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Abstract

In multiagent environments, forms of social learn-
ing such as teaching and imitation have been shown
to aid the transfer of knowledge from experts to
learners in reinforcement learning (RL). We re-
cast the problem of imitation in a Bayesian frame-
work. Our Bayesian imitation modelallows a
learner to smoothly pool prior knowledge, data ob-
tained through interaction with the environment,
and information inferred from observations of ex-
pert agent behaviors. Our model integrates well
with recent Bayesian exploration techniques, and
can be readily generalized to new settings.

1 Introduction
Reinforcement learning is a flexible, yet computationally
challenging paradigm. Recent results demonstrating that un-
der certain assumptions the sample complexity of reinforce-
ment learning is polynomial in the number of problem states
[Kearns and Singh, 1998] are tempered by the sober fact that
the number of states is generally exponential in the number
of the attributes defining a learning problem. With recent in-
terest in building interacting autonomous agents, reinforce-
ment learning is increasingly applied to multiagent tasks, a
development which only adds to the complexity of learning
[Littman, 1994; Hu and Wellman, 1998]. In this paper, we ex-
amine multi-agent reinforcement learning under the assump-
tion that other agents in the environment are not merely ar-
bitrary actors, but actors “like me”. That is, the other agents
may have similar action capabilities and similar objectives.
This assumption radically changes the optimal learning strat-
egy. Information about other agents “like me” can give the
learning agent additional information about itsowncapabili-
ties and how these capabilities relate to itsownobjectives. A
number of techniques have been developed to exploit this, in-
cludingimitation [Demiris and Hayes, 1999; Matari´c, 2002],
learning by watching[Kuniyoshi et al., 1994], teaching or
programming by demonstration[Atkeson and Schaal, 1997]
behavioral cloning[Sammutet al., 1992], andinverse rein-
forcement learning[Ng and Russell, 2000].

Learning by observation of other agents has intuitive ap-
peal; however, explicit communication about action capabil-
ities between agents requires considerable infrastructure: a

communication channel, a sufficiently expressive represen-
tation language, a transformation between possibly different
agent bodies, and an incentive to communicate. In dynamic,
competitive domains, such as web-based trading, it is unreal-
istic to expect all agents to be designed with compatible rep-
resentations and altruistic intentions. Observation-based tech-
niques, in which the learning agent observes only theoutward
behaviors of another agent, can reduce the need for explicit
communication. Implicit communication through passive ob-
servations has been implemented asimplicit imitation [Price
and Boutilier, 1999; 2001]. In this model, the effects of other
agents’ action choices on the state of the environment can be
observed, but the internal state of other agents and their ac-
tion control signals are not observable. Independent explo-
ration on the part of the observer is used to adapt knowledge
implicit in observations of other agents to the learning agent’s
own needs. Unlike classic imitation models, the learner is not
required to explicitly duplicate the behavior of other agents.

In this paper, we recast implicit imitation in a Bayesian
framework. This new formulation offers several advantages
over existing models. First it provides a more principled,
and more elegant approach to the smooth pooling of infor-
mation from the agent’s prior beliefs, its own experience and
the observations of other agents (e.g., it eliminates the need
for certain ad hoc tuning parameters in current imitation mod-
els). Second, it integrates well with state-of-the-art explo-
ration techniques, such as Bayesian exploration. Finally, the
Bayesian imitation model can be extended readily to partially-
observable domains, though the derivation and implementa-
tion are considerably more complex and are not reported here.

2 Background
We assume a reinforcement learning (RL) agent is learning to
control a Markov decision processes (MDP)〈S,Ao, Ro, D〉,
with finite state and action setsS,Ao, reward functionRo :
S 7→ R, and dynamicsD. The dynamicsD refers to a
set of transition distributionsPr(s, a, ·). The actionsAo and
rewardsRo are subscripted to distinguish them from those
of other agents (see below). We assume throughout that the
agent knowsRo but not the dynamicsD of the MDP (thus
we adopt the “automatic programming” perspective), and has
the objective of maximizing discounted reward over an infi-
nite horizon. Any of a number of RL techniques can be used to
learn an optimal policyπ : S 7→ Ao. We focus here onmodel-



based RLmethods, in which the observer maintains an esti-
mated MDP〈S,Ao, R̂o, D̂〉, based on the set of experiences
〈s, a, r, t〉 obtained so far. At each stage (or at suitable inter-
vals) this MDP can be solved exactly, or approximately using
techniques such as prioritized sweeping[Moore and Atkeson,
1993]. SinceRo is known, we focus on learning dynamics.

Bayesian methods in model-based RL allow agents to in-
corporate priors and explore optimally. In general, we em-
ploy a prior densityP over possible dynamicsD, and update it
with each data point〈s, a, t〉. LettingHo = 〈s0, s1, . . . , sT 〉
denote the (current)state historyof the observer, andAo =
〈a0, a1, . . . , aT−1〉 be the action history, we use the poste-
rior P (D|Ho, Ao) to update the action Q-values, which are
used in turn to select actions. The formulation of Dearden
et al. 1999 renders this update tractable by assuming a con-
venient prior: P is the product of local independent densi-
ties for each transition distributionPr(s, a, ·); and each den-
sity P (Ds,a) is a Dirichlet with parametersns,a. To model
P (Ds,a) we require one parameterns,a,s′

for each possible
successor states′. Update of a Dirichlet is straightforward:
given priorP (Ds,a;ns,a) and data vectorcs,a (wherecs,a

t is
the number of observed transitions froms to t undera), the
posterior is given by parametersns,a + cs,a. Thus the poste-
rior in Eq. 1 can be factored into posteriors over local families:

P (Ds,a|Hs,a
o ) = α Pr(Hs,a

o |Ds,a)P (Ds,a) (1)

whereHs,a
o is the subset of history composed of transitions

from states due to actiona, and the updates themselves are
simple Dirichlet parameter updates.

The Bayesian approach has several advantages over other
approaches to model-based RL. First, it allows the natural in-
corporation of priors over transition and reward parameters.
Second, approximations to optimal Bayesian exploration can
take advantage of this approach, and the specific structural as-
sumptions on the prior discussed above[Deardenet al., 1999].

3 Bayesian Imitation
In multiagent settings, observations of other agents can be
used in addition to prior beliefs and personal experience to
improve an agent’s model of its environment. These obser-
vations can have enormous impact when they provide infor-
mation to an agent about parts of the state space it has not yet
visited. The information can be used to bias exploration to-
wards the most promising regions of state space and thereby
reduce exploration costs and speed convergence dramatically.

The flexibility of the Bayesian formulation leads to an ele-
gant and principled mechanism for incorporating these obser-
vations into the agent’s model updates. Following Price and
Boutilier 1999, we assume two agents, a knowledgeablemen-
tor m and a na¨ıve observero, acting simultaneously, but in-
dependently, in a fixed environment.1 Like the observer, the
mentor too is controlling an MDP〈S,Am, Rm, D〉 with the
same underlying state space and dynamics (that is, for any ac-
tion a ∈ Ao ∩Am, the dynamics are identical). The assump-
tion that the two agents have the same state space is not criti-
cal: more important is that there is some analogical mapping

1We assume that the agents are performing non-interacting tasks.
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Figure 1: Dependencies among model and evidence sources

between the two[Nehaniv and Dautenhahn, 1998]. We as-
sume full observability of the mentor’s state space; but we do
not assume the observer can identify the actions taken by the
mentor—it simply observes state transitions.

We make two additional assumptions regarding the men-
tor’s dynamics: the mentor implements a stationary pol-
icy πm, which induces a Markov chainPrm(s, s′) =
Pr(s, πs

m, s′); and for each actionπs
m taken by the mentor,

there exists an actiona ∈ Ao such that the distributions
Pr(·|s, a) andPr(·|s, πs

m) are the same. This latter assump-
tion is thehomogeneous action assumptionand implies that
the observer can duplicate the mentor’s policy.2 As a con-
sequence we can treat the dynamicsD as the same for both
agents. Note that we do not assume that the learner knows
a priori which of its actions duplicates the mentor’s (for any
given states), nor that the observerwantsto duplicate this pol-
icy (as the agents may have different objectives).

Since the learner can observe the mentor’s transitions
(though not its actions directly), it can form estimates of the
mentor’s Markov chain, along with estimates of its own MDP
(transition probabilities and reward function). In[Price and
Boutilier, 1999], this estimate is used to augment the normal
Bellman backup, treating the observed distributionPr(s, ·) as
a model of an action available to the observer. Imitators using
augmented backups based on their observations of a mentor
often learn much more quickly, especially if the mentor’s re-
ward function or parts of its policy overlap with that of the ob-
server. Techniques like interval estimation[Kaelbling, 1993]
can be used to suppress augmented backups where their value
has low “confidence.”

In the Bayesian approach, the observer incorporates obser-
vations of the mentor directly into anaugmented modelof its
environment. LetHm denote the history of mentor state tran-
sitions observed by the learner. As above,Ho andAo repre-
sents the observer’s state and action history respectively. Fig-
ure 1 illustrates the sources of information available to the im-
itator with which to constrain its beliefs aboutD, and their
probabilistic dependence. While the observer knows its own
action history,Ao, it has no direct knowledge of the actions
taken by the mentor: at best it may have (often weak) prior
knowledge about the mentor’s policyπm. The learner’s be-
liefs overD can then be updated w.r.t. the joint observations:

P (D|Ho, Ao, Hm)

= α Pr(Ho, Hm|D, Ao)P (D)

= α Pr(Ho|D, Ao) Pr(Hm|D)P (D). (2)

2The homogeneous action assumption can be relaxed[Price and
Boutilier, 2001]. Essentially, the observer hypothesizes that viola-
tions can be “repaired” using a local search for a short sequence of
actions that roughly duplicates a short subsequence of the mentor’s
actions. If a repair cannot be found, the observer discards the mentor
influence (at this point in state space).



We assume that the priorP (D) has the factored Dirichlet
form described above. Without mentor influence, a learner
can maintain its posterior in the same factored form, updating
each component of the modelP (Ds,a) independently. Unfor-
tunately, complications arise due to the unobservability of the
mentor’s actions. We show, however, that the model update
in Eq. 2 can still be factored into convenient terms.

We derive a factored update model forP (Ds,a) describ-
ing the dynamics at states under actiona by considering two
cases. In case one, the mentor’s unknown actionπs

m could be
different than the actiona. In this case, the model factorDs,a

would be independent of the mentor’s history, and we can em-
ploy the standard Bayesian update Eq. 1 without regard for the
mentor. In case two, the mentor actionπs

m is in fact the same
as the observer’s actiona. Then the mentor observations are
relevant to the update ofP (Ds,a):

P (Ds,a|Hs,a
o , Hs

m, πs
m = a)

= α Pr(Hs,a
o , Hs

m|Ds,a, πs
m = a)P (Ds,a|πs

m = a)

= α Pr(Hs,a
o |Ds,a)Pr(Hs

m|Ds,a, πs
m = a)P (Ds,a).

Let ns,a be the prior parameter vector forP (Ds,a), and
cs,a

o denote the counts of observer transitions from states
via actiona, and cs

m the counts of the mentor transitions
from states. The posterioraugmented modelfactor density
P (Ds,a|Hs,a

o , Hs
m, πs

m = a) is then a Dirichlet with parame-
tersns,a + cs,a

o + cs
m; that is, we simply update with the sum

of the observer and mentor counts:

P (Ds,a|Hs,a
o , Hs

m, πm(s) = a) = P (Ds,a;ns,a + cs,a
o + cs

m).

Since the observer does not know the mentor’s action we
compute the expectation w.r.t. these two cases:

P (Ds,a|Hs,a
o , Hs

m)

= Pr(πs
m = a|Hs,a

o , Hs
m)P (Ds,a;ns,a + cs,a

o + cs
m)

+Pr(πs
m 6= a|Hs,a

o , Hs
m)P (Ds,a;ns,a + cs,a

o ). (3)

This allows a factored update of the usual conjugate form, but
where the mentor countscs

m are distributed across all actions,
weighted by the posterior probability that the mentor’s policy
chooses that action at states.3

With a mechanism to calculate the posterior over the men-
tor’s policy, Eq. 3 provides a completefactoredupdate rule for
incorporating evidence from observed mentors by a Bayesian
model-based RL agent. To tackle this last problem—that of
updating our beliefs about the mentor’s policy—we have:

Pr(πm|Hm, Ho)

= α Pr(Hm|πm, Ho)Pr(πm|Ho)

= α Pr(πm)

Z
D∈D

Pr(Hm|πm, D)P (D|Ho). (4)

If we assume that the prior over the mentor’s policy is fac-
tored in the same way as the prior over models—that is, we

3This assumes thatat leastone of the observer’s actions is equiv-
alent to the mentor’s, but our model can be generalized to the het-
erogeneous case. An additional term is required to represent “none
of the above”.

have independent distributionsPr(πs
m) overAm for eachs—

this update can be factored as well, with history elements at
states being the only ones relevant to computing the posterior
overπm(s). We still have the difficulty of evaluating the in-
tegral over models. Following Deardenet al.1999, we tackle
this by sampling models to estimate this quantity. Specif-
ically, we sample modelṡDs,a from the factored Dirichlet
P (Ds,a|Hs,a

o ) overD.4 Given a specific samplėDs,a, with
parameter vectorns,a, and observed countscs

m, the likelihood
of Ḋs,a is:

Pr(Hs
m|πm, Ḋs,a) =

Y
t∈S

(ns,a,t)(c
s,t
m ). (5)

We can combine the expression for expected model fac-
tor probability in Eq. 3 with our expression for mentor policy
likelihood in Eq. 5 to obtain a tractable algorithm for updating
the observer’s beliefs about the dynamics modelD based on
its own experience, and observations of the mentor.5.

A Bayesian imitator thus proceeds as follows. At each
stage, it observes its own state transition and that of the men-
tor, using each to update its density over models as just de-
scribed. Efficient methods are used to update the agent’s value
function. Using this updated value function, it selects a suit-
able action, executes it, and repeats the cycle.

Like any RL agent, an imitator requires a suitable explo-
ration mechanism. In theBayesian explorationmodel[Dear-
denet al., 1999], the uncertainty about the effects of actions
is captured by a Dirichlet, and is used to estimate a distribu-
tion over possible Q-values for each state-action pair.6 No-
tions such as value of information can then be used to approx-
imate the optimal exploration policy. This method is compu-
tationally demanding, but total reward including reward cap-
tured during training is usually much better than that provided
by heuristic techniques. Bayesian exploration also eliminates
the parameter tuning required by methods likeε-greedy, and
adapts locally and instantly to evidence. These facts makes it
a good candidate to combine with imitation.

4 Experiments
In this section we attempt to empirically characterize the
applicability and expected benefits of Bayesian imitation
through several experiments. Using domains from the liter-
ature and two unique domains, we compare Bayesian imi-
tation to non-Bayesian imitation[Price and Boutilier, 1999],
and to several standard model-based RL (non-imitating) tech-
niques, including Bayesian exploration, prioritized sweeping
and complete Bellman backups. We also investigate how
Bayesian exploration combines with imitation.

First, we describe the agents used in our experiments. The
Oracle employs a fixed policy optimized for each domain,

4Sampling is efficient as only one local model needs to be resam-
pled at any time step.

5Scaling techniques such as those used in HMM’s may be re-
quired to prevent underflow in the term(ns,a,t)(c

s,t
m ) in Eq. 5.

6The Q-value distribution changes very little with each update
and can be repaired efficiently using prioritized sweeping. In fact, the
Bayesian learner is cheaper to run than a full Bellman backup over
all states.



F3

F2

S F1 G1

G2
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Figure 3: Flag world results (50 runs)
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Figure 4: Flag World Moved Goal (50 runs)

providing both a baseline and a source of expert behavior
for the observers. The EGBS agent combinesε-greedy ex-
ploration (EG) with a full Bellman backup (i.e., sweep) at
each time step. It provides an example of a generic model-
based approach to learning. The EGPS agent is a model-based
RL agent, usingε-greedy (EG) exploration with prioritized
sweeping (PS). EGPS use fewer backups, but applies them
where they are predicted to do the most good. EGPS does not
have a fixed backup policy, so it can propagate valuemultiple
steps across the state space in situations where EGBS would
not. The BE agent employs Bayesian exploration (BE) with
prioritized sweeping for backups. BEBI combines Bayesian
exploration (BE) with Bayesian imitation (BI). EGBI com-
binesε-greedy exploration (EG) with Bayesian imitation (BI).
The EGNBI agent combinesε-greedy exploration with non-
Bayesian imitation.

In each experiment, agents begin at the start state. The
agents do not interact within the state space. When an agent
achieves the goal, it is reset to the beginning. The other agents
continue unaffected. Each agent has a fixed number of steps
(which may be spread over varying numbers of runs) in each
experiment. In each domain, agents are given locally uniform
priors (i.e., every action has an equal probability of resulting
in any of the local neighbouring states; e.g., in a grid world
there are 8 neighbours). Imitators observe the expert oracle
agent concurrently with their own exploration. Results are re-
ported as the total reward collected in the last 200 steps. This
sliding window integrates the rewards obtained by the agent
making it easier to compare performance of various agents.
During the first 200 steps, the integration window starts off
empty causing the oracle’s plot to jump from zero to optimal in
the first 200 steps. The Bayesian agents use 5 sampled MDPs
for estimating Q-value distributions and 10 samples for esti-
mating the mentor policy from the Dirichlet distribution. Ex-
ploration rates forε-greedy agents were tuned for each exper-
imental domain.

Our first test of the agents was on the “Loop” and “Chain”
examples (designed to show the benefits of Bayesian explo-
ration), taken from[Deardenet al., 1999]. In these experi-
ments, the imitation agents performed more or less identically
to the optimal oracle agent and no separation could be seen
amongst the imitators.

Using the more challenging “FlagWorld” domain[Dearden
et al., 1999], we see meaningful differences in performance
amongst the agents. In FlagWorld, shown in Figure 2, the
agent starts at stateS and searches for the goal stateG1. The
agent may pick up any of three flags by visiting statesF1,
F2 andF3. Upon reaching the goal state, the agent receives
1 point for each flag collected. Each action (N,E,S,W) suc-
ceeds with probability 0.9 if the corresponding direction is
clear, and with probability 0.1 moves the agent perpendicu-
lar to the desired direction. Figure 3 shows the reward col-
lected in over the preceding 200 steps for each agent. The Or-
acle demonstrates optimal performance. The Bayesian imita-
tor using Bayesian exploration (BEBI) achieves the quickest
convergence to the optimal solution. Theε-greedy Bayesian
imitator (EGBI) is next, but is not able to exploit informa-
tion locally as well as BEBI. The non-Bayesian imitator (EG-
NBI) does better than the unassisted agents early on but fails
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Figure 5: Tutoring domain results (50 runs)
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Figure 7: No South results (50 runs)

to find the optimal policy in this domain. A slower ex-
ploration rate decay would allow the agent to find the opti-
mal policy, but would also hurt its early performance. The
non-imitating Bayesian explorer fares poorly compared to the
Bayesian imitators, but outperforms the remaining agents, as
it exploits prior knowledge about the connectivity of the do-
main. The other agents show poor performance (though with
high enough exploration rates they would converge eventu-
ally). We conclude that Bayesian imitation makes the best use
of the information available to the agents, particularly when
combined with Bayesian exploration.

We altered the FlagWorld domain so that the mentor and the
learners had different objectives. The goal of the expert Ora-
cle remained at location G1, while the learners had goal loca-
tion G2 (Figure 2). Figure 4 shows that transfer due to imita-
tion is qualitatively similar to the case with identical rewards.
We see that imitation transfer is robust to modest differences
in mentor and imitator objectives. This is readily explained by
the fact that the mentor’s policy provides model information
over most states in the domain, which can be employed by the
observer to achieve its own goals.

Thetutoring domainrequires agents to schedule the presen-
tation of simple patterns to human learners in order to min-
imize training time. To simplify our experiments, we have
the agents teach a simulated student. The student’s perfor-
mance is modeled by independent, discretely approximated,
exponential forgetting curves for each concept. The agent’s
action will be its choice of concept to present. The agent re-
ceives a reward when the student’s forgetting rate has been
reduced below a predefined threshold for all concepts. Pre-
senting a concept lowers its forgetting rate, leaving it unpre-
sented increases its forgetting rate. Our model is too simple to
serve as a realistic cognitive model of a student, but provides
a qualitatively different problem to tackle. We note that the
action space grows linearly with the number of concepts, and
the state space exponentially.

The results presented in Figure 5 are based on the presen-
tation of 5 concepts to a student. (EGBS has been left out as
it is time-consuming and generally fares poorly.) We see that
all of the imitators learn quickly, but with the Bayesian imita-
tors BEBI and EGBI outperformingEGNBI (which converges
to a suboptimal policy).7 The generic Bayesian agent (BE)
also chooses a suboptimal solution (which often occurs in BE
agents if its priors prevent adequate exploration). Thus, we
see that imitation mitigates one of the drawbacks of Bayesian
exploration: mentor observations can be used to overcome
misleading priors. We see also that Bayesian imitation can
also be applied to practical problems with factored state and
action spaces and non-geometric structure.

The next domain provides further insight into the combina-
tion of Bayesian imitation and Bayesian exploration. In this
grid world (Figure 6), agents can move south only in the first
column. In this domain, the optimal Oracle agent proceeds
due south to the bottom corner and then east across to the goal.
The Bayesian explorer (BE) chooses a path based on its prior
beliefs that the space is completely connected. The agent can

7Increasing exploration allows EGNBI to find the optimal policy,
but further depresses short term performance.



easily be guided down one of the long “tubes” in this sce-
nario, only to have to retrace it steps. The results in this do-
main, shown in Figure 7, clearly differentiate the early per-
formance of the imitation agents (BEBI, EGBI and EGNBI)
from the Bayesian explorer (BE) and other independent learn-
ers. The initial value function constructed from the learner’s
prior beliefs about the connectivity in the grid world lead it
to over-value many of the states that lead to a dead end. This
results in a costly misdirection of exploration and poor perfor-
mance. We see that the ability of the Bayesian imitator BEBI
to adapt to the local quality of information allows it to ex-
ploit the additional information provided by the mentor more
quickly than agents using generic exploration strategies like
ε-greedy. Again, mentor information is used to great effect to
overcome misleading priors.

5 Conclusions

Bayesian imitation, like the non-Bayesian implementation of
implicit imitation, accelerates reinforcement learning in the
presence of other agents with relevant knowledge without re-
quiring either explicit communication with or the cooperation
of these other agents. The Bayesian formulation is built on an
elegant pooling mechanism which optimally combines prior
knowledge, model observations from the imitator’s own expe-
rience and model observations derived from other agents. The
combination of Bayesian imitation with Bayesian exploration
eliminates parameter tuning and yields an agent that rapidly
exploits mentor observations to reduce exploration and in-
crease exploitation. In addition, imitation often overcomes
one of the drawbacks of Bayesian exploration, the possibil-
ity of converging to a suboptimal policy due to misleading
priors. Bayesian imitation can easily be extended to multiple
mentors, and though we did not present the derivation here,
it can also be extended to partially observable environments
with known state spaces. Though the Bayesian formulation is
difficult to implement directly, we have shown that reasonable
approximations exist that result in tractable algorithms.

There are several very promising areas of future research
that can benefit from the current formulation of Bayesian imi-
tation. One obvious need is to extend the model to the hetero-
geneous action setting by incorporating the notions of feasibil-
ity testing and repair described in[Price and Boutilier, 2001].
We are particularly excited by the prospects of its generaliza-
tion to richer environmental and interaction models. We have
also derived one possible mechanism for using the Bayesian
approach in domains with continuous attributes. We hope to
extend this work to include methods for discovering corre-
spondences between the state and action spaces of various
agents. We also plan to introduce game-theoretic considera-
tions into imitation so that agents can learn solutions to inter-
acting tasks from experts and reason about both the reward-
oriented aspects of their action choices as well as the infor-
mation it reveals to others.

Acknowledgements

This research was supported by the Natural Sciences and En-
gineering Research Council and IRIS.

References
[Atkeson and Schaal, 1997] C. G. Atkeson and S. Schaal. Robot

learning from demonstration. InProc. Fourteenth Intl. Conf. on
Machine Learning, pp.12–20, Nashville, TN, 1997.

[Deardenet al., 1999] R. Dearden, N. Friedman, and D. Andre.
Model-based Bayesian exploration. InProc. Fifteenth Conf. on
Uncertainty in Artificial Intelligence, pp.150–159, Stockholm,
1999.

[Demiris and Hayes, 1999] J. Demiris and G. Hayes. Active and
passive routes to imitation. InProc. AISB’99 Symposium on Imi-
tation in Animals and Artifacts, pp.81–87, Edinburgh, 1999.

[Hu and Wellman, 1998] J. Hu and M. P. Wellman. Multiagent rein-
forcement learning: theoretical framework and an algorithm. In
Proc. Fifthteenth Intl. Conf. on Machine Learning, pp.242–250,
Madison, Wisconsin, 1998.

[Kaelbling, 1993] L. Pack Kaelbling. Learning in Embedded Sys-
tems. MIT Press, Cambridge,MA, 1993.

[Kearns and Singh, 1998] M. Kearns and S. Singh. Finite sam-
ple convergence rates for Q-learning and indirect algorithms.
In Eleventh Conf. on Neural Information Processing Systems,
pp.996–1002, Denver, Colorado, 1998.

[Kuniyoshiet al., 1994] Y. Kuniyoshi, M. Inaba, and H. Inoue.
Learning by watching: Extracting reusable task knowledge from
visual observation of human performance.IEEE Transactions on
Robotics and Automation, 10(6):799–822, 1994.

[Littman, 1994] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. InProc. Eleventh Intl. Conf.
on Machine Learning, pp.157–163, New Brunswick, NJ, 1994.
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