~u∈p−1(~σ)

maxa∈A sw(a, ~u)

E[sw(f(~σ), ~u)]
.
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In general, even randomized social choice functions cannot achieve a distortion lower
than Ω(m). Consider a preference profile where each a ∈ A is ranked first at least
once. Given a randomized social choice function, there is some alternative a∗ ∈ A that
is selected with probability at most 1/m given this preference profile. However, this
profile is induced by the utility profile where one agent gives arbitrarily high utility to
a∗, and all other utilities are arbitrarily low. The ratio between the social welfare of a∗
and the function’s expected social welfare would therefore be Ω(m).

To avoid this, we make the following relatively mild assumption in this section:

ASSUMPTION 3.1 (ONLY IN SECTION 3). For each agent i ∈ N ,
∑
a∈A ui(a) = 1.

This ensures that agents have equal “weights,” or equal pools of “utility points” to
distribute among the alternatives. Otherwise, if, say, agent 1 has utility 1 for a and 0
for the rest, and agent 2 has utility 1/2 for b and 0 for the rest, then agent 1 has twice
as much influence as agent 2 in determining the socially optimal alternative. Our first
result establishes a lower bound on the distortion of randomized social choice functions
under Assumption 3.1 (which is almost tight, see below).

THEOREM 3.2. Assume that n ≥
√
m. Then there exists a ~σ ∈ (Sm)n such that for

any randomized social choice function f , dist(f, ~σ) = Ω(
√
m).

PROOF. For ease of exposition assume that
√
m divides n. Partition the agents into√

m equal subsets N1, . . . , N√m. Consider the preference profile ~σ where σi(ak) = 1, for
all i ∈ Nk, and the remaining alternatives are ranked arbitrarily.

For any randomized f there must be a k∗ ∈ {1, . . . ,
√
m} such that Pr[f(~σ) = ak∗ ] ≤

1/
√
m. Let ~u be a utility profile such that for all i ∈ Nk∗ , vi(ak∗) = 1 and vi(a) = 0 for

all a ∈ A \ {ak∗}. For all i /∈ Nk∗ and a ∈ A, vi(a) = 1/m. It holds that

n√
m
≤ sw(ak∗ , ~u) ≤ 2n√

m
,

and for all a ∈ A \ {ak∗}, sw(a, ~u) ≤ n/m. Therefore:

dist(f, ~σ) ≥
n√
m

1√
m
· 2n√

m
+
√
m−1√
m
· nm
≥
√
m

3
.

We next establish the existence of a randomized social choice function that nearly
achieves this lower bound on every preference profile, leaving a tiny gap of only log∗(m)
(iterated logarithm of m).

THEOREM 3.3. There exists a randomized social choice function f such that for
every ~σ ∈ (Sm)n, dist(f, ~σ) = O(

√
m · log∗m).

The rather intricate proof of this theorem is provided in Appendix A. Here we present a
much simpler proof of a weaker upper bound of O(

√
m logm). This latter proof uses the

novel harmonic scoring function, given by score vector (h1, . . . , hm), where hk = 1/k.

PROOF OF WEAKER UPPER BOUND OF O(
√
m logm). Let sc(a, ~σ) be the score of a

under ~σ using the harmonic scoring function. For any ~u ∈ p−1(~σ) and any a,

sw(a, ~u) ≤ sc(a, ~σ). (1)

The reason is that if i ∈ N ranks a ∈ A in position k and gives it utility ui(a), each of
the k − 1 alternatives ranked above a must have utility at least ui(a), but the sum of
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utilities is one. In addition, note that for any ~σ,∑
a∈A

sc(a, ~σ) = n ·
m∑
k=1

1

k
≤ n(lnm+ 1). (2)

Consider the randomized f that chooses one of the following two schemes (each with
probability 1/2): (i) select an alternative uniformly at random, and (ii) select an al-
ternative with probability sc(a, ~σ)/(

∑
a′∈A sc(a′, ~σ)) (i.e., proportional to sc(a, ~σ)). Let

~σ ∈ (Sm)n, ~u ∈ p−1(~σ), and a ∈ A. It is sufficient to show that

sw(a, ~u)

E[sw(f(~σ), ~u)]
≤ 2
√
m(lnm+ 1).

We consider two cases. First, assume that sc(a, ~σ) ≥ n
√

(lnm+ 1)/m. With probabil-
ity 1/2, a winner is selected proportionally to its score. Using Eq. (2), the probability
that a is selected is at least

1

2
·
n ·
√

lnm+1
m

n(lnm+ 1)
=

1

2
√
m(lnm+ 1)

.

It follows that

E[sw(f(~σ), ~u)] ≥ Pr[f(~σ) = a] · sw(a, ~u) ≥ 1

2
√
m(lnm+ 1)

· sw(a, ~u).

Second, assume that sc(a, ~σ) < n ·
√

(lnm+ 1)/m. From Eq. (1) it follows that
sw(a, ~u) < n ·

√
(lnm+ 1)/m. With probability 1/2, a winner is selected uniformly at

random. We have that

E[sw(f(~σ), ~u) | uniform selection] =

∑
i∈N

∑
a∈A ui(a)

m
=

n

m
,

and therefore E[sw(f(~σ), ~u)] ≥ n/(2m). We conclude that

sw(a, ~u)

E[sw(f(~σ), ~u)]
≤
n ·
√

lnm+1
m

n
2m

= 2
√
m(lnm+ 1).

An interesting aspect of this proof is its use of the the harmonic scoring function.
Despite a large body of (especially computational) work on scoring functions (see,
e.g., [Hemaspaandra and Hemaspaandra 2007; Xia and Conitzer 2008; Procaccia et al.
2009]), only three scoring functions are considered canonical: Borda count; plurality,
defined by vector (1, 0, . . . , 0); and veto (or anti-plurality), defined by vector (1, . . . , 1, 0).
We hope that the harmonic function, with natural parameters and attractive theoreti-
cal properties, may in time be accepted into this exclusive club.

While Theorem 3.3 offers attractive theoretical guarantees, its randomized social
choice function need not be optimal. While there are preference profiles where dis-
tortion must be at least Ω(

√
m), there may be many profiles where low distortion is

achievable but this function nevertheless yields relatively high distortion. We are thus
most interested in worst-case optimal (randomized) social choice functions. By this, we
simply mean that for every ~σ ∈ (Sm)n, the function f has minimum possible distortion
on ~σ. We can show that such a social choice function is polynomial-time computable
via linear programming duality.
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THEOREM 3.4. The worst-case optimal randomized social choice function is
polynomial-time computable.

The proof appears in Appendix B. Interestingly, even though we can concisely describe
the optimal function, we do not know whether its distortion on every profile is at most
O(
√
m). Of course, by Theorem 3.3, we do know that its distortion on any profile can

only be slightly larger: at most O(
√
m log∗m).

4. THE AVERAGE-CASE MODEL
We now consider an initial model in which agent utility functions are drawn from
a probability distribution D. We do not assume that utilities are normalized (as in
Sec. 3), but we do assume (in this section only) that each agent’s utility function is
drawn independently from the same distribution.

ASSUMPTION 4.1 (ONLY IN SECTION 4). Agent utility functions u1, . . . , un are
drawn i.i.d. from D.

This assumption, while admittedly restrictive, permits us to prove strong results; it
will not be used when we move to a more general learning-theoretic model in Sec. 5.

This model gives rise to the product distribution Dn over utility profiles. As above,
utility profiles induce preference profiles in the natural way, but since we will need to
reason about the induced distribution over preference profiles, we make the specific,
but mild, assumption that ties in utility are broken uniformly at random; that is, if
u(a) = u(b) then Pr[(σ(u))(a) < (σ(u))(b)] = Pr[(σ(u))(b) < (σ(u))(a)] = 1/2. This
assumption is essentially without loss of generality under non-atomic distributions
(since ties occur with probability zero).

The notion of optimality takes a slightly different meaning in this setting: instead of
maximizing the ratio to the optimal social welfare, a social choice function should per-
form as well as possible on average. We say that a social choice function f is average-
case optimal if for every preference profile ~σ it maximizes expected social welfare

E[sw(f(~σ(~u)), ~u) | ~σ(~u)] =

∫
sw(f(~σ(~u)), ~u)Dn(~u | ~σ(~u)) d~u.

Note that expectation is conditional on the reported preference profile ~σ(~u).
In this section, we consider distributions D that possess a special structure. Distri-

bution D is neutral if for any measurable U ⊆ Rm+ and any permutation π ∈ Sm, we
have D(U) = D(U ◦ π), where U ◦ π = {u ◦ π : u ∈ U} (here u ◦ π denotes a permuta-
tion of utility function u). Informally, a neutral distribution is symmetric with respect
to alternatives. A neutral distribution induces a distribution over preference profiles
where each agent draws a ranking σ independently and uniformly at random; this is
no more than the impartial culture assumption, a model that plays an important role
in social choice theory [Tsetlin et al. 2003; Slinko 2004]. We now show that scoring
functions play a crucial role in the average-case model, underscoring even more deeply
the importance of this family in the study of optimal social choice functions.

THEOREM 4.2. Assume a neutral distribution D over utility functions. Then the
average-case optimal social choice function is a scoring function.

Although a direct proof is possible, we provide a more elegant and more broadly
useful proof by exploiting machinery developed by Young [1975]. A social choice corre-
spondence is a function from preference profiles to nonempty subsets of A. A scoring
correspondence is defined by a vector ~s as before, but selects all alternatives with
maximum score. An anonymous social choice correspondence operates on anonymous
preference profiles, i.e., vectors ~x ∈ Nm! that count the number of agents holding each
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10 C. Boutilier et al.

of the m! possible rankings of A in the preference profile (i.e., without regard for which
agent holds what preference).

A social choice correspondence f is: consistent if f(~x + ~y) = f(~x) ∩ f(~y) when f(~x) ∩
f(~y) 6= ∅; continuous if whenever f(~x) = {a} then for any anonymous profile ~y there is
T ∈ N such that f(~y + t~x) = {a} for every t ≥ T ; and neutral if f ◦ σ = σ ◦ f for every
σ ∈ Sm. Denote by p∗(u) the set of anonymous preference profiles consistent with u.

LEMMA 4.3 (YOUNG [1975]). An anonymous social choice correspondence is a scor-
ing correspondence if and only if it is neutral, consistent, and continuous.

PROOF OF THEOREM 4.2. An optimal social choice function is clearly anonymous
and neutral because agent utilities are i.i.d. and D is neutral. Thus, we restrict our
attention to functions that receive anonymous preference profiles as input.

Let f∗ be the social choice correspondence that, given an anonymous preference pro-
file ~x, returns all a ∈ A that maximize E[sw(a, ~u) | ~x ∈ p∗(~u)], i.e.,

f∗(~x) = argmaxa∈AE[sw(a, ~u) | ~x ∈ p∗(~u)].

It is sufficient to show that f∗ is a scoring correspondence. Indeed, if f∗ is a scoring
correspondence then any choice from f∗ (i.e., a choice from f∗(~σ) for every preference
profile ~σ) is a scoring function. Moreover, the set of choices from f∗ is exactly the set of
optimal choice functions.

To show that f∗ is a scoring correspondence, it suffices, by Lemma 4.3, to demon-
strate that f∗ is consistent and continuous. To see that f∗ is consistent, let ~x and
~y be two anonymous profiles such that f(~x) ∩ f(~y) 6= ∅, and let a, a′ ∈ A such that
a ∈ f∗(~x) ∩ f∗(~y) and a′ /∈ f∗(~x) ∩ f∗(~y). Then

E[sw(a, ~u) | ~x ∈ p∗(~u)] ≥ E[sw(a′, ~u) | ~x ∈ p∗(~u)]

and

E[sw(a, ~u) | ~y ∈ p∗(~u)] ≥ E[sw(a′, ~u) | ~y ∈ p∗(~u)],

where one of the inequalities is strict. By linearity of expectation, for any b ∈ A,

E[sw(b, ~u) | ~x+ ~y ∈ p∗(~u)] = E[sw(b, ~u) | ~x ∈ p∗(~u)] + E[sw(b, ~u) | ~y ∈ p∗(~u)],

and therefore

E[sw(a, ~u) | ~x+ ~y ∈ p∗(~u)] > E[sw(a′, ~u) | ~x+ ~y ∈ p∗(~u)].

This shows that a ∈ f∗(~x+ ~y) and a′ /∈ f∗(~x+ ~y), proving that f(~x+ ~y) = f(~x) ∩ f(~y).
To prove continuity, assume f∗(~x) = {a}. Then there exists an ε > 0 such that

E[sw(a, ~u) | ~x ∈ p∗(~u)]− E[sw(a′, ~u) | ~x ∈ p∗(~u)] ≥ ε
for every a′ ∈ A\{a}. Let ~y and let T > (E[sw(a′, ~u) | ~y ∈ p∗(~u)])/ε for every a′ ∈ A. Then
for every t ≥ T and every a′ ∈ A \ {a},

E[sw(a, ~u) | ~y + t · ~x ∈ p∗(~u)]− E[sw(a′, ~u) | ~y + t · ~x ∈ p∗(~u)]

= E[sw(a, ~u) | ~y ∈ p∗(~u)]− E[sw(a′, ~u) | ~y ∈ p∗(~u)]

+ t · (E[sw(a, ~u) | ~x ∈ p∗(~u)]− E[sw(a′, ~u) | ~x ∈ p∗(~u)])

≥ T · ε− E[sw(a′, ~u) | ~y ∈ p∗(~u)] > 0

It follows that f∗(~y+ t~x) = {a} for every t ≥ T , and therefore continuity is satisfied.

The proof implies that the optimal social choice function scores alternatives based
only on their position in each agent’s preference order. This observation allows us to
construct the optimal scoring function given the distribution D.
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Optimal Social Choice Functions 11

COROLLARY 4.4. Assume a neutral distribution D over utility functions. For each
k = 1, . . . ,m, let s∗k = E[u(a) | (σ(u))(a) = k] for some arbitrary a ∈ A. Then the average-
case optimal social choice function is a scoring function with parameters (s∗1, . . . , s

∗
m).

The optimal scoring function has an especially natural form: the score s∗k for position
k is simply the expected utility of any alternative a for any agent conditional on a
being ranked kth by that agent. (Notice that the arbitrary choice of a is justified by
the neutrality of D.) We now consider the special case where agent utilities for each
alternative are drawn uniformly from some interval (w.l.o.g., take this to be [0, 1]).

COROLLARY 4.5. Let D be the uniform distribution over [0, 1]m (i.e., the utility for
each alternative is drawn independently and uniformly from [0, 1]). Then the average-
case optimal social choice function is the Borda count.

PROOF. It suffices to compute s∗k for k = 1, . . . ,m. A folk theorem about the expecta-
tion of k-order statistics immediately implies that s∗k = (m+ 1− k)/(m+ 1); we provide
an informal proof for completeness. Consider the random variables X1, . . . , Xm, where
Xk is the utility of the alternative ranked in position k. The lengths of the m+ 1 inter-
vals [0, Xm], [Xm, Xm−1], . . . , [X1, 1] are identically distributed (to see this, choose m+ 1
points on a circle uniformly at random—their distances are identically distributed—
and then cut the circle at the first point, which becomes both 0 and 1), and the sum of
their lengths is 1. Thus the expected length of each interval is 1/(m+ 1).

Now, clearly the scoring functions defined by the vectors ~s and c · ~s, or ~s and ~s +
(c, . . . , c), are identical (up to tie breaking). The optimal scoring function defined by the
vector (m/(m+ 1), . . . , 1/(m+ 1)) is therefore equivalent to the Borda count.

5. THE LEARNING-THEORETIC MODEL
We now consider a learning-theoretic model for computing optimal social choice func-
tions that is likely to have the greatest practical impact of our three models. Similarly
to the average case model in the previous section, we assume some (possibly unknown)
distribution D over utility profiles (rather than utility functions, as in Section 4). How-
ever, strong analytical results were made possible in the average case model only by
accepting strong assumptions about the distribution, essentially equivalent to the im-
partial culture assumption. This model is unrealistic for a variety of reasons (e.g., see
critiques by Regenwetter et al. [2006]).

Instead we devise techniques to compute approximately optimal social choice
functions—specifically, optimal scoring functions—for arbitrary distributions D over
utility profiles, without assuming a specific parameterized or stylized form, or inde-
pendence of agent preferences. Most realistic distributions are likely to be analytically
intractable, so we develop a sample-based optimization framework for this purpose.
We assume access only to a set of sampled profiles from D—or the ability to generate
such samples from a known distribution. With sufficiently many samples, the optimal
scoring function with respect to these samples will be approximately optimal for D.

Because we rely only on samples fromD, the model can be interpreted as learning an
optimal social choice function. We first address the question of sample complexity by
deriving bounds on the number of samples needed to compute approximately optimal
scoring functions (as well as the more restricted class of k-approval functions). We
then consider the problem of computing an optimal scoring function for a given sample
set. We show this to be APX -hard, but develop a mixed integer program (MIP) for its
optimization. While we discuss the model in learning-theoretic terms, we emphasize
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12 C. Boutilier et al.

that the approach is equally valid when D is known: sample-based optimization offers
a viable and very general computational model in this case.2

Requisite Concepts
To quantify sample complexity, we rely on two well-known measures of the complexity
of a class of functions. Let F be some class of functions of the form f : X → A for some
set A. We say a sample x1, . . . , xd ∈ X is shattered by F if there exist f, g ∈ F such that
f(xi) 6= g(xi) for each i ≤ d, and for every boolean vector (b1, . . . , bd) ∈ {0, 1} there is
an h ∈ F such that h(xi) = f(xi) if bi = 1 and h(xi) = g(xi) if bi = 0. The generalized
dimension DG(F) of F is the maximum d such that some sample x1, . . . , xd ∈ X is
shattered by F . The pseudo-dimension is a generalization of this concept to real-valued
functions. If F is a class of functions of the form f : X → R, the pseudo-dimension
DP (F) of F is the maximum d such that there are some x1, . . . , xd ∈ X and thresholds
t1, . . . , td ∈ R such that, for every (b1, . . . , bd) ∈ {0, 1}, there exists an h ∈ F such that
h(xi) ≥ ti if bi = 1 and h(xi) < ti if bi = 0.

We will use bounds on the pseudo-dimension to derive bounds on the sample com-
plexity. We first observe:

OBSERVATION 5.1. For any finite function class F , its (generalized or pseudo-) di-
mension is no greater than log |F|.

Let F be some class of randomized social choice functions. For any f ∈ F , we can
adopt the usual perspective, where f : (Sm)n → ∆(A) maps preference profiles into
distributions over alternatives—in this case, we focus on the generalized dimension of
F , by which we refer to the generalized dimension of the correspondence defined by
mapping ~u to the support of f(~u). We can take a different perspective by transforming
f as follows: define f ′(~u) = E[sw(f(~σ(~u)), ~u)], where f ′ maps a utility profile ~u into the
expected social welfare realized by applying f to the preference profile ~σ(~u) induced by
~u. Define F ′ = {f ′ : f ∈ F}. With this view, we focus on the pseudo-dimension of F ′.
These are not unrelated:

LEMMA 5.2. For any set of randomized social choice functions F , DG(F) ≤ DP (F ′).
PROOF. Assume DG(F) = d. Let ~σ1, . . . , ~σd be d preference profiles that are shat-

tered by F , and let f, g ∈ F be two social choice functions that differ on each
of these profiles. Define utility profiles ~u1, . . . , ~ud that induce ~σ1, . . . , ~σd such that
E[sw(f(~σi), ui)] 6= E[sw(g(~σi), ui)] for all i; this is always possible using some small per-
turbation in the utility of a relevant candidate. For each i ≤ d, let ti = (E[sw(f(~σi), ~ui)]+
E[sw(g(~σi), ~ui)])/2.

Given any (b′1, . . . , b
′
d) ∈ {0, 1}, we need to show that there is some h′ ∈ F ′ such

that h′(~ui) ≥ ti if b′i = 1 and h′(~ui) < ti if b′i = 0. Let (b1, . . . , bd) be a binary vector
which we set as follows: if E[sw(f(~σi), ~ui)] ≥ ti and E[sw(g(~σi), ~ui)] < ti, set bi = b′i;
otherwise if E[sw(f(~σi), ~ui)] < ti and E[sw(g(~σi), ~ui)] ≥ ti, set bi = 1−b′i. Since F shatters
~σ1, . . . , ~σd, there is an h ∈ F that serves as a witness for ~σ1, . . . , ~σd w.r.t. (b1, . . . , bd). By
construction, its corresponding h′ ∈ F ′ serves as a witness (relative to f ′, g′) to the
shattering of the same d profiles given (b′1, . . . , b

′
d). Hence DP (F ′) is at least d.

Sample-based Optimization
Let F be some class of social choice functions from which we must select an op-
timal function f∗ relative to some (possibly unknown) distribution D over utility
profiles. We assume access to t sampled profiles, ~u1, . . . , ~ut. These may be samples

2Our sample complexity results make no distributional assumptions. If sampling a known distribution D
for computational reasons, much tighter distribution-dependent sample size results should be possible.
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from a population of interest, or drawn randomly from a generative model or known
distribution. For each ~ui, we also sample, generate, or compute the corresponding
(possibly random) preference profile ~σi. We treat these collectively as our sample:
T = [(~u1, ~σ1), . . . , (~ut, ~σt)]. A sample-optimal social choice function for sample T is

f̂ ∈ argmax
f∈F

t∑
i=1

Ef(~σi)[sw(f(~σi), ~ui)].

In a learning-theoretic sense, f̂ is the empirical risk minimizer, while from an opti-
mization standpoint, f̂ is the solution to a sample-based optimization problem.

In a sample-based model, we must content ourselves with approximate optimality.
Let f∗ be an optimal social choice function w.r.t. distribution D. We say a social choice
function f̂ is ε-optimal for some ε ≥ 0 if, for any utility profile ~u,

E[sw(f̂(~σ(~u)), ~u)] ≥ E[sw(f∗(~σ(~u)), ~u)]− ε.

This definition will also be used relative to restricted classes of functions F .

Sample Complexity of k-Approval
We first consider the class of social choice functions known as k-approval functions.
For any 1 ≤ k ≤ m−1, the k-approval function is the scoring function, denoted fk, with
score vector ~sk = (1, 1, . . . , 0, 0) with exactly k ones and m − k zeros. We assume ties
among highest-scoring alternatives are broken uniformly at random.

Given distributionD, the optimal k-approval function—where our only choice is over
the value of k—maximizes expected social welfare w.r.t. D. We denote this function by
fDk∗ . With only a collection of t sample profiles, the best we can attain is approximate op-
timality with the sample-optimal function f̂ . We determine the required sample com-
plexity t, that is, the number of samples needed to ensure that f̂ is approximately
optimal to some desired degree ε with high probability 1− δ (for some δ > 0).

Our class of social choice functions is very limited: let Fk = {fk : 1 ≤ k ≤ m − 1}.
Define, as above, F ′k = {f ′k : fk ∈ Fk}. Let sck(~σ, a) be the k-approval score of a ∈ A
under preference profile ~σ. Sample complexity depends on the pseudo-dimension of
k-approval functions; since there are only m − 1 such functions, we can provide an
immediate upper bound using Observation 5.1:

OBSERVATION 5.3. DP (F ′k) ≤ log(m− 1).

This bound is asymptotically tight:

THEOREM 5.4. DP (F ′k) = Ω(logm).

The theorem’s proof appears in Appendix C. Observation 5.3 and Theorem 5.4 show
that DP (F ′) = Θ(logm). Standard learning-theoretic results [Anthony and Bartlett
1999] allow us to bound sample complexity for optimizing k-approval (within a con-
stant factor).

THEOREM 5.5. For any ε, δ > 0, there exists a C > 0 such that if t ≥ C log(m/δ)/ε2,
then for any distribution D over utility profiles, with probability at least 1 − δ over
t i.i.d. utility profiles, the sample-optimal k-approval function f̂k is ε-optimal for D.
Furthermore, there is a C ′ > 0 such that no algorithm can construct an ε-optimal k-
approval function, with probability at least 1− δ, if t < C ′ log(m/δ)/ε2.
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Sample Complexity of Scoring Functions
The class of k-approval functions is quite restrictive, so we now consider construction
of an approximately optimal scoring function without restricting score vector struc-
ture. Limiting attention to scoring functions does not ensure optimality within the
class of arbitrary functions. However, it is a natural restriction, first, because of the
prominence of scoring functions as illustrated above, and second, because of the natu-
ral interpretation and appeal of such social choice functions.3

Let f~s denote the scoring (social choice) function induced by score vector ~s, and let
Fs = {f~s : ~s ∈ Rm} be the class of all scoring functions. We again assume ties among
highest-scoring alternatives are broken uniformly at random. Define F ′s = {f ′~s : f~s ∈
Fs}. We derive the sample complexity for scoring functions, i.e., the number of sam-
pled utility profiles needed to ensure that the sample-optimal f̂~s is ε-optimal for some
desired ε, with probability at least 1− δ.

We first bound the pseudo-dimension of F ′s. Procaccia et al. [2009] prove a lower
bound of m− 3 on DG(Fs). By Lemma 5.2, we obtain the following statement.

COROLLARY 5.6. DP (F ′s) ≥ m− 3.

In the same paper, Procaccia et al. [2009] prove that the number of distinct scoring
functions is at most 2O(m2 logn). Even though their original result assumes a determin-
istic tie-breaking rule, their proof can be adapted for randomized tie-breaking. Using
this bound together with Obs. 5.1, we immediately get that DP (F ′s) = O(m2 log n). We
can show a significantly better upper bound that depends only on m.

THEOREM 5.7. DP (F ′s) = O(m logm).

We require the following result of Warren [1968] (though we use an extension due to
Alon [1996], where the signum function takes values in {−1, 0, 1}):

LEMMA 5.8 ([WARREN 1968; ALON 1996]). Let P be a set of K polynomials of de-
gree δ on ` real variables. Then, the number of different sign patterns P may have is at
most

(
8eδK
`

)`.
In the context of the lemma, a sign pattern is a vector of values in {−1, 0, 1} that is
obtained by applying each polynomial in P to the same input.

PROOF OF THEOREM 5.7. Let A be a set of m ≥ 3 alternatives. Consider a sample
of d preference profiles ~σ1, ~σ2, ..., ~σd from (Sm)n, corresponding utility profiles ~u1, ...,
~ud, and real thresholds t1, t2, ..., td such that for every binary vector b with d entries,
there exists a scoring function f~sb , with score vector ~sb, such that E[sw(f~sb(~σi), ~ui)] ≥ ti
if bi = 1 and E[sw(f~sb(~σi), ~ui)] < ti otherwise. Denote by F∗ ⊆ Fs the set of these scoring
functions. We will show that d < 6m logm.

For i = 1, ..., d, we partition the set of alternatives A into the sets A+
i = {a ∈ A :

sw(a, ~ui) ≥ ti} and A−i = {a ∈ A : sw(a, ~ui) < ti}. By definition of the scoring functions
in F∗, the sets A+

i and A−i are non-empty. In addition, for i = 1, ..., d and any pair of
alternatives a+ ∈ A+

i and a− ∈ A−i , define the function

Lia+,a−(~s) = sc~s(a
+, ~σi)− sc~s(a

−, ~σi).

This is a linear function on m variables, the entries of the score vector ~s. Let sgn :
R → {−1, 0, 1} denote the signum function. The sign of Lia+,a−(~s) denotes whether the

3Optimization over the class of arbitrary social choice functions may well give results that cannot be com-
municated without enumerating all possible profiles.
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score of alternative a+ under f~s on profile ~σi is lower than, equal to, or higher than the
score of alternative a−, respectively. Let L denote the union of the functions above and
observe that there are at most dm2/4 such functions.

We will show that the score vectors of the functions in F∗ define at least 2d dif-
ferent sign patterns for L. Consider two different binary vectors b1 and b0 that dif-
fer in the i-th coordinate. W.l.o.g., assume that b1i = 1 and b0i = 0. For k ∈ {0, 1},
let Ak = argmaxa∈A{sc~sbk (a, ~σi)} be the set of alternatives with the highest score
under f~s

bk
(~σi). Observe that the sets A+

i ∩ A1 and A−i ∩ A0 are non-empty since
E[sw(f~sb1 (~σi), ~ui)] ≥ ti and E[sw(f~sb0 (~σi), ~ui)] < ti.

We claim that there are two alternatives a1 ∈ A+
i ∩ A1 and a0 ∈ A−i ∩ A0 such that

either a0 6∈ A1 or a1 6∈ A0. Assume that this is not the case; it follows that A+
i ∩ (A1 \

A0) = ∅ and A−i ∩ (A0 \A1) = ∅. Hence, for every a ∈ A0 \A1 (if any) it holds that a ∈ A+
i

and hence sw(a, ~ui) ≥ ti. Similarly, for every alternative a ∈ A1 \ A0 (if any) it holds
that a ∈ A−i and hence sw(a, ~ui) < ti. Using these observations together with the fact
that f~sb1 (~σi) and f~sb0 (~σi) select the winning alternative uniformly at random among
A1 and A0, respectively, and E[sw(f~sb1 (~σi), ~ui)] ≥ ti > E[sw(f~sb0 (~σi), ~ui)], we obtain∑

a∈A1∪A0

sw(a, ~ui) =
∑
a∈A1

sw(a, ~ui) +
∑

a∈A0\A1

sw(a, ~ui) ≥ |A1| · ti + |A0 \A1| · ti

= |A0| · ti + |A1 \A0| · ti >
∑
a∈A0

sw(a, ~ui) +
∑

a∈A1\A0

sw(a, ~ui)

=
∑

a∈A1∪A0

sw(a, ~ui),

a contradiction.
If a1 ∈ A1 \ A0, this means that sc~sb1 (a1, ~σ

i) ≥ sc~sb1 (a0, ~σ
i) and sc~sb0 (a1, ~σ

i) <

sc~sb0 (a0, ~σ
i) (i.e., Lia1,a0(~sb1) ≥ 0 and Lia1,a0(~sb0) < 0). Similarly, if a0 ∈ A0 \ A1, then

sc~sb1 (a1, ~σ
i) > sc~sb1 (a0, ~σ

i) and sc~sb0 (a1, ~σ
i) ≤ sc~sb0 (a0, ~σ

i) (i.e., Lia1,a0(~sb1) > 0 and
Lia1,a0(~sb0) ≤ 0). Both cases imply that the sign patterns of L corresponding to ~sb1
and ~sb0 are different.

Hence, we have obtained a lower bound of 2d on the number of different sign pat-
terns of L. By applying Lemma 5.8 (with K ≤ dm2/4, δ = 1, and ` = d), we obtain
an upper bound of (2edm)m on the number of different sign patterns for L. Hence,
2d ≤ (2edm)

m and, equivalently, 2d/dm ≤ (2em)m. For the sake of contradiction, as-
sume that d ≥ 6m logm and observe that 2d/dm increases with d in this range. Then,
2d/dm ≥

(
m6

6m logm

)m
which, together with the above inequality, yields m4 ≤ 12e logm;

a contradiction since m ≥ 3.

Again, standard results allow us to bound the sample complexity:

THEOREM 5.9. For any ε, δ > 0, there exists a C > 0 such that if t ≥ C[m logm +
log(1/δ)]/ε2, then for any distribution D over utility profiles, with probability at least
1− δ over t i.i.d. utility profiles, the sample-optimal scoring function f̂~s is ε-optimal for
D. Furthermore, there is a C ′ > 0 such that no algorithm can construct an ε-optimal
scoring function, with probability at least 1− δ, if t < C ′[m+ log(1/δ)]/ε2.

Computing Optimal Scoring Functions
We now turn our attention to the question of computing approximately optimal scoring
functions. Specifically, given a sample T = [(~u1, ~σ1), . . . , (~ut, ~σt)], we must compute the
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scoring vector ~s corresponding to the sample-optimal scoring function f̂~s:

f̂~s = argmax
f~s

t∑
i=1

Ef~s(~σi)[sw(f~s(~σ
i), ~ui)].

This problem turns out to be computationally hard.

THEOREM 5.10. Computing the sample-optimal scoring function is APX -hard.

The theorem implies that, if P 6= NP, the problem does not even admit a polyno-
mial time approximation scheme. The theorem’s rather lengthy proof is given in Ap-
pendix D.

Fortunately, it is possible to compute sample-optimal scoring functions in practice.
To this end, we formulate the optimization as a MIP, whose primary variables are the
scores si. We describe key variables and constraints in the MIP in turn.4

Any scoring vector ~s = (s1, . . . , sm) can be normalized without impacting the choice
function, so we constrain ~s as follows:

s1 + · · ·+ sm = 1, si ≥ si+1 ∀i ≤ m− 1, and sm ≥ 0. (3)

Ties are again broken uniformly at random. Function f~s selects an alternative for each
~σi. To encode this, first abbreviate the score of a given ~σi via the linear expression

sc(a, ~σi) =

m∑
j=1

Jajisj ∀a ∈ A, i ≤ t, (4)

where Jaji is the number of agents in ~σi that rank a in position j. Note that Jaji is
a constant and sc(a, ~σi) ∈ [0, n] is continuous. Let Iabi, for any alternatives a 6= b and
i ≤ t, be a binary variable indicating whether a’s score is at least that of b given ~σi. We
encode this as follows:

(n+ γ)Iabi − γ ≥ sc(a, ~σi)− sc(b, ~σi) ∀i ≤ t, a 6= b, (5)
nIabi − n ≤ sc(a, ~σi)− sc(b, ~σi) ∀i ≤ t, a 6= b, (6)

where γ is a (fixed) parameter that handles optimization-dependent floating point ac-
curacy (corresponding to the level of discretization among scores). If the score differ-
ence is non-negative then constraint (5) forces Iabi = 1 and (6) must be satisfied. If the
difference is negative, then (6) forces Iabi = 0 and (5) is satisfied. Let binary variable
Iai indicate if a is selected (possibly tied), given ~s under ~σi. We require:

m− 2 + Iai ≥
∑
b:b 6=a

Iabi and (m− 1)Iai ≤
∑
b:b 6=a

Iabi ∀a, i ≤ t. (7)

Our objective is to choose ~s to maximize the average social welfare over our samples;
however, we must account for random tie-breaking, leading to the following objective:

max
~s,I

t∑
i=1

∑
a sw(a, ~ui) · Iai∑

a Iai
.

4With suitable constraints on scores, the MIP can be used to compute optimal k-approval functions; however,
direct evaluation of the small number of such restricted functions is feasible (if m is small).
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Fig. 2. Histograms of distortion ratios for uniform and jester experiments (average distortions are shown).

We can linearize the objective using indicator variables Ski, for k ≤ m and i ≤ t, where
Ski = 1 iff k =

∑
a Iai, requiring that

m∑
k=1

kSki =
∑
a

Iai and
m∑
k=1

Ski = 1 ∀i ≤ t. (8)

Our objective then becomes

max
~s,I,S

t∑
i=1

m∑
k=1

∑
a sw(a, ~ui) · Iai

k
· Ski.

Finally, let Zaki indicate if Iai · Ski = 1, which is encoded as

1 + Zaki ≥ Iai + Ski and 2Zaki ≤ Iai + Ski ∀a ∈ A, k ≤ m, i ≤ t. (9)

Pulling these together, our MIP is:

max
~s,I,S,Z

t∑
i=1

m∑
k=1

∑
a

1

k
sw(a, ~ui) · Zaki (10)

subject to (3, 5, 6, 7, 8, 9),

which has (2m2 +m+ 1)t variables and 4m2t+ 2t+m+ 1 constraints.

Experiments
We now empirically investigate the performance of both average-case optimal social
choice functions and sample-optimal scoring functions by measuring their distortion.
In the former case, we consider random utility profiles, while in the latter, we use a
real data set with user-provided ratings of alternatives as a surrogate for utilities.

Our first experiment (uniform) investigates the uniform utility distribution de-
scribed in Sec. 4. While Borda optimizes expected social welfare in this model (Cor. 4.5),
it may not minimize distortion. We empirically measure its expected distortion by ran-
domly generating t = 1000 profiles from the uniform model for various values of m and
n, and computing the distortion of Borda count (vis-à-vis the socially optimal alter-
native). Results are shown in the four leftmost histograms of Fig. 2. Each histogram
shows the distortions of the 1000 utility profiles, for a fixed m and n (note the logarith-
mic scaling on the y-axis). Clearly, overall distortion is very small: average distortion
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is much less than 1% in each case, and never exceeds 10% for any random profile. We
also see that average distortion decreases as either m or n increases.

Our second experiment uses the jester dataset [Goldberg et al. 2001], which con-
sists of 4.1M user ratings of 100 different jokes by over 60,000 users. Ratings are
on a continuous scale between [−10, 10], which we rescale to the range [0, 20]. We
define the set of alternatives to be the eight most-rated jokes, and draw agents
from the set of 50,699 users who rated all eight. We create a sample of 100 “train-
ing profiles” from this data set, each with 100 voters, and use this sample to learn
an approximately optimal scoring function.5 The score vector that results is ~s∗ =
(0.25, 0.15, 0.14, 0.13, 0.12, 0.11, 0.1, 0.0). Note the significant dip from s1 to s2, the grad-
ual drop to s7, then the significant drop to s8, which is rather “un-Borda-like.” We
divide the remaining users into 406 test profiles (each with 100 users), and evaluate
the distortion of the learned function f~s∗ on each. For comparison, we also evaluate the
Borda, harmonic and 3-approval functions on the same profiles. Result are shown in
the four rightmost histograms of Fig. 2). We see clearly that distortion is almost negli-
gible for the f~s∗ , Borda and harmonic functions, with average distortion less than 0.9%
(and at worst roughly 10%). By contrast, 3-approval is somewhat worse, with average
distortion of 1.13% (and in the worst case about 15%). The sample-optimal function
f~s∗ performs slightly worse than Borda, due to mild overfitting on the training profiles
(note that the theoretical sample complexity for this problem is much greater than the
100 samples used). These results are of course limited, and merely suggestive; but they
do indicate that scoring functions, either empirically optimized, or relying on stylized
scoring vectors like Borda and harmonic score, can very closely approximate optimal
social choice functions in practice.

6. DISCUSSION
Our work offers three different but related perspectives on utilitarian social choice.
Each model makes fundamentally different assumptions about the mechanism’s
knowledge of the agents’ utility information. In the worst-case model, we study the
distortion of randomized social choice functions assuming no information about the un-
derlying utilities. In the average-case model, we derive the optimal social choice func-
tion with respect to distributions that are i.i.d. and neutral. Finally, in the learning-
theoretic model, we develop a method for approximately optimizing (scoring-based) so-
cial choice functions under arbitrary utility distributions, establish sample complexity
bounds and provide encouraging empirical results.

Our work raises a number of important questions and directions for future research.
Access to sampled utility profiles, as assumed in our learning-theoretic model, may
be difficult to obtain in practice. However, techniques from decision analysis and pref-
erence elicitation using lotteries, or more readily comprehensible queries involving
simple comparisons, can be used to assess the utility functions of specific agents [Braz-
iunas and Boutilier 2010], while econometric techniques often use revealed preference
or stated choice data to develop probabilistic models of utilities [Louviere et al. 2000].
Applying these methods to the design of optimal (ranking-based) social choice func-
tions is an important next step in our research program. Notice that these (sometimes
intensive) techniques are intended to provide the data needed to develop optimal social
choice functions, not as a means to elicit the inputs to the resulting functions.

One of our motivations is to reduce the cognitive and communication burden as-
sociated with utilities or valuations by allowing the agents to specify rankings. This
burden can be further reduced by intelligent elicitation of partial ranking information
[Kalech et al. 2011; Lu and Boutilier 2011]. Our utilitarian model offers a novel per-

5CPLEX 12.2 on a modern workstation took 23.6 hrs. to solve the resulting MIP (accuracy gap of 1.52%).
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spective on vote elicitation and raises the possibility of designing schemes that perform
well with respect to utilitarian social welfare.

The utilitarian perspective also suggests new ways of assessing the potential ma-
nipulation of social choice functions. By assuming agents have utility functions, and
probabilistic information about the utilities of their counterparts, one can quantify the
gains of potential misreports in terms of expected utility, providing a Bayesian view
of manipulation [Majumdar and Sen 2004]. The design of scoring functions that make
appropriate trade-offs between degree of optimality and degree of manipulability is
another important problem to which our methods may be adapted.

Acknowledgements: We thank Yury Makarychev, Hervé Moulin, Tasos Sidiropoulos
and the anonymous referees for helpful discussions and valuable comments.
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A. PROOF OF THEOREM 3.3
We begin by defining a randomized social choice function f . For a non-negative integer
i, define the sets of alternatives Bi(~σ) as follows. Set B0(~σ) consists of all alternatives
in A. For i ≥ 1, an alternative a ∈ Bi−1(~σ) belongs to Bi(~σ) if there exists a utility
profile ~ua ∈ p−1(~σ) in which a has maximum social welfare and, furthermore,

|B`(~σ)|
3
√
m

sw(a, ~ua) ≥
∑

a′∈B`(~σ)

sw(a′, ~ua) (11)

for ` ∈ {0, i− 1}.
Given the preference profile ~σ ∈ (Sm)n, our randomized social choice function f first

computes the sets B0(~σ), B1(~σ), . . . , Bk(~σ) where k is the smallest integer such that
either |Bk(~σ)| < 3

√
m or Bk+1(~σ) = ∅. Deciding whether an alternative of Bi−1(~σ) is in-

cluded in Bi(~σ) can be done in polynomial time by checking the feasibility of a straight-
forward linear program. Then, the function f picks a random integer i ∈ {0, . . . , k} and
selects equiprobably among the alternatives in Bi(~σ).

In the remainder of the proof we show that for every ~σ ∈ (Sm)n, dist(f, ~σ) = O(
√
m ·

log∗m). Specifically, we will establish that the distortion is less than 3
√
m(log∗m+ 1).

Given a preference profile ~σ, consider a utility profile ~u and let a∗ be an alterna-
tive with highest social welfare. Let t be the highest integer in {0, 1, ..., k} such that
a∗ ∈ Bt(~σ). First consider the special case where t = k and |Bk(~σ)| < 3

√
m; f picks

alternative a∗ with probability higher than 1
3(k+1)

√
m

.
In any other case, alternative a∗ does not belong to set Bt+1(~σ). This means that ~u

(and every other utility profile in p−1(~σ) in which a∗ has the highest social welfare)
satisfies

1

|B`(~σ)|
∑

a′∈B`(~σ)

sw(a′, ~u) >
1

3
√
m
sw(a∗, ~u)

for some ` ∈ {0, t}. With probability 1
k+1 , the algorithm picks a random alternative

from B`(~σ). Therefore, its expected social welfare is at least

1

(k + 1)|B`(~σ)|
∑

a′∈B`(~σ)

sw(a′, ~u) >
1

3(k + 1)
√
m
sw(a∗, ~u).
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The theorem will follow by proving that k ≤ log∗m. To do this, we assume thatm ≥ 9,
and show that, for every integer i ≥ 1 such that |Bi−1(~σ)| ≥ 3

√
m, it holds that

2|Bi(~σ)|
3
√
m

≤ log
2|Bi−1(~σ)|

3
√
m

. (12)

This implies that |Blog∗ (2
√
m/3)(~σ)| < 3

√
m and, hence,

k ≤ log∗
(
2
√
m/3

)
≤ log∗m.

The remainder of the proof is therefore devoted to establishing Equation 12.
In the following, we will show that inequality (12) is true for i ≥ 1 assuming that
|Bi−1(~σ)| ≥ 3

√
m. For each alternative a ∈ Bi(~σ), let ~ua be a utility profile satisfying

inequality (11). For such an alternative, denote by N1(a) the set of agents which rank
less than |Bi−1(~σ)|√

m
alternatives of Bi−1(~σ) above a. Let N2(a) = N \ N1(a). Also, for

s ∈ {1, 2}, let

Us =
∑

a∈Bi(~σ)

∑
j∈Ns(a)

uaj (a).

First, observe that for each agent j ∈ N2(a), there are at least |Bi−1(~σ)|√
m

alternatives
a′ of Bi−1(~σ) with uaj (a′) ≥ uaj (a). Hence, we have∑

a∈Bi(~σ)

∑
a′∈Bi−1(~σ)

sw(a′, ~ua) =
∑

a∈Bi(~σ)

∑
a′∈Bi−1(~σ)

∑
j∈N

uaj (a′)

≥
∑

a∈Bi(~σ)

∑
j∈N2(a)

∑
a′∈Bi−1(~σ)

uaj (a′)

≥ |Bi−1(~σ)|√
m

∑
a∈Bi(~σ)

∑
j∈N2(a)

uaj (a) =
|Bi−1(~σ)|√

m
U2

(13)

In addition, since each alternative in Bi(~σ) satisfies inequality (11) for ` = i − 1, we
have∑

a∈Bi(~σ)

∑
a′∈Bi−1(~σ)

sw(a′, ~ua) ≤
∑

a∈Bi(~σ)

|Bi−1(~σ)|
3
√
m

sw(a, ~ua) =
|Bi−1(~σ)|

3
√
m

(U1 + U2). (14)

It follows from (13) and (14) that U1 ≥ 2U2. Now, using inequality (11) for ` = 0, we
have

3U1 ≥ 2(U1 + U2) = 2
∑

a∈Bi(~σ)

∑
j∈N(a)

uaj (a) = 2
∑

a∈Bi(~σ)

sw(a, ~ua)

≥ 6
√
m

|B0(~σ)|
∑

a∈Bi(~σ)

∑
a′∈B0(~σ)

sw(a′, ~ua) =
6n√
m
|Bi(~σ)|.

(15)

Also, observe that U1 is upper-bounded by the total harmonic score of alternatives in
the first d|Bi−1(~σ)|/

√
me positions in each agent’s preference, i.e.,

3U1 ≤ 3nHd|Bi−1(~σ)|/
√
me ≤ 9n log

2|Bi−1(~σ)|
3
√
m

. (16)

The second inequality follows from the fact that |Bi−1(~σ)| ≥ 3
√
m and Hdte ≤ 3 log 2t

3
for every t ≥ 3. By (15) and (16), we obtain inequality (12) as desired. The proof of
Theorem 3.3 is therefore complete.
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B. PROOF OF THEOREM 3.4
For an alternative a∗ ∈ A and ~σ ∈ (Sm)n, let

U(~σ, a∗) =

{
~u ∈ p−1(~σ) : a∗ ∈ argmax

a∈A
{sw(a, ~u)}

}
.

Given a preference profile ~σ ∈ (Sm)n, an alternative a∗ ∈ A, a vector of
non-negative values {pa}a∈A, and non-negative β, define the set of inequalities
INEQ({pa}a∈A, β, ~σ, a∗) as follows:∑

j∈N
y(j, a∗) ≥ 0 (17)

β +
∑
a∈A

x(a, a∗) ≤ 0

∀j ∈ N, ∀a ∈ A : σj(a) = 1, pa + x(a, a∗)− y(j, a∗)− z(σj(a), j, a∗) ≥ 0

∀j ∈ N, ∀a ∈ A : 2 ≤ σj(a) ≤ m− 1, pa + x(a, a∗)− y(j, a∗)− z(σj(a), j, a∗)

+z(σj(a)− 1, j, a∗) ≥ 0

∀j ∈ N, ∀a ∈ A : σj(a) = m, pa + x(a, a∗)− y(j, a∗) + z(σj(a)− 1, j, a∗) ≥ 0

∀a ∈ A \ {a∗}, x(a, a∗) ≥ 0

x(a∗, a∗) ∈ (−∞,+∞)

∀j ∈ N, y(j, a∗) ∈ (−∞,+∞)

∀k ∈ [m− 1], j ∈ N, z(k, j, a∗) ≥ 0

The connection of this set of inequalities to randomized social choice functions is re-
vealed in the following statement.

LEMMA B.1. A randomized social choice function f that uses probability distri-
bution {pa = Pr[f(~σ) = a]}a∈A for profile ~σ has distortion at most β−1 when β ∈
(0, 1] with respect to utility profiles in U(~σ, a∗) if and only if the set of inequalities
INEQ({pa(~σ)}a∈A, β, ~σ, a∗) is satisfied.

PROOF. The fact that the distortion is at most β−1 is equivalent to the following
linear program having a non-negative objective value.

minimize
∑
j∈N

∑
a∈A

pauj(a)− βq

subject to
∑
j∈N

uj(a
∗) = q

∀a ∈ A \ {a∗},
∑
j∈N

uj(a) ≤ q

∀j ∈ N,
∑
a∈A

uj(a) = 1

∀j ∈ N, k ∈ [m− 1], uj(σ
−1
j (k)) ≥ uj(σ−1j (k + 1)

∀j ∈ N, a ∈ A, uj(a) ≥ 0

q ≥ 0

In the above LP, the variable uj(a) denotes the utility of agent j ∈ N for alternative
a ∈ A while the variable q is the maximum social welfare among all alternatives. The
constraints guarantee that ~u ∈ U(~σ, a∗).
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Next, consider the dual linear program using the variable x(a∗, a∗) for the first
constraint, the variables x(a, a∗) for the second set of constraints, the variables
y(j, a∗) for the third set of constraints, and the variables z(k, j, a∗) for the fourth set
of constraints. This program maximizes

∑
j∈N y(j, a∗), subject to the constraints in

INEQ({pa}a∈A, β, ~σ, a∗) except Equation (17). By LP duality, the maximum objective
value of the dual LP should be non-negative as well. Observe that this is exactly the
requirement that INEQ({pa(~σ)}a∈A, β, ~σ, a∗) is satisfied.

We are now ready to define the worst-case optimal randomized social choice function
f∗, i.e., the one that achieves optimal distortion β(~σ)−1 with respect to every profile
~σ ∈ (Sm)n. To do so, we consider the probability distribution {pa(~σ) = Pr[f∗(~σ) = a]}a∈A
as a set of variables and β(~σ) as our objective that has to be maximized. We employ a
LP that is defined as follows.

maximize β(~σ)

subject to ∀a∗ ∈ A, INEQ({pa(~σ)}a∈A, β(~σ), ~σ, a∗) is satisfied∑
a∈A

pa(~σ) = 1

∀a ∈ A, pa(~σ) ≥ 0

Using Lemma B.1 we find that the probability distribution obtained as (part of) the
solution to this LP induces the lowest possible distortion β(~σ)−1 with respect to ~σ.

We conclude that in order to compute the worst-case optimal social choice function f∗
with respect to any preference profile, it suffices to solve a linear program with O(nm2)
variables and O(nm2) constraints. We observe the leveraging LP duality is crucial to
the proof, as naı̈vely embedding the primal LP presented in Lemma B.1 into the above
LP would result in a quadratic program.

C. PROOF OF THEOREM 5.4
We show that the generalized dimension DG(Fk) of k-approval functions is Ω(logm).
Let d be a positive integer. We will construct d preference profiles ~σ1, ~σ2, ..., ~σd with
m = 2d+1 + 2 alternatives, including two special ones a and b, and n = 2d+2 + 1 agents
with the following property. For any integers k = 2, 3, ..., 2d + 1 and t = 1, 2, ..., d, k-
approval returns as the sole winner in profile ~σt:

— alternative a, if the t-th bit in the binary representation of k − 2 is 1, and
— alternative b otherwise.

As a corollary, we will have obtained that the particular sample of d profiles is shat-
tered by the class of k-approval functions. The theorem will then follow by Lemma 5.2
and by the relation between d and m.

Our construction for preference profile ~σt ∈ (Sm)n is as follows. The set of alter-
natives contains the two special alternatives a and b as well as two disjoint sets of
alternatives A1 and A2, each of size 2d. Each profile has 2d+2 + 1 agents partitioned
into five disjoint sets: a set of 2d agents Nq for q = 1, 2, 3, 4, and an extra agent n. For
q ∈ {1, 2}, the agents in Nq rank alternatives a and b in the first two positions (in arbi-
trary order), then the alternatives in Aq (in arbitrary order), and then the alternatives
in A3−q (again, in arbitrary order). All the agents in N3 rank alternative a last. For
j = 0, 1, ..., 2d−t−1, 2t agents of N3 rank alternative b in position 2+j2t. The remaining
top 2d + 1 positions in the ranking of each agent in N3 are occupied by alternatives in
A1 in arbitrary order; the next 2d positions are occupied by alternatives in A2 (again,
in arbitrary order). All the agents in N4 rank alternative b last. For j = 0, 1, ..., 2d−t−1,
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2t agents of N4 rank alternative a in position 2 + 2t−1 + j2t. The remaining top 2d + 1
positions in the ranking of each agent in N4 are occupied by alternatives in A2 in arbi-
trary order; the next 2d positions are occupied by alternatives in A1 (again, in arbitrary
order). Finally, agent n ranks alternative a first, alternative b last, and the alternatives
in A1 ∪A2 in between in arbitrary order.

Now, note that each alternative in Aq is ranked in the first 2d+1 positions by at most
2d+1 + 1 agents (the agents in Nq ∪ N2+q and agent n). Hence, the k-approval score of
each alternative in A1∪A2 is at most 2d+1 + 1 for every k in {2, ..., 2d+ 1}. Also, observe
that alternative b is ranked in one of the top two positions by at least 2d+1 + 2 agents
(the agents in N1 ∪N2 as well as 2t agents of N3). Hence, no alternative from A1 ∪ A2

is a winner in profile ~σt under k-approval, for t = 1, ..., d and k = 2, ..., 2d + 1.
It remains to compute the k-approval score of alternatives a and b. Consider profile

~σt. Observe that, for every k = 2, ..., 2d + 1, the number of agents in N3 that rank
alternative b in the top k positions is

2t
(⌊

k − 2

2t

⌋
+ 1

)
= 2t

⌊
k − 2 + 2t

2t

⌋
and similarly the number of agents in N4 that rank alternative a in the top k positions
is 2tbk−2+2t−1

2t c. Hence, the k-approval scores of a and b are 2d+1 + 1 + 2tbk−2+2t−1

2t c
and 2d+1 + 2tbk−2+2t

2t c, respectively. Let bt be the t-th least significant bit in the binary
representation of k − 2 and let λ, ν be unique integers such that 0 ≤ λ ≤ 2t−1 − 1,
0 ≤ ν ≤ 2d−t − 1, and k − 2 = λ+ bt2

t−1 + ν2t. Then,

sck(a, ~σt)− sck(b, ~σt) = 1 + 2t
⌊
k − 2 + 2t−1

2t

⌋
− 2t

⌊
k − 2 + 2t

2t

⌋
= 1 + 2t

⌊
λ+ bt2

t−1 + ν2t + 2t−1

2t

⌋
− 2t

⌊
λ+ bt2

t−1 + ν2t + 2t

2t

⌋
= 1 + 2t

⌊
λ+ bt2

t−1 + ν2t + 2t−1

2t

⌋
− 2t(ν + 1)

= 1 + 2t
⌊
λ+ bt2

t−1 − 2t−1

2t

⌋
= 1 + 2t(bt − 1),

where the third and fifth equalities hold because 0 ≤ λ ≤ 2t−1 − 1 (and bt ∈ {0, 1}).
Using the fact that t ≥ 1, observe that sck(a, ~σt)− sck(b, ~σt) is strictly positive if bt = 1
and strictly negative if bt = 0. Hence, the sole winner under k-approval is alternative
a if bk = 1 and alternative b otherwise.

D. PROOF OF THEOREM 5.10
We will use a reduction from Independent Set in 3-regular graphs and an explicit
inapproximability result due to Berman and Karpinski [1999].

THEOREM D.1 (BERMAN AND KARPINSKI [1999]). Given a 3-regular graph G
with 284T nodes and 426T edges for some integer T ≥ 2 and any constant ε ∈ (0, 1/2), it
is NP-hard to distinguish between the following two cases:

—G has an independent set of size at least (140− ε)T .
— Any independent set of G has size at most (139 + ε)T .

The proof of Theorem D.1 in [Berman and Karpinski 1999] can be though of as a
polynomial-time reduction that transforms an instance φ of the genericNP -hard prob-
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lem of Satisfiability to an instance of Independent set on a 284T -node 3-regular graph.
The reduction is such that G has an independent set of size (140− ε)T if φ is satisfiable
while any independent set of G has size at most (139 + ε)T otherwise. Our reduction
will use the particular instances in the proof of [Berman and Karpinski 1999]. Given
such an instance with parameters any integer T ≥ 2 and any constant ε ∈ (0, 1/2), our
reduction construct in polynomial time a family of 710T utility profiles that uniquely
defines a family S of corresponding preference profiles for some integer T ≥ 2, so that:

— If the input graph has an independent set of size at least (140 − ε)T , then there is a
scoring protocol ~s such that the total expected social welfare of the winning alterna-
tives under ~s over all profiles in S is at least (39764− 69ε)T 2.

— If any independent set of G has size at most (139−ε)T , then for every scoring protocol
~s, the total expected social welfare of the winning alternatives under ~s over all profiles
in S is at most (39695 + 69ε)T 2.

In this way, we will conclude that distinguishing between these two cases for the pro-
files returned by our reduction is an NP -hard problem. In other words, the problem is
hard to approximate within a factor better than 39764/39695 ≈ 1.00174.

The reduction. LetG = (V,E) be a 3-regular graph with 284T nodes (and 426T edges).
We assume that the nodes of V are identified by the integers 1, 2, ..., |V |. We construct
|V | preference profiles corresponding to the nodes in V and |E| preference profiles cor-
responding to the edges of E (i.e., 710T profiles in total). Denote by S the family of these
preference profiles. All profiles have 284T − 3 agents and 3|V | − 1 = 852T − 1 alterna-
tives. Among them, there are two special alternatives a1 and b1 as well as alternatives
ai, bi, and ci for i = 2, ..., |V |. The corresponding utility profiles are such that the total
utility of each agent for all alternatives is exactly 1 and, furthermore, these utilities
are all different so that the corresponding preference profile is uniquely defined.

For each node v, the preference profile ~σv is defined as follows. The agents are parti-
tioned into 5 sets N1, ..., N5:

— SetN1 consists of 2T−2 agents which rank alternative ai at position i for i = 1, ..., |V |,
alternative b1 at position |V | + 1, and alternatives ci and bi at positions |V | + i and
2|V |+ i− 1, respectively, for i = 2, ..., |V |.

— Set N2 consists of 140T agents which rank alternative ai at position i for i = 1, ..., v,
alternative b1 at position v+ 1, alternative ai at position i+ 1 for i = v+ 1, ..., |V |, and
alternatives ci and bi at positions |V |+ i and 2|V |+ i− 1, respectively, for i = 2, ..., |V |.

— Set N3 consists of 2T−2 agents which rank alternative bi at position i for i = 1, ..., |V |,
alternative ai at position |V |+ i for i = 1, ..., |V |, and alternative ci at position 2|V |+
i− 1 for i = 2, ..., |V |.

— Set N4 consists of 140T agents that rank alternative a1 at position v, alternative bi at
position i for i = 1, ..., v− 1, alternative bi at position i+ 1 for i = v+ 1, ..., |V |+ 1, and
alternatives ai and c2 at positions |V |+ i and 2|V |+ i−1, respectively, for i = 2, ..., |V |.

— Set N5 consists of one agent that ranks alternative b1 first, alternative ci at position
i for i = 2, ..., |V |, alternative a1 at position |V | + 1, and alternatives bi and ci at
positions |V |+ i and 2|V |+ i− 1, respectively, for i = 2, ..., |V |.

See Figure 3 for an example. The corresponding utility profile ~uv is such that
sw(a1, ~u

v) = 70T , sw(b1, ~u
v) = T , and sw(a, ~uv) ≤ T for alternative a different than

a1 and b1, so that it uniquely induces ~σv. Given the definition of ~σv (observe that the
142T −2 agents of N1∪N2 always rank alternative a1 first and the 2T −1 > T agents of
N3∪N5 always rank alternative b1 first), this is clearly feasible and can be implemented
in polynomial time.
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N1 N2 N3 N4 N5

rank ×(2T − 2) ×140T ×(2T − 2) ×140T ×1
1 a1 a1 b1 b1 b1
2 a2 a2 b2 b2 c2
· · · · ·
· · · · ·
v av av bv a1 cv

v + 1 av+1 b1 bv+1 bv cv+1

v + 2 av+2 av+1 bv+2 bv+1 cv+2

· · · · ·
· · · · ·

|V |+ 1 b1 a|V | a1 b|V | a1
|V |+ 2 c2 c2 a2 a2 b2
|V |+ 3 c3 c3 a3 a3 b3
· · · · ·
· · · · ·

2|V | c|V | c|V | a|V | a|V | b|V |
2|V |+ 1 b2 b2 c2 c2 a2
· · · · ·
· · · · ·

3|V | − 1 b|V | b|V | c|V | c|V | a|V |

Fig. 3. The preference profile corresponding to node v. The corresponding utility profile ~uv is such that
sw(a1, ~uv) = 70T , sw(b1, ~uv) = T , and sw(a, ~uv) ≤ T for alternative a different than a1 and b1, so that it
uniquely induces ~σv .

For each edge e = (v, w) with v < w, the preference profile ~σe is defined as follows.
The agents are partitioned into 5 sets N1, ..., N5:

— Set N1 consists of 71T − 1 agents which rank alternative b1 at position v, alternative
ai at position i for i = 1, ..., v − 1, alternative ai at position i + 1 for i = v, ..., |V |, and
alternatives bi and ci at positions |V |+ i and 2|V |+ i− 1, respectively, for i = 2, ..., |V |.

— SetN2 consists of 71T−1 agents which rank alternative ai at position i for i = 1, ..., w−
1, alternative b1 at position w, alternative ai at position i+ 1 for i = w+ 1, ..., |V |, and
alternatives bi and ci at positions |V |+ i and 2|V |+ i− 1, respectively, for i = 2, ..., |V |.

— Set N3 consists of 1 agents which rank alternative a1 first, alternative ci at position
i for i = 2, ..., |V |, alternative b1 at position |V | + 1, and alternatives ai and bi at
positions |V |+ i and 2|V |+ i− 1, respectively, for i = 2, ..., |V |.

— Set N4 consists of 71T − 1 agents that rank alternative bi at position i for i = 1, ..., v,
alternative a1 at position v+ 1, alternative bi at position i+ 1 for i = v+ 1, ..., |V |, and
alternatives ci and ai at positions |V |+ i and 2|V |+ i−1, respectively, for i = 2, ..., |V |.

— Set N5 consists of 71T − 1 agents that rank alternative bi at position i for i = 1, ..., w,
alternative a1 at position w+1, alternative bi at position i+1 for i = w+1, ..., |V |, and
alternatives ci and ai at positions |V |+ i and 2|V |+ i−1, respectively, for i = 2, ..., |V |.

See Figure 4 for an example. The corresponding utility profile ~ue is such that
sw(a1, ~u

e) = 70T , sw(b1, ~u
e) = T , and sw(a, ~ue) ≤ T for alternative a different than

a1 and b1, so that it uniquely induces ~σe. Given the definition of ~σe (observe that the
71T agents of N1∪N3 always rank alternative a1 first and the 142−2 agents of N4∪N5

always rank alternative b1 first), this is clearly feasible and can be implemented in
polynomial time.

Proof of correctness. We proceed with some definitions. For a preference profile
~σ ∈ S, we use the notation ~u(~σ) to denote its corresponding utility profile. Also, define
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N1 N2 N3 N4 N5

rank ×(71T − 1) ×(71T − 1) ×1 ×(71T − 1) ×(71T − 1)
1 a1 a1 a1 b1 b1
2 a2 a2 c2 b2 b2
· · · · · ·
· · · · · ·
v b1 av cv bv bv

v + 1 av av+1 cv+1 a1 bv+1

v + 2 av+1 av+2 cv+2 bv+1 bv+2

· · · · · ·
· · · · · ·
w aw−1 b1 cw bw−1 bw

w + 1 aw aw cw+1 bw a1
w + 2 aw+1 aw+1 cw+2 bw+1 bw+1

· · · · · ·
· · · · · ·

|V |+ 1 a|V | a|V | b1 b|V | b|V |
|V |+ 2 b2 b2 a2 c2 c2
|V |+ 3 b3 b3 a3 c3 c3
· · · · · ·
· · · · · ·

2|V | b|V | b|V | b|V | c|V | c|V |
2|V |+ 1 c2 c2 b2 a2 a2
· · · · · ·
· · · · · ·

3|V | − 1 c|V | c|V | b|V | a|V | a|V |

Fig. 4. The preference profile ~σe corresponding to edge e = (v, w) with v < w. The corresponding utility
profile ~ue is such that sw(a1, ~ue) = 70T , sw(b1, ~ue) = T , and sw(a, ~ue) ≤ T for alternative a different than
a1 and b1, so that it uniquely induces ~σe.

SW(~s) =
∑
~σ∈S E[sw(f~s(~σ), ~u(~σ))] to be the total expected social welfare of the winning

alternative under score ~s. We remark that in order to simplify the proof (and avoid
reasoning about monotonicity of the score vector entries), we consider each scoring
rule as computing a linear combination of k-approval scores for k = 1, ..., 3|V | − 1. The
non-negative entries of the score vector are the multipliers of the corresponding ap-
proval score in this linear combination. In particular, denote by appk(a, ~σ) the number
of agents that rank alternative a in some of the first k positions in the preference pro-
file ~σ (i.e., the k-approval score of alternative a). Then, the score under the score vector
~s is defined as sc~s(a, ~σ) =

∑3|V |−1
k=1 appk(a, ~σ) · sk. Clearly, this definition is equivalent to

the standard one for scoring rules (by adjusting the score vector entries appropriately).
The next three claims provide information about the winning alternatives in each

profile depending on the entries of the score vector ~s.

CLAIM D.2. Let ~s be a score vector. In every profile of S, one of the alternatives a1
and b1 has the highest score under ~s. If an alternative a 6∈ {a1, b1} has the highest score
under ~s in some profile of S then sk = 0 for k = 1, ..., |V | and alternatives a1 and b1 have
highest score as well.

PROOF. Observe that in each profile, the 284T−3 agents have one of the alternatives
a1 and b1 in their top position. Furthermore, all agents rank alternatives a1 and b1 in
some of the first |V |+1 positions. Hence, the sum of the scores of these two alternatives
is at least (284T − 3)

∑|V |
k=1 sk + 2(284T − 3)

∑3|V |−1
k=|V |+1 sk. For every other alternative a,
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the number of agents that rank it in some of the first |V | positions is at most 142T −
2. Hence, the score of such an alternative is at most (142T − 2)

∑|V |
k=1 sk + (284T −

3)
∑3|V |−1
k=|V |+1 sk. Clearly, if sk > 0 for some k ∈ {1, ..., |V |}, then some of the alternatives

a1 and b1 has score strictly higher than a. Otherwise, the alternatives a1 and b1 still
have highest score (possibly together with some alternative a 6∈ {a1, b1}).

CLAIM D.3. Let v ∈ V be a node of G. Given a score vector ~s, define

Witv(~s) = (140T − 1)sv −
∑

k∈V \{v}

sk.

Then

— Alternative a1 is the sole winner under ~s in profile ~σv if and only if Witv(~s) > 0.
— Alternative b1 is the sole winner under ~s in profile ~σv if and only if Witv(~s) < 0.
— Alternatives a1 and b1 are tied as highest-scoring alternatives under ~s in profile ~σv if

and only if Witv(~s) = 0.

PROOF. Consider a node v ∈ V and its corresponding preference profile ~σv. By the
definition of ~σv, we have that the difference appk(a1, ~σ

v)−appk(b1, ~σ
v) of the k-approval

scores of alternatives a1 and b1 is −1 for k = 1, ..., v − 1, v + 1, ..., |V |, 140T − 1 for k = v,
and 0 for k = |V |+ 1, ..., 3|V | − 1. We have

sc~s(a1, ~σ
v)− sc~s(b1, ~σ

v) =

3|V |−1∑
k=1

(appk(a1, ~σ
v)− appk(b1, ~σ

v))sk

= (140T − 1)sv −
∑

k∈V \{v}

sk

= Witv(~s).

Hence, the first two parts of the claim follow since Witv(~s) 6= 0 implies that sk > 0
for some k ∈ {1, ..., |V |} and, hence, no alternative different than a1 and b1 is highest-
scoring. The third part follows using Claim D.2.

CLAIM D.4. Let e = (v, w) ∈ E be an edge of G. Given a score vector ~s, define

Wite(~s) = (71T − 2)sv + (71T − 2)sw −
∑

k∈V \{v,w}

sk.

Then

— Alternative a1 is the sole winner under ~s in profile ~σe if and only if Wite(~s) < 0.
— Alternative b1 is the sole winner under ~s in profile ~σe if and only if Wite(~s) > 0.
— Alternatives a1 and b1 are tied as highest-scoring alternatives under ~s in profile ~σe if

and only if Wite(~s) = 0.

PROOF. Consider an edge e = (v, w) ∈ E and its corresponding preference profile ~σe.
By the definition of ~σe, we have that the difference appk(a1, ~σ

e) − appk(b1, ~σ
e) of the k-

approval scores of alternatives a1 and b1 is 1 for k = 1, ..., v−1, v+1, ..., w−1, w+1, ..., |V |,
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−71T + 2 for k = v or k = w, and 0 for k = |V |+ 1, ..., 3|V | − 1. We have

sc~s(a1, ~σ
e)− sc~s(b1, ~σ

e) =

3|V |−1∑
k=1

(appk(a1, ~σ
e)− appk(b1, ~σ

e))sk

= −(71T − 2)sv − (71T − 2)sw +
∑

k∈V \{v}

sk

= −Wite(~s).

Hence, the first two parts of the claim follow since Wite(~s) 6= 0 implies that sk > 0
for some k ∈ {1, ..., |V |} and, hence, no alternative different than a1 and b1 is highest-
scoring. The third part follows using Claim D.2.

The correctness of our reduction will follow by the next two lemmas.

LEMMA D.5. For every independent set I of size K ∈ [71T, 140T ) in G, there is a
scoring protocol ~s such that SW(~s) ≥ 30104T 2 + 69TK.

PROOF. For every node v of G, we set sv = 1/K if v ∈ I, and sv = 0 otherwise. We
also set sv = 0 for every v in {|V |+ 1, ..., 3|V | − 1}. First, consider the preference profile
~σv for some node v of G. We have

Witv(~s) = (140T − 1)sv −
∑

k∈V \{v}

sk = 140Tsv −
∑
k∈V

sk = 140Tsv − 1.

Now, observe that the right-hand side in the above equality is strictly positive if v ∈ I
(since sk = 1/K and k < 140T ) and strictly negative if v 6∈ I (since sv = 0). Hence, by
Claims D.2 and D.3, we conclude that alternative a1 (respectively, b1) is the sole winner
in profile ~σv if v ∈ I (respectively, if v 6∈ I).

Now, consider the preference profile ~σe for some edge e = (v, w) of G. We have

Wite(~s) = (71T − 2)sv + (71T − 2)sw −
∑

k∈V \{v,w}

sk

= (71T − 1)(sv + sw)−
∑
k∈V

sk

= (71T − 1)(sv + sw)− 1

≤ 71T − 1

K
− 1

< 0.

The first inequality follows since at most one of the adjacent nodes v and w belongs in
the independent set I and the second one since K ≥ 71T . By Claims D.2 and D.4, we
conclude that alternative a1 is the sole winner under ~s in profile ~σe, for every edge e of
E.

Summing the expected social welfare of the winner under ~s over all profiles, we have

SW(~s) =
∑
v∈I

sw(a1, ~uv) +
∑
v∈V \I

sw(b1, ~u
v) +

∑
e∈E

sw(a1, ~u
e)

= 70TK + T (|V | −K) + 70T |E|
= 30104T 2 + 69TK

as desired.
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LEMMA D.6. Let ~s be a score vector such that SW(~s) ≥ 30104T 2 + 69TK. Then, G
has an independent set of size K.

PROOF. First, we will prove that sk > 0 for some k ∈ {1, ..., |V |}. Indeed, if this
not the case, by Claims D.3 and D.4, a1 and b1 are both highest-scoring alternatives
(possibly, together with some other alternative). Then, the expected social welfare of
the winner under ~s ∈ S in any profile ~σ is at most 1

2 (sw(a1, ~u(~σ)) + sw(b1, ~u(~σ))) =

71T/2. In total, we have that SW(~s) ≤ (|E| + |V |)71T/2 = 25205T 2, contradicting the
assumption of the lemma.

Furthermore, we can assume that Witv(~s) 6= 0 for every node v ∈ V and Wite(~s) 6= 0
for every edge e ∈ E. If this is not the case, we can transform the score vector in
order to get another one that satisfies these conditions as well as the assumption of
the lemma. This can be done as follows. Let η be the minimum non-zero value of the
quantities |Witv(~s)| and |Wite(~s)| over all nodes v ∈ V and edges e ∈ E. Now, let v ∈ V
be a node with sv > 0 (by the argument above, such a node certainly exists). Define two
score vectors ~s′ and ~s′′ as follows: set s′v = sv − η

200T and s′v = sv + η
200T ; all other scores

in ~s′ and ~s′′ are the same with those of ~s. Observe that for every non-zero Witv(~s),
Witv(~s

′) and Witv(~s
′′) are non-zero and have the same sign with Witv(~s). Similarly,

for every non-zero Wite(~s), Wite(~s
′) and Wite(~s

′′) are non-zero and have the same sign
with Wite(~s). This means that each such profile ~σv or ~σe has the same sole winner
under scores ~s, ~s′, and ~s′′. For every node v such that Witv(~s) = 0, Witv(~s

′)Witv(~s
′′) < 0

(i.e., they are non-zero and have different sign). Similarly, for every edge e such that
Wite(~s) = 0, Wite(~s

′)Wite(~s
′′) < 0. Hence, alternatives a1 and b1 are sole winners in

profiles ~σv and ~σe under ~s′ and ~s′′ while they both had the same highest score under ~s.
Clearly, SW(~s′) + SW(~s′′) ≥ 2SW(~s) which implies that one of the score vectors ~s′ or ~s′′
has the desired properties.

So, in the following, we assume that Witv(~s) 6= 0 and Wite(~s) 6= for every node v ∈ V
and every edge e ∈ E. Define H = {e ∈ E : Wite(~s) < 0} and I = {v ∈ V : Witv(~s) > 0}.
Hence, the sole winner under ~s in profile ~σe is alternative a1 if e ∈ H and alternative
b1 otherwise. Similarly, the sole winner in profile ~σv is alternative a1 if v ∈ I and
alternative b1 otherwise. Hence,

SW(~s) =
∑
v∈I

sw(a1, ~u
v) +

∑
v∈V \I

sw(b1, ~u
v) +

∑
e∈H

sw(a1, ~u
e) +

∑
e∈E\H

sw(b1, ~u
e)

= 70T |I|+ T (|V | − |I|) + 70T |H|+ T (|E| − |H|)
= T |V |+ 69T |I|+ T |E|+ 69T |H|

Also, observe that the assumption of the lemma implies that

SW(~s) ≥ 30104T 2 + 69TK

= 70|E|+ T |V |+ 69TK.

By the above two inequalities, we obtain that |I| ≥ K + |E| − |H|. Now, consider the
subgraph G′ of G induced by the nodes of I and let E(G′) be its set of edges. Since for
each edge e = (v, w) of E(G′), nodes v and w belong to I, it is also

Wite(~s) = (71T − 2)sv + (71T − 2)sw −
∑

k∈V \{v,w}

sk

=
1

2
(Witv(~s) + Witw(~s)) + (T − 1)(sv + sw)

> 0,

Preliminary version in the 13th ACM Conference on Electronic Commerce (EC 2012), Valencia, Spain: June 2012.



Optimal Social Choice Functions 31

i.e., E(G′) ⊆ |E \ H|. Since |I| − |E(G′)| is a lower bound on the number of connected
components in G′, the graph G′ (and, consequently, graph G) has an independent set
of size |I| − |E(G′)| ≥ |I| − |E \H| ≥ K.

The properties of our reduction follow by the last two lemmas. If G has an indepen-
dent set of size (140 − ε)T , using Lemma D.5, we obtain that there is a score vector ~s
such that SW(~s) ≥ (39764− 69ε)T 2. On the other hand, if any independent set in G has
size at most (139 + ε)T , then SW(~s) ≤ (39695 + 69ε)T 2. Assuming otherwise, we obtain
a contradiction using Lemma D.6.
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