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Abstract
We propose a natural model of abduction based on the revi-
sion of the epistemic state of an agent. We require that ex-
planations be sufficient to induce belief in an observation in
a manner that adequately accounts for factual and hypothet-
ical observations. Our model will generate explanations that
nonmonotonically predictan observation, thus generalizing
most current accounts, which require some deductive rela-
tionship between explanation and observation. It also pro-
vides a natural preference ordering on explanations, defined
in terms of normality or plausibility. We reconstruct the The-
orist system in our framework, and show how it can be ex-
tended to accommodate our predictive explanations and se-
mantic preferences on explanations.

1 Introduction
A number of different approaches to abduction have been
proposed in the AI literature that model the concept of ab-
duction as some sort of deductive relation between an expla-
nation and the explanandum, the “observation” it purports
to explain (e.g., Hempel’s (1966)deductive-nomologicalex-
planations). Theories of this type are, unfortunately, bound
to the unrelenting nature of deductive inference. There are
two directions in which such theories must be generalized.
First, we should not require that an explanation deductively
entail its observation (even relative to some background the-
ory). There are very few explanations that do not admit ex-
ceptions. Second, while there may be many competing ex-
planations for a particular observation, certain of these may
be relatively implausible. Thus we require some notion of
preference to chose among these potential explanations.

Both of these problems can be addressed using, for exam-
ple, probabilistic information (Hempel 1966; de Kleer and
Williams 1987; Poole 1991; Pearl 1988): we might sim-
ply require that an explanation render the observation suf-
ficiently probably and that most likely explanations be pre-
ferred. Explanations might thusnonmonotonicin the sense

thatα may explainβ, butα ∧ γ may not (e.g.,P (β|α) may
be sufficiently high whileP (β|α ∧ γ) may not). There have
been proposals to address these issues in a more qualitative
manner using “logic-based” frameworks also. Peirce (see
Rescher (1978)) discusses the “plausibility” of explanations,
as do Quine and Ullian (1970). Consistency-based diagno-
sis (Reiter 1987; de Kleer, Mackworth and Reiter 1990) uses
abnormality assumptions to capture the context dependence
of explanations; and preferred explanations are those that
minimize abnormalities. Poole’s (1989) assumption-based
framework captures some of these ideas by explicitly intro-
ducing a set of default assumptions to account for the non-
monotonicity of explanations.

We propose a semantic framework for abduction that cap-
tures the spirit of probabilistic proposals, but in a qualitative
fashion, and in such a way that existing logic-based propos-
als can be represented as well. Our account will take as cen-
tral subjunctive conditionals of the formA ⇒ B, which can
be interpreted as asserting that, if an agent were to believe
A it would also believeB. This is the cornerstone of our
notion of explanation: if believingA is sufficient to induce
belief in B, thenA explainsB. This determines a strong,
predictivesense of explanation. Semantically, such condi-
tionals are interpreted relative to an ordering of plausibility
or normality over worlds. Our conditional logic, described
in earlier work as a representation of belief revision and de-
fault reasoning (Boutilier 1991; 1992b; 1992c), has the de-
sired nonmonotonicity and induces a natural preference or-
dering on sentences (hence explanations). In the next sec-
tion we describe our conditional logics and the necessary
logical preliminaries. In Section 3, we discuss the concept
of explanation, its epistemic nature, and its definition in our
framework. We also introduce the notion ofpreferred ex-
planations, showing how the same conditional information
used to represent the defeasibility of explanations induces
a natural preference ordering. To demonstrate the expres-
sive power of our model, in Section 4 we show how Poole’s



Theorist framework (and Brewka’s (1989) extension) can be
captured in our logics. This reconstruction explains seman-
tically the non-predictive andparaconsistentnature of ex-
planations in Theorist. It also illustrates the correct manner
in which to augment Theorist with a notion of predictive ex-
planation and how one should capture semantic preferences
on explanations. These two abilities have until now been
unexplored in this canonical abductive framework. We con-
clude by describing directions for future research, and how
consistency-based diagnosis also fits in our system.

2 Conditionals and Belief Revision
The problem of revising a knowledge base or belief set
when new information is learned has been well-studied in
AI. One of the most influential theories of belief revision
is theAGM theory(Alchourrón, Gärdenfors and Makinson
1985; Gärdenfors 1988). If we take an agent to have a (de-
ductively closed) belief setK, adding new informationA to
K is problematic ifK ⊢ ¬A. Intuitively, certain beliefs in
K must be retracted beforeA can be accepted. The AGM
theory provides a set of constraints on acceptable belief re-
vision functions∗. Roughly, usingK∗A to denote the belief
set resulting whenK is revised byA, the theory maintains
that the least “entrenched” beliefs inK should be given up
and thenA added to thiscontractedbelief set.

Semantically, this process can be captured by considering
a plausibility orderingover possible worlds. As described
in (Boutilier 1992b; Boutilier 1992a), we can use a fam-
ily of logics to capture the AGM theory of revision. The
modal logic CO is based on a propositional language (over
variablesP) augmented with two modal operators2 and

←

2.
LCPL denotes the propositional sublanguage of this bimodal
languageLB. The sentence2α is read as usual as “α is true
at all equally or more plausibleworlds.” In contrast,

←

2α is
read “α is true at allless plausibleworlds.”

A CO-model is a tripleM = 〈W,≤, ϕ〉, whereW is a set
of worlds with valuation functionϕ and≤ is a plausibility
ordering overW . If w ≤ v thew is at least as plausible asv.
We insist that≤ be transitive and connected (that is, either
w ≤ v or v ≤ w for all w, v). CO-structures consist of a
totally-ordered set ofclustersof worlds, where a cluster is
simply a maximal set of worldsC ⊆ W such thatw ≤ v for
eachw, v ∈ C (that is, no extension ofC enjoys this prop-
erty). This is evident in Figure 1(b), where each large circle
represents a cluster of equally plausible worlds. Satisfaction
of a modal formula atw is given by:

1. M |=w 2α iff for eachv such thatv ≤ w, M |=v α.

2. M |=w

←

2α iff for eachv such that notv ≤ w, M |=v α.

We define several new connectives as follows:3α ≡df

¬2¬α;
←

3α ≡df ¬
←

2¬α;
↔

2α ≡df 2α ∧
←

2α; and
↔

3α ≡df
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Figure 1: CT4O and CO models

¬
↔

2¬α. It is easy to verify that these connectives have the
following truth conditions:3α (

←

3α) is true at a world if
α holds at some more plausible (less plausible) world;

↔

2α

(
↔

3α) holds iff α holds at all (some) worlds, whether more
or less plausible.

The modal logic CT4O is a weaker version of CO, where
we weaken the condition of connectedness to be simple re-
flexivity. This logic is based on models whose structure is
that of a partially-ordered set of clusters (see Figure 1(a)).
Both logics can be extended by requiring that the set of
worlds in a model include every propositional valuation over
P (so that every logically possible state of affairs is possible).
The corresponding logics are denoted CO* and CT4O*.
Axiomatizations for all logics may be found in (Boutilier
1992b; Boutilier 1992a). For a given model, we define the
following notions. We let‖α‖ denote the set of worlds satis-
fying formulaα (and also use this notion for sets of formu-
laeK). We usemin(α) to denote the set ofmost plausible
α-worlds:1

min(α) = {w : w |= α, andv < w impliesv 6|= α}

The revision of a belief setK can be represented using
CT4O or CO-models that reflect the degree of plausibility
accorded to worlds by an agent in such a belief state. To cap-
ture revision ofK, we insist that any suchK-revision model
be such that‖K‖ = min(⊤); that is,‖K‖ forms the (unique)
minimal cluster in the model. This reflects the intuition that
all and onlyK-worlds are most plausible (Boutilier 1992b).
The CT4O-model in Figure 1(a) is aK-revision model for
K = Cn(¬A,B), while the CO-model in Figure 1(b) is suit-
able forK = Cn(¬A).

1We assume, for simplicity, that such a (limiting) set existsfor
eachα ∈ LCPL, though the following technical developments do
not require this (Boutilier 1992b).



To reviseK by A, we construct the revised setK∗A by
considering the setmin(A) of most plausibleA-worlds in
M . In particular, we require that‖K∗A‖ = min(A); thus
B ∈ K∗A iff B is true at each of the most plausibleA-worlds.
We can define a conditional connective⇒ such thatA ⇒ B

is true in just such a case:

(A ⇒ B) ≡df

↔

2(A ⊃ 3(A ∧ 2(A ⊃ B)))

Both models in Figure 1 satisfyA ⇒ B, sinceB holds at
each world in the shaded regions,min(A), of the models.
Using theRamsey testfor acceptance of conditionals (Stal-
naker 1968), we equateB ∈ K∗A with M |= A ⇒ B.
Indeed, for both models we have thatK∗A = Cn(A,B).
If the model in question is a CO*-model then this char-
acterization of revision is equivalent to the AGM model
(Boutilier 1992b). Simply using CT4O*, the model satis-
fies all AGM postulates (Gärdenfors 1988) but the eighth.
Properties of this conditional logic are described in Boutilier
(1990; 1991).

We briefly describe thecontractionof K by ¬A in this
semantic framework. To retract belief in¬A, we adopt the
belief state determined by the set of worlds‖K‖ ∪ min(A).
The belief setK−

¬A does not contain¬A, and this opera-
tion captures the AGM model of contraction. In Figure 1(a)
K−
¬A = Cn(B), while in Figure 1(b)K−

¬A = Cn(A ⊃ B).
A key distinction between CT4O and CO-models is illus-

trated in Figure 1: in a CO-model, all worlds inmin(A) must
be equally plausible, while in CT4O this need not be the
case. Indeed, the CT4O-model shown has two maximally
plausible sets ofA-worlds (the shaded regions), yet these
are incomparable. We denote the set of such incomparable
subsets ofmin(A) by Pl(A), so thatmin(A) = ∪Pl(A).2

Taking each such subset to be a plausible revised state of
affairs rather than their union, we can define a weaker no-
tion of revision using the following connective. It reflects
the intuition that atsomeelement ofPl(A), C holds:

(A → C) ≡df

↔

2(¬A) ∨
↔

3(A ∧ 2(A ⊃ C))

The model in Figure 1(a) shows the distinction: it satisfies
neitherA ⇒ C norA ⇒ ¬C, but bothA → C andA →
¬C. There is a set of comparable most plausibleA-worlds
that satisfiesC and one that satisfies¬C. Notice that this
connective isparaconsistentin the sense that bothC and¬C
may be “derivable” fromA, butC ∧¬C is not. However,→
and⇒ are equivalent in CO, sincemin(A) must lie within a
single cluster.

Finally, we define theplausibility of a proposition.A is
at least as plausible asB just when, for everyB-world w,
there is someA-world that is at least as plausible asw. This
is expressed inLB as

↔

2(B ⊃ 3A). If A is (strictly) more

2P l(A) = {min(A) ∩ C : C is a cluster}.

plausible thanB, then as we move away from‖K‖, we will
find anA-world before aB-world; thus,A is qualitatively
“more likely” thanB. In each model in Figure 1,A ∧ B is
more plausible thanA ∧ ¬B.

3 Epistemic Explanations
Often explanations are postulated relative to some back-
ground theory, which together with the explanation entails
the observation. Our notion of explanation will be somewhat
different than the usual ones. We define an explanation rel-
ative to the epistemic state of some agent (or program). An
agent’s beliefsandjudgements of plausibility will be crucial
in its evaluation of what counts as a valid explanation (see
Gärdenfors (1988)). We assume a deductively closed belief
setK along with some set of conditionals that represent the
revision policies of the agent. These conditionals may repre-
sent statements of normality or simply subjunctives (below).

There are two types of sentences that we may wish to ex-
plain: beliefs and non-beliefs. Ifβ is a belief held by the
agent, it requires afactualexplanation, some other beliefα
that might have caused the agent to acceptβ. This type of
explanation is clearly crucial in most reasoning applications.
An intelligent program will provide conclusions of various
types to a user; but a user should expect a program to be able
to explainhow it reached such a “belief,” to justify its rea-
soning. The explanation should clearly be given in terms of
other (perhaps more fundamental) beliefs held by the pro-
gram. This applies to advice-systems, intelligent databases,
tutorial systems, or a robot that must explain its actions.

A second type of explanation ishypothetical. Even ifβ is
not believed, we may want a hypothetical explanation for it,
some new belief the agentcouldadopt that would be suffi-
cient to ensure belief inβ. This counterfactual reading turns
out to be quite important in AI, for instance, in diagnosis
tasks (see below), planning, and so on (Ginsberg 1986). For
example, ifA explainsB in this sense, it may be that ensur-
ing A will bring aboutB. If α is to count as an explanation
of β in this case, we must insist thatα is also not believed.
If it were, it would hardly make sense as a predictive expla-
nation, for the agent has already adopted belief inα without
committing toβ. This leads us to the following condition on
epistemic explanations: ifα is an explanation forβ thenα
andβ must have the same epistemic status for the agent. In
other words,α ∈ K iff β ∈ K and¬α ∈ K iff ¬β ∈ K.3

3This is at odds with one prevailing view of explanation, which
takes only non-beliefs to be valid explanations: to offer acurrent
beliefα as an explanation is uninformative; abduction should be an
“inference process” allowing the derivation ofnewbeliefs. We take
a somewhat different view, assuming that observations are not (usu-
ally) accepted into a belief set until some explanation is found and
accepted. In the context of its other beliefs,β is unexpected. An ex-
planation relieves this dissonance when it is accepted (Gärdenfors
1988). After this process both explanation and observationare be-



Since our explanations are to be predictive, there has to be
some sense in whichα is sufficient to cause acceptance of
β. On our interpretation of conditionals (using the Ramsey
test), this is the case just when the agent believes the condi-
tionalα ⇒ β. So forα to count as an explanation ofβ (in
this predictive sense, at least) this conditional relationmust
hold.4 In other words, if the explanation were believed, so
too would the observation.

Unfortunately, this conditional is vacuously satisfied
whenβ is believed, once we adopt the requirement thatα

be believed too. Anyα ∈ K is such thatα ⇒ β; but surely
arbitrary beliefs cannot count as explanations. To determine
an explanation for someβ ∈ K, we want to (hypotheti-
cally) suspend belief inβ and, relative to this new belief
state, evaluate the conditionalα ⇒ β. This hypothetical be-
lief state should simply be thecontractionof K by β. The
contracted belief setK−β is constructed as described in the
last section. We can think of it as the set of beliefs held by
the agent before it came to acceptβ.5 In general, the con-
ditionals an agent accepts relative to the contracted set need
not bear a strong relation to those in the original set. Fortu-
nately, we are only interested in those conditionalsα ⇒ β

whereα ∈ K. The AGM contraction operation ensures that
¬α 6∈ K−β . This means that we can determine the truth of

α ⇒ β relative toK−β by examining conditionals in the
original belief set. We simply need to check if¬β ⇒ ¬α
relative toK. This is our final criterion for explanation. If
the observation had been absent, so too would the explana-
tion.

We assume, for now, the existence of a modelM that cap-
tures an agent’s objective belief setK and its revision poli-
cies (e.g.,M completely determinesK∗A, K−A and accepted
conditionalsA ⇒ B). When we mention a belief setK, we
have in mind also the appropriate modelM . All conditionals
are evaluated with respect toK unless otherwise indicated.
We can summarize the considerations above:

Definition A predictive explanationof β ∈ LCPL relative to
belief setK is anyα ∈ LCPL such that: (1)α ∈ K iff
β ∈ K and¬α ∈ K iff ¬β ∈ K; (2) α ⇒ β; and (3)
¬β ⇒ ¬α.

lieved. Thus, the abductiveprocessshould be understood in terms
of hypotheticalexplanations: when it is realized whatcould have
caused belief in an (unexpected) observation, both observation and
explanation are incorporated.Factual explanations are retrospec-
tive in the sense that they (should) describe “historically” what ex-
planation wasactuallyadopted for a certain belief.

In (Boutilier and Becher 1993) we explore a weakening of this
condition on epistemic status. Preferences on explanations (see be-
low) then play a large role in ruling out any explanation whose
epistemic status differs from that of the observation.

4See the below for a discussion of non-predictive explanations.
5We do not require that this mustactuallybe the case.
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Figure 2: Explanations for “Wet Grass”

As a consequence of this definition, we can have the follow-
ing property of factual explanations:

Proposition 1 If α, β ∈ K thenα explainsβ iff α ⇒ β is
accepted inK−β .

Thus factual explanations satisfy our desideratum regarding
contraction byβ. Furthermore, for both factual and hypo-
thetical explanations, only one of conditions (2) or (3) needs
to be tested, the other being superfluous:

Proposition 2 (i) If α, β ∈ K thenα explainsβ iff ¬β ⇒
¬α; (ii) If α, β 6∈ K thenα explainsβ iff α ⇒ β.

Figure 2 illustrates both factual and hypothetical
explanations. In the first model, wet grass (W ) is explained
by rain (R), sinceR ⇒ W holds in that model. Similarly,
sprinklerS explainsW , as doesS ∧ R. Thus, there may
be competing explanations; we discuss preferences on these
below. Intuitively,α explainsβ just whenβ is true at the
most plausible situations in whichα holds. Thus, explana-
tions aredefeasible: W is explained byR; but,R together
with C (the lawn is covered) does not explain wet grass, for
R ∧ C ⇒ ¬W . Notice thatR alone explainsW , since
the “exceptional” conditionC is normally false whenR (or
otherwise), thus need not be stated. This defeasibility is a
feature of explanations that has been given little attention in
many logic-based approaches to abduction.

The second model illustrates factual explanations forW .
SinceW is believed, explanations must also be believed.R

and¬S are candidates, but onlyR satisfies the condition on
factual explanations: if we give up belief inW , addingR is
sufficient to get it back. In other words,¬W ⇒ ¬R. This
does not hold for¬S because¬W ⇒ S is false. Notice
that if we relax the condition on epistemic status, we might



acceptS as a hypothetical explanation for factual beliefR.
This is explored in (Boutilier and Becher 1993).

Semantic Preferences:Predictive explanations are very
general, for anyα that induces belief inβ satisfies our con-
ditions. Of course, some such explanations should be ruled
out on grounds of implausibility (e.g., a tanker truck explod-
ing in front of my house explains wet grass). In probabilis-
tic approaches to abduction, one might prefer most probable
explanations. In consistency-based diagnosis, explanations
with the fewest abnormalities are preferred on the grounds
that (say) multiple component failures are unlikely. Prefer-
ences can be easily accommodated within our framework.
We assume that theβ to be explained is not (yet) believed
and rank possible explanations forβ.6 An adopted expla-
nation is not one that simply makes an observation less sur-
prising, but one that is itself as unsurprising as possible.We
use the plausibility ranking described in the last section.

Definition If α andα′ both explainβ thenα is at least as
preferred asα′ (writtenα ≤P α′) iff M |=

↔

2(α′ ⊃ 3α).
Thepreferred explanationsof β are thoseα such that not
α′ <P α for all explanationsα′.

Preferred explanations are those that are most plausible, that
require the “least” change in belief setK in order to be ac-
cepted. Examining the hypothetical model in Figure 2, we
see that whileR, S andR∧ S each explainW , R andS are
preferred toR ∧ S (I may not know whether my sprinkler
was on or it rained, but it’s unlikely that my sprinkler was
on in the rain). If we want to represent the fact, say, that
the failure of fewer components is more plausible than more
failures, we simply rank worlds accordingly. Preferred ex-
planations ofβ are those that predictβ and presume as few
faults as possible.7 We can characterize preferred explana-
tions by appealing to their “believability” givenβ:

Proposition 3 α is a preferred explanation forβ iff M |=
¬(β → ¬α).

In the next section, we discuss the role of→ further.
This approach to preferred explanations is very general,

and is completely determined by the conditionals (or de-
faults) held by an agent.8 We needn’t restrict the ordering
to, say, counting component failures. It can be used to rep-
resent any notion of typicality, normality or plausibilityre-
quired. For instance, we might use this model of abduction

6We adopt the view that an agent, when acceptingβ, also ac-
cepts its most plausible explanation(s). There is no need, then, to
rank factual explanations according to plausibility – all explana-
tions inK are equally plausible. In fact, the only explanations in
K can be those that are preferred inK−

β .
7In consistency-based systems, explanations usually do notpre-

dict an observation without adequate fault models (more on this in
the concluding section).

8Direct statements of belief, relative plausibility, integrity con-
straints, etc. inLB may also be in an agent’sKB.

in scene interpretation to “explain” the occurrence of various
image objects by the presence of actual scene objects (Re-
iter and Mackworth 1989). Preferred explanations are those
that match the data best. However, we can also introduce an
extra level of preference to capture preferred interpretations,
those scenes that aremost likelyin a given domain among
those with the best fit.

We should point out that we do not require a complete
semantic modelM to determine explanations. For a given
incomplete theory, one can simply use the derivable condi-
tionals to determine derivable explanations and preferences.
This paper simply concentrates on the semantics of this pro-
cess. All conditions on explanations can be tested as object-
level queries on an incompleteKB. However, should one
have in mind a complete ordering of plausibility (as in the
next section), these can usually be represented as a compact
object-level theory as well (Boutilier 1991).

Other issues arise with this semantic notion of explana-
tion. Consider the wet grass example, and the following
conditionals:R ⇒ W , S ⇒ W andS ∧ R ⇒ W (note
that the third does not follow from the others). We may be
in a situation where rain is preferred to sprinkler as an expla-
nation for wet grass (it is more likely). But we might be in a
situation whereR andS are equally plausible explanations.9

We might then haveW ⇒ (S ≡ ¬R). That is,S andR are
theonly plausible “causes” forW (and are mutually exclu-
sive). Notice thatS ≡ ¬R is a preferred explanation forW ,
as isS ∨ R. We sayα is a covering explanationfor β iff
α is a preferred explanation such thatβ ⇒ α. Such anα
represents all preferred explanations forβ.10

Pragmatics: We note thatβ is always an explanation for
itself. Indeed, semanticallyβ is as good as any other expla-
nation, for if one is convinced of thistrivial explanation, one
is surely convinced of the proposition to be explained. There
are many circumstances in which such an explanation is rea-
sonable (for instance, explaining the value of a root node ina
causal network); otherwise we would require infinite regress
or circular explanations.

The undesirability of such trivial explanations, in certain
circumstances, is not due to a lack of predictive power or
plausibility, but rather itsuninformativenature. We think it
might be useful to rule out trivial explanations as a matter of
the pragmaticsof explanation rather than semantics, much
like Gricean maxims (but see also Levesque (1989)). But,
we note, that in many cases, trivial (or overly specific) ex-

9We can ensure thatR∧S is less likely, e.g., by assertingS ⇒
¬R andR ⇒ ¬S.

10Space limitations preclude a full discussion (see (Boutilier and
Becher 1993)), but we might think of a covering explanation as
the disjunction of all likely causes ofβ in a causal network (Pearl
1988). We are currently investigatingcausal explanationsin our
conditional framework and how a theory might be used to derive
causal influences (Lewis 1973; Goldszmidt and Pearl 1992).



planations may be desirable. We discuss this and other prag-
matic issues (e.g., irrelevance) in the full paper (Boutilier
and Becher 1993). We note that in typical approaches to di-
agnosis this problem does not arise. Diagnoses are usually
selected from a pre-determined set of conjectures or com-
ponent failures. This can be seen as simply another form
of pragmatic filtering, and can be applied to our model of
abduction (see below).

4 Reconstructing Theorist
Poole’s (1989) Theorist system is an assumption-based
model of explanation and prediction where observations are
explained (or predicted) by adopting certain hypotheses that,
together with known facts, entail these observations. We
illustrate the naturalness and generality of our abductive
framework by recasting Theorist in our model. It shows why
Theorist explanations are paraconsistent and non-predictive,
how they can be made predictive, and how a natural account
of preferred explanation can be introduced to Theorist (and
Brewka’s (1989) extension of it). Our presentation of Theo-
rist will be somewhat more general than that found in (Poole
1989), but unchanged in essential detail.

We assume the existence of a setD of defaults, a set of
propositional formulae taken to be “expectations,” or facts
that normally hold (Boutilier 1992c). We assumeD is
consistent.11 Given a fixed set of defaults, we are interested
in what follows from a given (known) finite set of factsF ;
we useF to denote its conjunction. Ascenariofor F is any
subsetD of D such thatF ∪ D is consistent. Anextension
of F is any maximal scenario. Anexplanationof β givenF
is anyα such that{α}∪F ∪D |= β for some scenarioD of
{α} ∪ F .12 Finally, β is predictedgivenF iff F ∪D |= β

for each extensionD of F .
In the definition of prediction in Theorist, we find an im-

plicit notion of plausibility: we expect some maximal subset
of defaults, consistent withF , to hold. Worlds that violate
more defaults are thus less plausible than those that violate
fewer. We define a CT4O*-model that reflects this.

Definition For a fixed set of defaultsD, and a possible
world (valuation)w, the violation set for w is defined
asV (w) = {d ∈ D : w |= ¬d}. The Theorist model
for D is MD = 〈W,≤, ϕ〉 whereW andϕ are as usual,
and≤ is an ordering of plausibility such thatv ≤ w iff
V (v) ⊆ V (w).

Thus,MD ranks worlds according to the sets of defaults they
violate. We note thatMD is a CT4O*-model, and ifD is
consistent,MD has a unique minimal cluster consisting of
those worlds that satisfy each default. It should be clear that

11Nothing crucial depends on this however.
12Theorist explanations are usually drawn from a given set of

conjectures, but this is not crucial.

TBS TBS TBS
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Figure 3: A Theorist Model

worldsw, v are equally plausible iffV (w) = V (v), so that
each cluster inMD is the set of worlds that violate a partic-
ular subsetD ⊆ D. Theα-worlds minimal inMD are just
those that satisfy some maximal subset of defaults consistent
with α.

Theorem 4 β is predictedgivenF iff MD |= F ⇒ β.

Thus, predictions based onF correspond to the belief set
obtained whenD is revised to incorporateF . This is the
view of default prediction discussed in (Boutilier 1992c).

We now turn our attention to explanations. Theorist ex-
planations are quite weak, forα explainsβ whenever there
existsany set of defaults that, together withα, entailsβ.
This means thatα might explain bothβ and¬β. Such expla-
nations are in a sense paraconsistent, forα cannot usually be
used to explain the conjunctionβ ∧ ¬β. Furthermore, such
explanations are not predictive: ifα explains contradictory
sentences, how can it be thought to predict either? Consider
a set of defaults in Theorist

D = {T ⊃ S, T ∧B ⊃ ¬S}

which assert that my car will start (S) when I turn the key
(T ), unless my battery is dead (B). The Theorist modelMD
is shown in Figure 3. Suppose our set of factsF has a single
elementB. When asked to explainS, Theorist will offerT .
When asked to explain¬S, Theorist will again offerT . If I
want my car to start I should turn the key, and if I do not want
my car to start I should turn the key. There is certainly some-
thing unsatisfying about such a notion of explanation. Such
explanations do, however, correspond precisely toweak ex-
planationsin CT4O using→.

Theorem 5 α is a Theorist explanation ofβ givenF iff
MD |= α ∧ F → β.

This illustrates the conditional and defeasible semantic un-
derpinnings of Theorist’s weak (paraconsistent) explana-
tions in the conditional framework.

In our model, the notion of predictive explanation seems
much more natural. In the Theorist model above, there is a
possibility thatT ∧ B givesS and a possibility thatT ∧ B



gives¬S. Therefore,T (givenB) explainsneither possi-
bility. One cannot use the explanation to ensure belief in
the “observation”S. We can use our notion of predictive
explanation to extend Theorist with this capability. Clearly,
predictive explanations in the Theorist modelMD give us:

Definition α is apredictive explanationfor β givenF iff β
is predicted (in the Theorist sense) givenF ∪ {α}.

Theorem 6 α is a predictive explanation forβ givenF iff
MD |= α ∧ F ⇒ β (i.e., iff F ∪ D ∪ {α} |= β for each
extensionD).

Taking thoseα-worlds that satisfy as many defaults as pos-
sible to be the most plausible or typicalα-worlds, it is clear
that revising byα should result in acceptance of those sit-
uations, and thusα should (predictively) explainβ iff β

holds in each such situation. Such explanations are often
more useful than weak explanations for they suggestsuf-
ficient conditionsα that will (defeasibly) lead to a desired
beliefβ. Weak explanations of the type originally defined in
Theorist, in contrast, merely suggest conditions thatmight
lead toβ.

Naturally, given the implicit notion of plausibility deter-
mined byD, we can characterizepreferredexplanations in
Theorist. These turn out to be exactly those explanations
that force the violation of as few defaults as possible.

Definition Let α, α′ be predictive explanations forβ given
F . α is at least as preferred asα′ (writtenα ≤F α′) iff
each extension ofF∪{α′} is contained in some extension
of F ∪ {α}.

Theorem 7 α ≤F α′ iff MD |=
↔

2((α′ ∧ F ) ⊃ 3(α ∧ F )).

So the notion of preference defined for our concept of epis-
temic explanations induces a preference in Theorist for pre-
dictive explanations that are consistent with the greatestsub-
sets of defaults; that is, those explanations that are most
plausible or most normal (see Konolige (1992) who pro-
poses a similar notion).

This embedding into CT4O provides a compelling seman-
tic account of Theorist in terms of plausibility and belief re-
vision. But it also shows directions in which Theorist can
be naturally extended, in particular, with predictive explana-
tions and with preferences on semantic explanations, notions
that have largely been ignored in assumption-based explana-
tion.

In (Boutilier and Becher 1993) we show how these ideas
apply to Brewka’s (1989) prioritized extension of Theorist
by ordering worlds in such a way that the prioritization re-
lation among defaults is accounted for. If we have a pri-
oritized default theoryD = D1 ∪ · · ·Dn, we still cluster
worlds according to the defaults they violate; but shouldw

violate fewer high priority defaults thanv, even if it violates

more low priority defaults,w is considered more plausible
thanv. This too results in a CT4O*-model; and prediction,
(weak and predictive) explanation, and preference on expla-
nations are all definable in the same fashion as with Theo-
rist. We also show that priorities on defaults, as proposed
by Brewka, simply prune away certain weak explanations
and make others preferred (possibly adding predictive ex-
planations). For instance, the counterintuitive explanation
T above, forS givenB, is pruned away if we require that
the defaultT ⊃ S be given lower priority than the default
T ∧B ⊃ ¬S. A model for such a prioritized theory simply
makes the worldTBS less plausible thanTBS. We note,
however, that such priorities need not be provided explic-
itly if the Theorist model is abandoned and defaults are ex-
pressed directly as conditionals. This preference is derivable
in CT4O from the conditionalsT ⇒ S andT ∧ B ⇒ ¬S
automatically.

5 Concluding Remarks
We have proposed a notion of epistemic explanation based
on belief revision, and preferences over these explanations
using the concept of plausibility. We have shown how The-
orist can be captured in this framework. In (Boutilier and
Becher 1993), we show how this model can be axiom-
atized. We can also capture consistency-based diagnosis
in our framework, though it does not usually require that
explanations be predictive in the sense we describe. In-
stead, consistency-based diagnosis is characterized in terms
of “might” counterfactuals, orexcusesthat make an obser-
vation plausible, rather than likely (Boutilier and Becher
1993). Of course, fault models describing how failures are
manifested in system behavior make explanations more pre-
dictive, in our strong sense. However, the key feature of this
approach is not its ability to represent existing models of
diagnosis, but its ability to infer explanations, whether fac-
tual or hypothetical, from existing conditional (or default)
knowledge. We are also investigating the role of causal
explanations in abduction, and how one might distinguish
causal from non-causal explanations using only conditional
information.
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