
Constraint-based Optimization and Utility Elicitation
using the Minimax Decision Criterion

Craig Boutiliera,∗, Relu Patrascua,1, Pascal Poupartb,2,
Dale Schuurmansc,1

aDepartment of Computer Science, University of Toronto, Toronto, ON, M5S 3H5,
CANADA

bSchool of Computer Science, University of Waterloo, Waterloo, ON, CANADA
cDepartment of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8,

CANADA

Abstract

In many situations, a set of hard constraints encodes the feasible configurations of some
system or product over which multiple users have distinct preferences. However, making
suitable decisions requires that the preferences of a specific user for different configurations
be articulated orelicited, something generally acknowledged to be onerous. We address two
problems associated with preference elicitation: computing a best feasible solution when
the user’s utilities are imprecisely specified; and developing useful elicitation procedures
that reduce utility uncertainty, with minimal user interaction, to a point where (approxi-
mately) optimal decisions can be made. Our main contributions are threefold. First, we
propose the use of minimax regret as a suitable decision criterion for decision making in
the presence of such utility function uncertainty. Second, we devise several different proce-
dures, all relying on mixed integer linear programs, that can be used to compute minimax
regret and regret-optimizing solutions effectively. In particular, our methods exploit gener-
alized additive structure in a user’s utility function to ensure tractable computation. Third,
we propose various elicitation methods that can be used to refine utility uncertainty in such
a way as to quickly (i.e., with as few questions as possible) reduce minimax regret. Em-
pirical study suggests that several of these methods are quite successful in minimizing the
number of user queries, while remaining computationally practical so as to admit real-time
user interaction.

Key words: decision theory, constraint satisfaction, optimization, preference elicitation,
imprecise utility, minimax regret

Preprint submitted to Artificial Intelligence 26 February 2006

1 Introduction

The development of automated decision support software is a key focus within de-
cision analysis [21,52,43] and artificial intelligence [16,17,10,9]. In the application
of such tools, there are many situations in which the set of decisions and their ef-
fects (i.e., induced distribution over outcomes) are fixed, while theutility functions
of different users vary widely. Developing systems that make or recommend de-
cisions for a number of different users requires accounting for such differences in
preferences. Several classes of methods have been employed by decision-support
systems to “tune” their behavior appropriately, including inference or induction of
user preferences based on observed behavior [28,33] or the similarity of a user’s be-
havior to that of others (e.g., as in collaborative filtering [31]). Such behavior-based
methods often require considerable data before strong conclusions can be drawn
about a user’s preferences (hence before good decisions can be recommended).

In many circumstances, directpreference elicitationmay be undertaken in order to
capture specific user preferences to a sufficient degree to allow an (approximately)
optimal decision to be taken. In preference elicitication, the user is queried about
her preferences directly. Different approaches to this problem have been proposed,
including Bayesian methods that quantify uncertainty about preferences probabilis-
tically [17,10,27], and methods that simply pose constraints on the set of possible
utility functions and refine these incrementally [52,50,14].

In this paper, we will focus on direct preference elicitation for constraint-based
optimization problems (COPs). COPs provide a natural framework for specifying
and solving many decision problems. For example, configuration tasks [42] can

? Parts of this article appeared in (a) C. Boutilier, R. Patrascu, P. Poupart, and D. Schu-
urmans, Constraint-based optimization with the minimax decision criterion,Proc. of the
Ninth Conference on the Principles and Practice of Constraint Programming (CP-2003),
pp.168–182, Kinsale, Ireland, 2003; and (b) C. Boutilier, R. Patrascu, P. Poupart, and D.
Schuurmans, Regret-based utility elicitation in constraint-based decision problems,Proc.
of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05),
pp.1293–1299, Edinburgh, Scotland, 2005.∗ Corresponding author.

Email addresses:cebly@cs.toronto.edu (Craig Boutilier),
relu@cs.toronto.edu (Relu Patrascu),ppoupart@cs.uwaterloo.ca (Pascal
Poupart),dale@cs.ualberta.ca (Dale Schuurmans).

URLs:www.cs.toronto.edu/ ∼cebly (Craig Boutilier),
www.cs.toronto.edu/ ∼relu (Relu Patrascu),
www.cs.uwaterloo.ca/ ∼ppoupart (Pascal Poupart),
www.cs.ualberta.ca/ ∼dale (Dale Schuurmans).
1 Part of this work was completed while the author was at the School of Computer Science,
University of Waterloo.
2 Part of this work was completed while the author was at the Department of Computer
Science, University of Toronto.

2

naturally be viewed as consisting of a set of hard constraints (options available to
a customer) and a utility function (reflecting customer preferences). While much
work in the constraint-satisfaction literature has considered indirectly modeling
preferences as hard constraints (with suitable relaxation techniques), more direct
modeling of utility functions has come to be recognized as both natural and compu-
tationally effective. The direct or indirect modeling of multi-attribute utility func-
tions has increasingly been incorporated into constraint optimization software.3

Soft-constraint frameworks [46,8] that associate values with the satisfaction or vi-
olation of various constraints can also be seen as implicitly reflecting a user utility
function.

However, the requirement of complete utility information demanded by a COP is
often problematic. For instance, users may have neither the ability nor the patience
to provide full utility information to a system. Furthermore, in many if not most
instances, an optimal decision (or some approximation thereof) can be determined
with a very partial specification of the user’s utility function. As such, it is imper-
ative that preference elicitation procedures be designed that focus on the relevant
aspects of the problem. Preferences for unrealizable or infeasible outcomes are not
(directly) relevant to decision making in a particular context; nor are precise pref-
erences needed among outcomes that are provably dominated by others given the
partial information at hand. Finally, though one could refine knowledge of a user’s
utility function with increased interaction, the elicitation effort needed to reach an
optimal decision may not be worth the improvement in decision quality: often a
near-optimal decision can be made with only a fraction of the information needed
to make the optimal choice. Ultimately, it is the impact on decision quality that
should guide elicitation effort [17,10,50,13].

The preference elicitation problem lies at the heart of considerable work in multi-
attribute utility theory [30,51,35] and the theory of consumer choice (such as con-
joint analysis [48,29]), though our approach will differ considerably from classic
models. Unfortunately, scant attention has been paid to preference elicitation in
the constraint-satisfaction and optimization literature. Only recently has the prob-
lem of elicitation of objective functions been given due consideration [39,?,38].4

While interactive preference elicitation has received little attention, optimizing with
respect to a given set of preferences over configurations has been studied exten-
sively. Branch-and-bound methods are commonly used for optimization in con-
junction with constraint propagation techniques. A number of frameworks have
also been proposed for modeling such systems using “soft constraints” of various
types [46,8], each with an associated penalty or value that indirectly represent a
user’s preferences for different configurations.

3 For example, seewww.ilog.com .
4 Related, but of a decidedly different character is work on constraint acquisition [37];
more closely tied is work on learning soft constraints [41].

3

In this paper, we adopt a somewhat different perspective from the usual soft con-
straints formalisms: we assume a user’s preferences are represented directly as a
utility function over possible configurations. Given a utility function and the hard
constraints defining the decision space, we have a standard constraint-based opti-
mization problem. However, as argued earlier, it is unrealistic to expect users to
express their utility functions with complete precision, nor will we generally re-
quire full utility information to make good decisions. Thus we are motivated to
consider two problems, namely, the problem of “optimizing” in the presence of
partial utility information, and the problem of effectively eliciting the most relevant
utility information.

With respect to optimization in the presence of imprecise utility information, we
suppose that a set of bounds (or more general linear constraints) on utility function
parameters are provided (these constraints will arise as the result of the elicitation
procedures we consider). We then consider the problem of finding a feasible so-
lution that minimizesmaximum regret[45,24,34,4,32] within the space of feasible
utility functions. This is the solution we would regret the least should an adversary
choose the user’s utility function in a way that is consistent with our knowledge of
the user’s preferences. In a very strong sense, this minimizes the worst-case loss
the user could experience as a result of our recommendation. We show that this
minimax problem can be formulated and solved using a series of linear integer pro-
grams (IPs) and mixed integer programs (MIPs) in the case where utility functions
have no structure.

In practice, some utility structure is necessary if we expect to solve problems of
realistic size. We therefore also consider problems where utility functions can be
expressed using ageneralized additive form[22,23,3], which includes linear utility
functions [30] and factored (or graphical) models like UCP-nets [12] as special
cases. We derive two solution techniques for solving such structured problems: the
first gives rise to a MIP with fewer variables, combined with an effective constraint
generation procedure; the second encodes the entire minimax problem as a single
MIP using a cost-network to formulate a compact set of constraints. The former
method is shown to be especially effective.

If our knowledge of the utility parameters is loose enough, minimax regret may be
unacceptably high, in which case we would like to query the user for additional
information about her utility function. In this work we considerbound queries—
a local form ofstandard gamble queries[24] that provide tighter upper or lower
bounds on the utility parameters—andcomparison queries, that present outcomes
to the user for ranking. However, we focus on bound queries in our experiments.
We develop several new strategies for eliciting bound information, strategies whose
aim is to reduce the worst-case error (i.e., get guaranteed improvement in deci-
sion quality) with as few queries as possible. Our first strategy,halve largest gap
(HLG), provides the best theoretical guarantees—it works by providing uniform
uncertainty reduction over the entire utility space. The HLG strategy is similar to

4

heuristically motivated polyhedral methods in conjoint analysis, used in product
design and marketing [48,29]. In fact, HLG can be viewed as a special case of the
method of [48] in which our polyhedra are hyper-rectangles. Our second strategy,
current solution(CS), is more heuristic in nature, and focuses attention onrele-
vant aspects of the utility function. Our empirical results show that this strategy
works much better in practice than HLG, and does indeed distinguish relevant from
irrelevant queries. Furthermore, its ability to discern good queries is also largely
unaffected by approximation: the anytime nature of minimax computation allows
time bounds to be used to ensure real-time response with little impact on the elici-
tation effort required. We also introduce several additional strategies which capture
some of the same intuitions as HLG and CS, but with different computational pro-
cedures (and complexity). Among these, theoptimistic-pessimistic (OP)method
works almost as well as CS, having much lower computational demands, but with-
out providing the same strong guarantees on decision quality.

The remainder of the paper is organized as follows. In Sec. 2 we briefly review
constraint-based optimization with factored utility models. We define and motivate
minimax regret for decision making with imprecisely specified utility functions in
Sec. 3. In Sec. 4 we describe several methods for computing minimax regret for
COPs, and evaluate one such method empirically. We also suggest several com-
putational shortcuts well-suited to the interactive elicitation context. We define a
number of elicitation strategies in Sec. 5 and provide empirical comparisons of
these strategies, both computationally and with respect to number of queries re-
quired to reach an optimal solution or an acceptable level of regret. We conclude in
Sec. 6 with a discussion of future research directions.

2 Constraint-based Optimization and Factored Utility Models

We begin by describing the basic problem of constraint-based optimization assum-
ing a known utility function and also describe the use of factored utility models in
COPs. This will establish background and notation for the remainder of the paper.

2.1 Optimization with Known Utility Functions

We assume a finite set of attributesX = {X1, X2, . . . , XN} with finite domains
Dom(Xi). An assignmentx ∈ Dom(X) = ΠiDom(Xi) is often referred to as a
state. For simplicity of presentation, we assume these attributes are Boolean, but
nothing important depends on this (indeed, our experiments will involve primarily
non-Boolean attributes). We assume a set of hard constraintsC over these attributes.
Each constraintC`, ` = 1, ..., L, is defined over a setX[`] ⊆ X, and thus induces
a set of legal configurations of attributes inX[`]. More formally,C` can be viewed

5

A B C

D

A v B

B v C

~D v ~A v ~B

Fig. 1. An example constraint graph induced by the logical constraints shown to the left.

as the subset ofDom(X[`]) from which all feasible configurations must be con-
structed. We assume that the constraintsC` are represented in some logical form
and can be expressed compactly; for example, we might write

(X1 ∧ X2) ⊃ ¬X3

to denote that all legal configurations of Boolean variablesX1, X2, X3 are such
thatX3 must be false ifX1 andX2 are both true. We letFeas(X) denote the subset
of feasible states(i.e., assignments satisfyingC). Theconstraint satisfaction prob-
lem is that of finding a feasible assignment to a specific set of constraints. While
the set of statesDom(X) is exponential inN (the number of variables), logically
expressed constraints allow us to specify the feasible setFeas(X) compactly, and
makes explicit problem structure that can be exploited to (often) effectively solve
CSPs. We refer to Dechter [20] for a detailed overview of models and methods for
constraint satisfaction.

The constraint graphfor a given set of constraints is the undirected graph whose
nodes are attributes and whose edges connect any two attributes that occur in
the same constraint. This graph has useful properties that can be used to deter-
mine the worst-case complexity of various algorithms for constraint-satisfaction
and constraint-based optimization [20]. Figure 1 illustrates a small constraint graph
over four variables induced by the logical constraints shown.

Our focus here will not be on constraint satisfaction, but rather onconstraint-based
optimization problems (COPs). 5 Suppose we have a known non-negativeutility
function u : Dom(X) → R+ which ranks all states (whether feasible or not)
according to their degree of desirability.6 Our aim is to find an optimal feasible
statex∗; that is, any

x∗ ∈ arg max
x∈Feas(X)

u(x).

5 We use the termconstraint-based optimization(often called constraint optimization) to
refer to discrete combinatorial optimization problems with explicit logical constraints over
variable instantiations, as in CSPs, to distinguish these from more generalconstrained op-
timizationproblems with arbitrary (e.g., continuous) variables and general functional con-
straints.
6 For ease of presentation, we assume the utility function has been normalized to be non-
negative. Nothing critical depends on this, as such normalization is always possible [23].

6

Since choices are restricted to feasible states, we sometimes call feasible statesde-
cisions. Without making any assumptions regarding the nature of the utility func-
tion (e.g., with regard to structure, independence, compactness, etc.) we can formu-
late the COP in an “explicit” fashion as a (linear) 0-1 integer program:

max
{Ix,Xi}

∑
x

uxIx subject toA andC, (1)

where we have:

• variablesIx: for eachx ∈ Dom(X), Ix is a Boolean variable indicating whether
x is the decision made (i.e., the feasible state chosen). In other words,Ix = 1 iff
x is the solution to the COP.

• variablesXi: Xi is a Boolean variable corresponding to theith attribute. In other
words, variablesXi = 1 iff featureXi is true in the solution to the COP.7

• coefficientsux: for eachx ∈ Dom(X), constantux denotes the (known) utility
of statex.

• constraint setA: for each variableIx, we impose a constraint that relates it to its
corresponding variable assignment. Specifically, for eachXi: if Xi is true inx,
we constrainIx ≤ Xi; and ifXi is false inx, we constrainIx ≤ 1 − Xi. We use
A to denote this set ofstate definition constraints.

• constraint setC: we impose each feasibility constraintC` on the attributesXi ∈
X[`]. Logical constraints on the variablesXi can be written in a natural way as
linear constraints [18], so we omit details.8

Note that this formulation ensures that, if there is a feasible solution (given the
constraintsA andC), then exactly oneIx will be non-zero.

As an example of the interplay between the constraints inA andC, consider the
example in Figure 1. The following constraints will be present in the setA for the
stateabcd (with analogous constraints for the other 15 instantiations of the four
Boolean variables):

Iabcd ≤ A; Iabcd ≤ B; Iabcd ≤ C; Iabcd ≤ 1 − D;

while the constraint setC, capturing the three domain constraints in the figure are:

A + B ≥ 1; B + C ≥ 1; A + B + C ≤ 2.

7 If features are non-Boolean, thenXi simply needs to be a general integer variable ranging
overDom(Xi).
8 Again, generalizing the form of these constraints to generalized logical constraints in-
volving non-Boolean attributes is straightforward.

7

2.2 Factored Utility Models

Even with logically specified constraints, solving a COP in the manner above is not
usually feasible, since the utility function is not specified concisely. As a result, the
IP formulation above is not practical, since there is oneIx variable per state and the
number of states is exponential in the number of attributes. With suchflat utility
functions, it is not generally possible to formulate the optimization problem con-
cisely: indeed, if there is no (structural) relationship between the utility of different
states, little can be done but to enumerate feasible states to ensure that an optimal
solution is found. In contrast, if some structure is imposed on the utility function,
say, in the form of afactored(or graphical) model, we are then often able to reduce
the number of variables to be linear in the number of parameters of the factored
model.

We consider heregeneralized additive independence (GAI)models [22,3], a nat-
ural, but flexible and fully expressive generalization of additive (or linear) util-
ity models.9 GAI is appealing because of its generality and expressiveness; for
instance, it encompasses both linear models [30] and UCP-nets [12] as special
cases,10 but can capture any utility function. The advantage of structured utility
models, and GAI specifically, is that the constraint-based optimization can be for-
mulated and (typically) solved without explicit enumeration of states. While we
focus on the GAI model, other compact structured utility models can be exploited
in similar fashion (e.g., see the many such models proposed by Keeney and Raiffa
[30]).

The GAI model assumes that our utility function can be written as the sum ofK
local utility functions, orfactors, over small sets of attributes:

u(x) =
∑
k≤K

fk(x[k]). (2)

Here each functionfk depends only on a local family of attributesX[k] ⊂ X. We
denote byx[k] the restriction of statex to the attributes inX[k]. Again we assume
that each functionfk is non-negative. For example, ifX = {A, B, C, D} we might
decompose a utility function as follows:

u(ABCD) = f1(A, B) + f2(B, C).

Figure 2 illustrates a possible instantiation of the two factors. Note that a user with

9 Fishburn [22] introduced the model, using the terminterdependent value additivity; Bac-
chus and Grove [3] dubbed the same concept GAI, which seems to be more commonly
used in the AI literature currently.
10 For example, UCP-nets encompass GAI with some additional restrictions. Hence any
algorithm for GAI models automatically applies to UCP-nets, though one might be able to
exploit the structure of UCP-nets foradditionalcomputational gain.

8

such a utility function exhibits no preference for the different values of variableD.

The conditions under which a GAI model provides an accurate representation of a
utility function were defined by Fishburn [22,23]. We provide the intuitions here.
Let P be some probability distribution overDom(X), interpreted as a gamble or
lottery presented to the decision maker. For instance,P may correspond to the dis-
tribution over outcomes induced by some decision she could take. Fishburn showed
that the decision maker’s utility functionu could be written in GAI form over fac-
torsfk iff she is indifferent between any pair of gamblesP andQ overDom(X)
whose marginals over each subset of variablesX[k] (k ≤ K) are identical. Note
that GAI models are completely general (since any utility function can be repre-
sented trivially using a single factor consisting of all variables). Furthermore, linear
models are a special case in which we have a singleton factor for each variable.

We refer to a pair〈C, {fk : k ≤ K}〉 as astructured COP, whereC is a set of
feasibility constraints and{fk : k ≤ K} is a set of utility factors. An IP similar to
Eq. 1 can be used to solve for the optimal decision in the case of a GAI model:

max
{Ix[k],Xi}

∑
k≤K

∑
x[k]∈Dom(X[k])

ux[k]Ix[k] subject toA andC. (3)

Instead of one variableIx per state, we now have a set oflocal state variables
Ix[k] for each familyk and each instantiationx[k] ∈ Dom(X[k]) of the variables
in that family. Similarly, we have one associated constant coefficientux[k] denoting
fk(x[k]). Ix[k] is true iff the assignment toX[k] isx[k]. EachIx[k] is related logically
to the attributesX ∈ X[k] by (local) state definition constraintsA as before, and
the usual feasibility constraintsC are also imposed as above.

Notice that the number of variables and constraints in this IP (excluding the ex-
ogenous feasibility constraintsC) is now linear in the number of parameters of the
underlying utility model, which itself is linear in the number of attributes|X| if we
assume that the size of each utility factorfk is bounded. This compares favorably
with the exponential size of the IP for unfactored utility models in Sec. 2.1.

This formulation of COPs is more or less the same as several other models of
COPs found in the constraint satisfaction literature. For example, the notion of a
cost networkis often used to represent objective functions by assuming a similar
form of factored decomposition of the objective function [20]. Specifically, let the
utility graphbe defined in the same fashion as the constraint graph, but with edges
connecting attributes that occur in the same utility factor. This utility graph can
be viewed as a cost network. Figure 2 illustrates the utility graph over variables
{A, B, C, D} induced by the utility function decomposition described above (cor-
responding to the two utility factorsAB andBC shown at the left of the figure).

Similarly, certain soft constraint formalisms can be used to represent COPs [8].

9

A B C

D

AB 15

AB 6

AB 10

AB 2

BC 13

BC 15

BC 5

BC 3

AB BC

Fig. 2. An example utility graph induced by the two utility factors shown to the left.

Every constraint is assigned a cost corresponding to a penalty incurred if that con-
straint is not satisfied. Hard constraints inC are assigned an infinite cost, and con-
straints corresponding to configurations of local utility factors are given a finite cost
corresponding to their (negative) utility. The goal is to find a minimum cost state,
with the infinite costs associated with hard constraints ensuring a preference for
any feasible solution over any infeasible solution.

The IP formulation of structured COPs in Eq. 3 can be solved using off-the-shelf
solution software for general IPs. Various special purposes algorithms that rely on
the use of dynamic programming (e.g., thevariable eliminationalgorithm) or con-
straint satisfaction techniques can also be used to solve these problems; we refer
to Dechter [20] for a discussion of various algorithmic approaches to COPs devel-
oped in the constraint satisfaction literature. While many of these could be adapted
to address the problems discussed in the paper, we will focus on IP formulations
and their direct solution using standard IP software.

We remark here on the use of utility functions rather than (qualitative) preference
rankings in this work. In a deterministic setting, such as in the constraint-based
framework adopted here, one does not need utility functions to make decisions.
Instead an ordinal preference ranking will suffice [30] since, without uncertainty,
strength of preference information is not needed to assess tradeoffs: complete ordi-
nal preference information will dictate which feasible outcome is preferred. How-
ever, in large multiattribute domains, even with factored preference models, full
elicitation will often be time-consuming and unnecessary. As discussed, our aim is
to make decisions with incomplete preference information. If we make a decision
that is potentially suboptimal, we cannot be sure of its quality unless we have some
information about the strength of preference of this decision (at least relative to
the optimal decision). Simply knowing that one decision “may be preferred” to an-
other does not give us enough information to know whether additional preference
information should be elicited if we are content with making good, rather than, op-
timal decisions. It is impossible to sayhow gooda non-optimal decision actually is
without some quantitative utility information.

10

3 Minimax Regret

In many circumstances, we are faced with a COP in which a user may not have
fully articulated her utility function over configurations of attributes. This arises
naturally when distinct configurations must be produced for users with different
preferences, with some form of utility elicitation used to extract only a partial ex-
pression of these preferences. It will frequently be the case that we must make a
decision before a complete utility function can be specified. For instance, users
may have neither the ability nor the patience to provide full utility information to
a system before requiring a decision to be recommended. Furthermore, in many
if not most instances, an optimal decision (or some approximation thereof) can be
determined with a very partial specification of the user’s utility function. This will
become evident in our preference elicitation framework and the models we consider
in this paper.

If the utility function is unknown, then we have a slightly different problem than the
standard COP. We cannot maximize utility (or expected utility in stochastic deci-
sion problems) because the utility function is incompletely specified. However, we
will often have constraints on the utility function, either initial information about
plausible utility values, or more refined constraints based on the results of utility
elicitation with a specific user. For example, these might be bounds on the pa-
rameters of the utility model, or possibly more general constraints (as we discuss
below). Given such a set of possible utility functions (namely those consistent with
these constraints), we must adopt some suitable decision criterion for optimization,
knowing only that the user’s utility function lies within this set.

In the paper we propose the use ofminimax regret[45,24,32,12,43,50] as a natural
decision criterion for imprecise COPs. We first define the notion of minimax regret
and then provide some motivation for its use as a suitable criterion in this setting.

3.1 Minimax Regret in COPs

Minimax regret is a very natural criterion for decision making with imprecise or
incompletely specified utility functions. It requires that one adopt the (feasible) as-
signmentx with minimummax regret, where max regret is the largest amount by
which one couldregret making decisionx (while allowing the utility function to
vary within the bounds). It has been suggested as an alternative to classical expected
utility theory. Specifically, it has been proposed as a means for accounting for un-
certainty over possible states of nature (or the outcomes of decisions) [44,34,4,32],
both when probabilistic information is unavailable, and as a descriptive theory of
human decision making that explains certain common violations of von Neumann-
Morgenstern [49] axioms. However, only recently has it been considered as a means

11

for dealing with the utility function uncertainty a decision system may possess re-
garding a user’s preferences [12,43,50,14]. It is this formulation we present here.

Formally, letU denote the set of feasible utility functions, reflecting our partial
knowledge of the user’s preferences. The setU may be finite; but more commonly
it will be continuous, defined by bounds (or constraints) on (sets of) utility values
u(x) for various states. We refer to a pair〈C,U〉 as animprecise COP, whereC is
a set of feasibility constraints andU is the set of feasible utility functions. In the
case whereU is defined by a finite set of linear constraintsU , we sometimes abuse
terminology by speaking of〈C,U〉 as an imprecise COP.

We define minimax regret in stages:

Defn 1 Thepairwise regretof statex with respect to statex′ over feasible utility
setU is defined as

R(x,x′,U) =max
u∈U

u(x′) − u(x). (4)

Intuitively, U represents the knowledge a decision support system has of the user’s
preferences.R(x,x′,U) is the most the system could regret choosingx instead
of x′, if an adversary could impose any utility function inU on the user. In other
words, if the system were forced to choose betweenx andx′, then this corresponds
to the worst-case loss associated with choosingx rather thanx′ with respect to
possible realizations ofu ∈ U.

Defn 2 Themaximum regretof decisionx is:

MR(x,U)= max
x′∈Feas(X)

R(x,x′,U) (5)

= max
u∈U

max
x′∈Feas(X)

u(x′) − u(x) (6)

Since the goal of our decision support system is to make the optimal choice with
respect to the user’s true utility function,MR(x,U) is the most the system could
regret choosingx; that is, it is the worst-case loss associated with choosingx in the
presence of an adversary who could choose the user’s utility function to maximize
the difference betweenx and acting optimally.11

Defn 3 Theminimax regretof feasible utility setU is:

11 Note that thex′ chosen by the adversary for a specificu will always be the optimal
decision underu: any other choice would give the adversary lesser utility and thus reduce
regret.

12

A B C

D

AB [9,17]

AB [5,8]

AB [10,11]

AB [0,3]

BC [2,4]

BC [0,10]

BC [4,8]

BC [0,5]

AB BC

Fig. 3. Imprecisely specified utility factors (with upper and lower bounds provided for each
parameter.

MMR(U) = min
x∈Feas(X)

MR(x,U) (7)

= min
x∈Feas(X)

max
u∈U

max
x′∈Feas(X)

u(x′) − u(x) (8)

A minimax-optimaldecisionx∗ is any decision that minimizes max regret:

x∗ ∈ arg min
x∈Feas(X)

MR(x,U)

If the only information we have about a user’s utility function is that it lies in the
setU, then a decisionx∗ that minimizes max regret is very intuitive as we elabo-
rate below. Specifically, without distributional information over the set of possible
utility functions, choosing (or recommending) a minimax-optimal decisionx∗ min-
imizes the worst-case loss with respect to possible realizations of the utility function
u ∈ U. Our goal of course is to formulate the minimax regret optimization (Eq. 8)
in a computationally tractable way. We address this in Section 4.

To illustrate minimax regret, consider the example illustrated in Figures 1 and 2; but
suppose that the precise utility values associated with these factors are unknown,
and instead replaced with the upper and lower bounds shown in Figure 3. The
problem admits five feasible states, and the pairwise max regretR(x,x′,U) for
each pair of states (withx along columns andx′ along the rows) is shown in the
following table:

ABC ABC ABC ABC ABC Max Regret

ABC 0 8 5 2 10 10

ABC 4 0 7 6 2 7

ABC 12 18 0 6 12 18

ABC 7 15 6 4 0 15

ABC 15 7 6 4 0 15

The max regret of each feasible state is shown in the final column, from which we

13

see that stateABC is the minimax optimal decision.

3.2 Motivation for Minimax Regret

As mentioned, minimax regret has been widely studied (and critiqued) as a means
for decision making under uncertainty. It has been studied primarily as a means
for making decisions when a decision maker is unwilling or unable to quantify her
uncertainty over possible states of nature, or as a means of explaining violations
of classical axioms of expected utility theory. Savage [44] introduced the notion
though could not provide a “categorical” defense of its use. The use of regret, in-
cluding the incorporation of feelings of regret (and its opposite, “rejoicing”) into
expected utility theory, has been proposed as a means of accounting for the man-
ner in which people violate the axioms of expected utility theory in practice [34,4].
Difficulties with the use of this decision criterion include the fact that the minimax
regret criterion does not satisfy the principle of irrelevant alternatives [44,24], and
regret theory fails to satisfy a reasonable notion of stochastic dominance [40]. It
can also be argued that, from a Bayesian perspective, a decision maker might as
well construct their own subjective assessment of possible states of nature. For this
reason, minimax regret is often viewed as too cautious a criterion.

The perspective we adopt here is somewhat different. We do not adopt minimax
regret as a means of accounting for a decision maker’s personal feelings of regret.
Rather we define regret with respect to ourdecision system’s uncertaintywith re-
spect to the user’s true utility function. It seems incontrovertible that there will
generally be some utility function uncertainty on the part of any system designed
to make decisions on behalf of users. The only issue is how this uncertainty is
represented and reasoned with.

Naturally, Bayesian methods may be entirely appropriate in some circumstances: if
one can quantify uncertainty over possible utility functions probabilistically, then
one can take expectations over this density to determine theexpectedexpected util-
ity of a decision [17,10,11]. However, there are many circumstances in which the
Bayesian approach is inappropriate. First, it can often be very difficult to develop
reasonable priors over the utility functions of a wide class of users. Furthermore,
representing priors over such complex entities as utility functions is fraught with
difficulty and inevitably requires computational approximations in inference (this
is made abundantly clear in recent Bayesian approaches to preference elicitation
[17,10]). As a consequence, the value of such “normatively correct” models is un-
dermined in practice. Often bounds on the parameters of utility functions are gen-
erally much easier to come by, much easier to maintain, and lend themselves to
much more computationally manageable algorithms as we will see in this paper.
In addition, max regret provides an upper bound on the expected loss when prob-
abilistic information is known. As we will see below, minimax regret is a very

14

effective driver of preference elicitation, so concerns about its pessimistic nature
are largely unfounded. We will see that with relatively few queries, max regret can
be reduced to very low levels (often to the point of offering provably optimal solu-
tions). Though we don’t pursue this approach here, when probabilistic information
is available, it can be combined rather effectively with minimax computation [50].

Finally, it is worth noting that making a recommendation whose utility is near op-
timal in expectation, as is the case in Bayesian models of preference elicitation, is
often of cold comfort to a user when the decision made isactuallyvery far from
optimal. While minimax regret provides a worst-case bound on the loss in decision
quality arising from utility function uncertainty (even in cases where distributional
information is available), Bayesian methods cannot typically provide such a bound.
In some contexts, such as procurement, this has been reported as a source of con-
tention with clients using automated preference elicitation [14]. The argument is
often made that users do not want to “leave money on the table” (even if the odds
are low); if any money is left on the table, they want guarantees (as opposed to
probabilistic assurances) that the amount they could have saved through further
preference elicitation is limited.

Recently, a considerable amount of work inrobust optimizationhas adopted the
minimax regret decision criterion [32,1,2].12 This work addresses combinatorial
optimization problems with data uncertainty (e.g., shortest path problems or facil-
ity location with uncertain parameters) and find “robust deviation decisions” that
minimize max regret. While the perspective in this work is somewhat different than
that adopted in ours, the models and methods are quite similar. Our formulation is
specific to the constraint-based optimization setting, but more importantly we focus
on how minimax regret can be used to drive the process of elicitation, a problem
not addressed systematically in the robust optimization literature. Our techniques
for preference elicitation could in fact be adapted for problems in robust optimiza-
tion as a means to drive the reduction in data uncertainty.

4 Computing Minimax Regret in COPs

We address the computational problem of computing minimax optimal decisions
in several stages. We initially assume upper and lower bounds on utility parameters
and discuss procedures for minimax computation for this form of uncertainty. We
begin in Sec. 4.1 by formulating minimax regret in flat (unfactored) utility models
to develop intuitions used in the factored case. In Sec. 4.2 we discuss the compu-
tation of maximum regret in factored utility models, and propose two procedures

12 The term “robust optimization” has a number of different interpretations (see for exam-
ple the work of Ben-Tal and Nemirovski [5]) of which minimax regret is one of the less
common.

15

for dealing with minimax regret. We evaluate one of these methods empirically in
Sec. 4.3. Finally, in Sec. 4.4 we propose a generalization for the minimax problem
in the case where the feasible utility set is defined by arbitrary linear constraints on
parameters of the utility model.

4.1 Minimax Regret with Flat Utility Models

If we make no assumptions about the structure of the utility function, nor any as-
sumptions about the nature of the feasible utility setU, the optimization problem
defined in Eq. 8 can be posed directly as a semi-infinite, quadratic, mixed-integer
program (MIP):

min
{Mx,Ix,Xi}

∑
x

MxIx subj. to

Mx ≥ ux′ − ux ∀x ∈ X, ∀ x′ ∈ Feas(X), ∀ u ∈ U

A andC
where we have:

• variablesMx: for eachx, Mx is a real-valued variable denoting the max regret
when decisionx is made (i.e., when that state is chosen).

• variablesIx: for eachx, Ix is a Boolean variable indicating whetherx is the
decision made.

• coefficientsux: for eachu ∈ U and each statex, ux denotes the utility ofx given
utility function u.

• state definition constraintsA and feasibility constraintsC (defined as above).

Direct solution of this MIP is problematic, specifically because of the set of con-
straints on theMx variables. First, ifU is continuous (the typical case we consider
here), then the set of constraints of the formMx ≥ ux′ − ux is also continuous,
since it requires that we “enumerate” all utility valuesux andux′ corresponding to
any utility functionu ∈ U. Furthermore, it is critical that we restrict our attention
to those constraints associated withx′ in thefeasibleset (i.e., those states satisfying
C). Fortunately, we can often tackle this seemingly complex optimization in much
simpler stages if we make some very natural assumptions regarding the nature of
the feasible utility space and utility function structure.

We begin by considering the case where our imprecise knowledge regarding all
utility parametersux is independent and represented by simple upper and lower
bounds. For example, asking standard gamble queries, as discussed further in Sec. 5.1,
provides precisely such bounds on utility values [24]. Specifically, we assume an
upper boundux↑ and a lower boundux↓ on eachux, thus defining the feasible utility
setU to be a hyperrectangle. This assumption allows us to compute the minimax
regret in three simpler stages, which we now describe.13

13 This transformation essentially reduces thesemi-infinite quadraticMIP to afinite linear
IP.

16

First, we note that the pairwise regret for an ordered pair of states can be easily
computed since eachux is bounded by an upper and lower bound:

R(x,x′,U) =

u′
x↑ - ux↓ whenx 6= x′

0 whenx = x′
(9)

Let rx,x′ denote this pairwise regret value for eachx, x′, which we now assume has
been pre-computed for all pairs.

Second, using Eq. 5, we can also compute the max regretMR(x,U) of any statex
based on the pre-computed pairwise regret valuesrx,x′. Specifically, we can enu-
merate all feasible statesx′, retaining the largest (pre-computed) pairwise regret:

MR(x,U) = max
x′∈Feas(X)

rx,x′. (10)

Alternatively, we can search through feasible states “implicitly” with the following
IP:

MR(x,U) = max
{Ix′ ,X′

i}

∑
x′

rx,x′Ix′ subject toA andC. (11)

Third, let mx denote the value ofMR(x,U). With the max regret termsmx =
MR(x,U) in hand, we can compute the minimax regretMMR(U) readily. We sim-
ply enumerate all feasible statesx and retain the one with the smallest (precom-
puted) max regret valuemx:

MMR(U) = min
x∈Feas(X)

mx. (12)

Again, this enumeration may be done implicitly using the following IP:

MMR(U) = min
{Ix,Xi}

∑
x

mxIx subject toA andC. (13)

In this flat model case, the two IPs above are not necessarily practical, since they
require one indicator variable per state. However, this reformulation does show
that the original quadratic MIP with a continuous set of constraints can be solved
in stages using finite, linear IPs. More importantly, these intuitions will next be
applied to develop an analogous procedure for factored utility models.

Note that the strategy above hinges on the fact that we have independently deter-
mined upper and lower bounds on the utility value of each state. If utility values are
correlated by more complicated constraints, this strategy will not generally work.
In particular,comparison queriesin which a user is asked which of two states is
preferred induce linear constraints on the entire set of utility parameters, thus pre-
venting exploitation of independent upper and lower bounds. We discuss formula-
tions that allow us to deal with such feasible utility sets in Sec. 4.4. However, we
initially focus on the case of independent bounds.

17

4.2 Minimax Regret with Factored Utility Models

The optimization for flat models is interesting in that it allows us to get a good sense
of how minimax regret works in a constraint-satisfaction setting. From a practical
perspective, however, the above model has little to commend it. By solving IPs
with oneIx variable per state, we have lost all of the advantage of using a com-
pact and natural constraint-based approach to problem modeling. As we have seen
when optimizing with known utility functions, if there is noa priori structure in the
utility function, there is very little one can do but enumerate (feasible) states. On
the other hand, when the problem structure allows for modeling via factored utility
functions the optimization becomes more practical. We now show how much of this
practicality remains when our goal is to compute the minimax-optimal state given
uncertainty in afactoredutility function represented as a graphical model.

Assume a set of factorsfk, k ≤ K, defined over local familiesX[k], as described
in Sec. 2.2. The parameters of this utility function are denoted byux[k] = fk(x[k]),
wherex[k] ranges overDom(X[k]). We use the termimprecise structured COPto
describe an imprecise COP〈C,U〉 where the feasible utility setU is defined by a set
of constraintsU over the parametersux[k] of a factored utility model{fk : k ≤ K}.

As in the flat-model case, we assume upper and lower bounds on each of these
parameters, which we denote byux[k]↑ andux[k]↓, respectively. Hence the range of
each utility factorfk for a given assignmentx[k] corresponds to an interval. By
definingu(x) as in Eq. 2, pairwise regret, max regret and minimax regret are all
defined in the same manner outlined in Sec. 3. We now show how to compute each
of these quantities in turn by generalizing the intuitions developed for flat models.

4.2.1 Computing Pairwise Regret and Max Regret

As in the unfactored case (Sec. 4.1), it is straightforward to compute the pairwise
regret of any pair of statesx andx′. For each factorfk and pair of local assignments
x[k],x′[k], we define thelocal pairwise regret:

rx[k],x′[k] =

ux′[k]↑ − ux[k]↓ whenx[k] 6= x′[k]

0 whenx[k] = x′[k]

With factored models it is not hard to see from Eq. 2 and Eq. 9 thatR(x,x′,U) is
simply the sum of local pairwise regrets:

R(x,x′,U) =
∑
k

rx[k],x′[k]. (14)

18

We can compute max regretMR(x,U) by substituting Eq. 14 into Eq. 5:

MR(x,U) = max
x′∈Feas(X)

∑
k

rx[k],x′[k], (15)

which leads to the following IP formulation:

MR(x,U) = max
{Ix′[k],X

′
i}

∑
k

∑
x′[k]

rx[k],x′[k]Ix′[k] subject toA andC. (16)

The above IP differs from its flat counterpart (Eq. 11) in the use of one indicator
variableIx′[k] per utility parameter rather than one per state, and is thus much more
compact and efficiently solvable. Indeed, the size of the IP in terms of the number of
variables and constraints (excluding exogenously determined feasibility constraints
C) is linear in the size of the underlying factored utility model.

4.2.2 Computing Minimax Regret: Constraint Generation

We can compute minimax regretMMR(U) by substituting Eq. 15 into Eq. 7:

MMR(U) = min
x∈Feas(X)

max
x′∈Feas(X)

∑
k

rx[k],x′[k] (17)

which leads to the following MIP formulation:

MMR(U) = min
{Ix[k],Xi}

max
x′∈Feas(X)

∑
k

∑
x[k]

rx[k],x′[k]Ix[k] subject toA andC (18)

= min
{Ix[k],Xi,M}

M

subject to

M ≥ ∑
k

∑
x[k] rx[k],x′[k]Ix[k] ∀x′ ∈ Feas(X)

A andC
(19)

In Eq. 18, we introduce the variables for the minimization, while in Eq. 19 we
transform the minimax program into a min program. The new real-valued variable
M corresponds to the max regret of the minimax-optimal solution. In contrast with
the flat IP (Eq. 13), this MIP has a number ofIx[k] variables that is linear in the
number of utility parameters. However, this MIP is not generally compact because
Eq. 19 has one constraint per feasible statex′. Nevertheless, we can get around the
potentially large number of constraints in either of two ways.

The first technique we consider for dealing with the large number of constraints
in Eq. 19 isconstraint generation, a common technique in operations research for
solving problems with large numbers of constraints. Our approach can be viewed
as a form of Benders’ decomposition [6,36]. This approach proceeds by repeat-
edly solving the MIP in Eq. 19, but using only a subset of the constraints onM
associated with the feasible statesx′. At the first iteration, all constraints onM are

19

ignored. At each iteration, we obtain a solution indicating some decisionx with
purported minimax regret; however, since certain unexpressed constraints may be
violated, we cannot be content with this solution. Thus, we look for the unexpressed
constraint onM that is maximally violated by the current solution. This involves
finding awitnessx′ that maximizes regret w.r.t. the current solutionx ; that is, a
decisionx′ (and, implicitly, a utility function) that an adversary would choose to
cause a user to regretx the most.

Recall that finding the feasiblex′ that maximizesR(x,x′,U) involves solving a
single IP given by Eq. 16. We then impose the specific constraint associated with
witnessx′ and re-solve the MIP in Eq. 19 at the next iteration with this additional
constraint. Formally, we have the following procedure:

(1) Let Gen= {x′} for some arbitrary feasiblex′.
(2) Solve the MIP in Eq. 19 using the constraints corresponding to states inGen.

Let x∗ be the MIP solution with objective valuem∗.
(3) Compute the max regret of statex∗ using the IP in Eq. 16, producing a solution

with regret levelr∗ and witness (adversarial state)x′′. If r∗ > m∗, then add
x′′ to Gen and repeat from Step 2; otherwise (ifr∗ = m∗), terminate with
minimax-optimal solutionx∗ (with regret levelm∗).

Intuitively, when we solve the MIP in Step 2 using only the constraints inGen, we
are computing minimax regret against arestricted adversary: the adversary is only
allowed to use choicesx′ ∈ Gen in order to make us regret our solutionx∗ to the
MIP. As such, this solution provides a lower bound on true minimax regret (i.e., the
solution that would have been obtained were a completely unrestricted adversary
considered).

When we compute the true max regretr∗ of x∗ in Step 3, we also obtain an upper
bound on minimax regret (since we can always attain max regret ofr∗ simply by
stopping and recommending solutionx∗). It is not hard to see that ifr∗ = m∗, then
no constraint is violated at the current solutionx∗ (and our upper and lower bounds
on minimax regret coincide); sox∗ is the minimax-optimal configuration at this
point. The procedure is finite and guaranteed to arrive at the optimal solution. The
constraint generation routine is not guaranteed to finish before it has the full set of
constraints, but it is relatively simple and (as we will see) tends to generate a very
small number of constraints. Thus in practice we solve this very large MIP using
a series of small MIPs, each with a small number of variables and a set of active
constraints that is also, typically, very small.

Since minimax regret will be computed between elicitation queries, it is critical that
minimax regret be estimated in a relatively short period of time (e.g., five seconds
for certain applications, five minutes for others, possibly several hours for very
high stakes applications). With this in mind, several improvements can be made to
speed up minimax regret computation. For instance, it is often sufficient to find a

20

feasible (instead of optimal) configurationx for the MIP in Eq. 19 for each newly
generated constraint. Intuitively, as long as the feasiblex allows us to find a violated
constraint—constraint generation continues to make progress. Hence, instead of
waiting a long time for an optimalx, we can stop the MIP solver as soon as we
find a feasible solution for which a violated constraint exists. Of course, at the last
iteration, when there are no violated constraints, we have no choice but to wait for
the optimalx.

Minimax regret can also be estimated more quickly—to allow for the real-time re-
sponse needed for interactive optimization—by exploiting the anytime nature of
the computation to simply stop early. Since minimax regret is computed incremen-
tally by generating constraints, early stopping has the effect that some violated
constraints may not have been generated. As a result the solution provides us with
a lower bound on minimax regret. We can terminate early based on a fixed number
of iterations (constraints), a fixed amount of computation time, or by terminating
when bounds on the solution are tight enough. Apart from this lower bound, we
can also obtain an upper bound on minimax regret by computing the max regret of
thex found for the last minimax MIP solved. Note that we may need to explicitly
compute this since Step (3) of our procedure may not be invoked if we terminate
based only on the number of iterations rather than testing for constraint violation.

Approximation can be very appealing if real-time interactive response is required.
The anytime flavor of the algorithm means that these lower and upper bounds are
often tight enough to provide elicitation guidance of similar quality to that obtained
from computing minimax regret exactly.

Although the full interaction of minimax regret computation with elicitation is ex-
plored in Sec. 5, as a precursor to that discussion, we mention another strategy
for accelerating computation which directly influences the querying process. We
have observed, unsurprisingly, that the minimax regret problem solved after receiv-
ing a response to one query is very similar to that solved before posing the query.
As such, one can “seed” the minimax procedure invoked after a query with the
constraints generated at the previous step. In this way, typically, only a few extra
constraints are generated during each minimax computation. Given that the run-
ning time of minimax regret is dominated by constraint generation, this effectively
amortizes the cost of minimax computation over a number of queries.

4.2.3 Computing Minimax Regret: A Cost Network Formulation

A second technique for dealing with the large number of constraints in Eq. 19
is to use a cost network to generate acompactset of constraints that effectively
summarizes this set. This type of approach has been used recently, for example,
to solve Markov decision processes [26]. The main benefit of the cost network
approach is that, in principle, it allows us to formulate a MIP with a feasible number

21

of constraints (as elaborated below). We have observed, however, the constraint
generation approach described above is usually much faster in practice and much
easier to implement, even though it lacks the same worst-case run-time guarantees.
Indeed, this same fact has been observed in the context of MDPs [47]. It is for
this reason that we emphasize (and only experiment with) the constraint generation
algorithm. However, we sketch the cost network formulation for completeness.

To formulate a compact constraint system, we first transform the MIP of Eq. 19 into
the following equivalent MIP by introducing penalty termsρx[`] for each feasibility
constraintC`:

MMR(U) = min
{Ix[k],Xi,M}

M

s.t.

M ≥ ∑
k

∑
x[k] rx[k],x′[k]Ix[k] +

∑
` ρx′[`] ∀x′ ∈ Dom(X)

A andC

= min
{Ix[k],Xi,M}

M

s.t.

M ≥ ∑
k Rx′[k] +

∑
` ρx′[`] ∀x′ ∈ Dom(X)

Rx′[k] =
∑

x[k] rx[k],x′[k]Ix[k] ∀k,x′[k] ∈ Dom(X[k])

A andC

(20)

The MIP of Eq. 19 has one constraint onM per feasible statex′, whereas the
MIP of Eq. 20 has one constraint per statex′ (whether feasible or not). Therefore,
to effectively maintain the feasibility constraints onx′, we add penalty termsρx′[`]
that make a constraint onM meaningless when its corresponding statex′ is infea-
sible. This is achieved by defining a local penalty functionρ`(x′[`]) for each logical
constraintC` that returns−∞ whenx′[`] violatesC` and0 otherwise.

This transformation has, unfortunately, increased the number of constraints. How-
ever, it in fact allows us to rewrite the constraints in a much more compact form, as
follows. Instead of enumerating all constraints onM , we analytically construct the
constraint that provides thegreatest lower bound, while simply ignoring the others.
This greatest lower boundGLB is computed by taking the max of all constraints on
M :

GLB=max
x′

∑
k

Rx′[k] +
∑

`

ρx′[`]

=max
x′
1

max
x′
2

. . .max
x′

N

∑
k

Rx′[k] +
∑

`

ρx′[`].

This maximization can be computed efficiently by usingvariable elimination[19],

22

a well-known form of non-serial dynamic programming [7]. The idea is to distribute
the max operator inward over the summations, and then collect the results as new
terms which are successively pulled out. We illustrate its workings by means of an
example.

Suppose we have the attributesX1, X2, X3, X4, a utility function decomposed into
the factorsf1(x1, x2), f2(x2, x3), f3(x1, x4) and two logical constraints with asso-
ciated penalty functionsρ1(x1) andρ2(x3, x4). We then obtain

GLB=max
x′
1

max
x′
2

max
x′
3

max
x′
4

Rx′
1,x′

2
+ Rx′

2,x′
3
+ Rx′

1,x′
4
+ ρx′

1
+ ρx′

3,x′
4

=max
x′
1

[ρx′
1
+ max

x′
2

[Rx′
1,x′

2
+ max

x′
3

[Rx′
2,x′

3
+ max

x′
4

[Rx′
1,x′

4
+ ρx′

3,x′
4
]]]]

by distributing the individual max operators inward over the summations. To com-
pute theGLB, we successively formulate new terms that summarize the result of
completing each max in turn, as follows:

Let Ax′
1,x′

3
= max

x′
4

Rx′
1,x′

4
+ ρx′

3,x′
4
.

Let Ax′
1,x′

2
= max

x′
3

Rx′
2,x′

3
+ Ax′

1,x′
3
.

Let Ax′
1

= max
x′
2

Rx′
1,x′

2
+ Ax′

1,x′
2
.

Let GLB = max
x′
1

ρx′
1
+ Ax′

1
.

Notice that this incremental procedure can be substantially faster than enumerating
all statesx′. In fact the complexity of each step is only exponential in the local
subset of attributes that indexes each auxiliaryA variable.

Based on this procedure, we can substitute all the constraints onM in the MIP in
Eq. 20 with the following compact set of constraints that analytically encodes the
greatest lower bound onM :

Ax′
1,x′

3
≥ Rx′

1,x′
4
+ ρx′

3,x′
4

∀x′
1, x

′
3, x

′
4 ∈ Dom(X1, X3, X4)

Ax′
1,x′

2
≥ Rx′

2,x′
3
+ Ax′

1,x′
3

∀x′
1, x

′
2, x

′
3 ∈ Dom(X1, X2, X3)

Ax′
1
≥ Rx′

1,x′
2
+ Ax′

1,x′
2

∀x′
1, x

′
2 ∈ Dom(X1, X2)

M ≥ ρx′
1
+ Ax′

1
∀x′

1 ∈ Dom(X1)

By encoding constraints in this way, the constraint system specified by the MIP in
Eq. 20 can be generally encoded with a small number of variables and constraints.

23

Overall we obtain a MIP where: the number ofIx variables is linear in the number
of parameters of the utility function; and the number of auxiliary variables (the
A variables in our example) and constraints that are added is locally exponential
with respect to the largest subset of attributes indexing some auxiliary variable.
In practice, since this largest subset is often very small compared to the set of all
attributes, the resulting MIP encoding is compact and readily solvable. In particular,
let thejoint graphbe the union of the constraint graph and the utility graph (e.g., the
union of the graphs in Figures 1 and 2). The complexity of this algorithm and hence
the size of the resultant set of constraints is determined directly by the properties of
variable elimination, and as such depends on the order in which the variables inX
are eliminated. More precisely, it is exponential in thetree widthof the joint graph
induced by the elimination ordering [19]. Often this tree width is very small, thus
rendering the algorithm only locally exponential [19].

4.3 Empirical Results

To test the plausibility of minimax regret computation, we implemented the con-
straint generation strategy outlined above and ran a series of experiments to deter-
mine whether factored structure was sufficient to permit practical solution times.
We implemented the constraint generation approach outlined in Sec. 4.2 and used
CPLEX 9.0 as the generic IP solver.14 Our experiments considered two realis-
tic domains—car rentals and real estate—as well as randomly generated synthetic
problems. In each case we imposed a factored structure to reduce the required num-
ber of utility parameters (upper and lower bounds).

For the real-estate problem, we modeled the domain with 20 (multivalued) variables
that specify various attributes of single family dwellings that are normally relevant
to making a purchase decision. The variables we used included: square footage,
age, size of yard, garage, number of bedrooms, etc. Variables have domains with
sizes ranging from two to four vakues. In total, there were 47,775,744 possible
configurations of the variables. We then used a factored utility model consisting
of 29 local factors, each defined on only one, two or three variables. In total, there
were 160 utility parameters (i.e., utilities for local configurations). Therefore a total
of 320 upper and lower bounds had to be specified, a significant reduction over
the nearly108 values that would have been required using a unfactored model.
The local utility functions represented complementarities and substitutabilities in
the utility function, such as requiring a large yard and a fence to allow a pool,
sacrificing a large yard if the house happens to be near a park, etc.

The car-rental problem features 26 multi-valued variables encoding attributes rel-
evant to consumers considering a car rental, such as: automobile size and class,
manufacturer, rental agency, seating and luggage capacity, safety features (air bags,

14 These experiments were performed on 3.0GHz PCs.

24

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
0.1

1

10

100

1,000

Relative utility range

T
im

e
(s

ec
on

ds
)

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 4. Computation time (left) and number of constraints generated (right) for minimax
regret on real-estate problem (48 million configurations) as a function of the tightness of
the utility bounds.

ABS, etc.), and so on. The size of the domain of the variables varies from 2 to 9.
The total number of possible variable configurations is 61,917,360,000. There are
36 local utility factors, each defined on at most five variables, giving rise to 435 util-
ity parameters. Constraints encode infeasible configurations (e.g., no luxury sedans
have four-cylinder engines).

For both the car-rental and real-estate problems, we first computed the configura-
tion with minimax regret given manually chosen bounds on the utility functions.
The constraint generation technique of Sec. 4.2 took 15 seconds for the car-rental
problem and 0.48 seconds for the real-estate problem. It is interesting to note that
only 63 constraints (out of 61,917,360,000 possible constraints) for the car-rental
problem and seven constraints (out of 47,775,744 possible constraints) for the real-
estate problem were generated in the search for the minimax optimal configuration.
The structure exhibited by the utility functions of each problem is largely responsi-
ble for this small number of required constraints.

In practice, minimax regret computation will be interleaved with some preference
elicitation technique (as we discuss in Sec. 5). As the bounds on utility parameters
get tighter, we would like to know the impact on the running time of our con-
straint generation algorithm. To that effect, we carried out an experiment where
we randomly set bounds, but with varying degrees of tightness. Initial utility gaps
(i.e., difference between upper and lower bounds) ranged from 0 to 100. Figures 4
and 5 show how tightening the bounds decreases both the running time and the
number of constraints generated in an exponential fashion. For this experiment,
bounds on utility were generated at random, but the difference between the upper
and lower bounds of any utility was capped at a fixed percentage of some predeter-
mined range. Intuitively, as preferences are elicited, the values will shrink relative
to the initial range.

Figures 4 and 5 show scatterplots of computation time and number of constraints for

25

90% 80% 70% 60% 50% 40% 30% 20% 10%
0.1

1

10

100

1,000

10,000

100,000

Relative utility range

T
im

e
(s

ec
on

ds
)

90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 5. Computation time (left) and number of constraints generated (right) for minimax
regret on car-rental problem (62 billion configurations) as a function of the tightness of the
utility bounds.

ten random problem instances generated for each of a number of increasingly tight
relative utility ranges. As those figures suggest, a significant speed up is obtained
as elicitation converges to the true utilities. Intuitively, the optimization required
to compute minimax regret benefits from tighter bounds since some configurations
emerge as clearly dominant, which in turn requires the generation of fewer con-
straints.

We carried out a second experiment with synthetic problems. A set of random prob-
lems of varying sizes was constructed by randomly setting the utility bounds as well
as the variables on which each utility factor depends. Each utility factor depends
on at most three variables and each variable has at most five values. Figure 6 shows
the results as we vary the number of variables and factors (the number of factors
is always the same as the number of variables). The running time and the number
of constraints generated increases exponentially with the size of the problem. Note
however that the number of constraints generated is still a tiny fraction of the total
number of possible constraints. For problems with 10 variables, only 7 constraints
were necessary (out of 278,864) on average; and for problems with 30 variables,
only 47 constraints were necessary (out of2.8 × 1016) on average.

We also tested the impact of the relative tightness of utility bounds on the efficiency
of our constraint generation technique, with results shown in Figure 7. Here, prob-
lems of 30 variables and 30 factors were generated randomly while varying the
relative range of the utilities with respect to some predetermined range. Each factor
has at most three variables chosen randomly and each variable can take at most five
values. Once again, as the bounds get tighter, some configurations emerge as clearly
dominant, which allows an exponential reduction in the running time as well as the
number of required constraints.

Finally, we illustrate the anytime properties of our algorithm. In Figure 8 we show
the lower bound on minimax regret as a function of computation time. Each data

26

10 12 14 16 18 20 22 24 26 28 30
0.1

1

10

100

1,000

10,000

Number of variables

T
im

e
(s

ec
on

ds
)

10 12 14 16 18 20 22 24 26 28 30
1

10

100

1,000

Number of variables

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 6. Computation time (left) and number of constraints generated (right) for artificial
random problems as a function of problem size (number of variables and factors).

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
0.1

1

10

100

1,000

10,000

Relative utility range

T
im

e
(s

ec
on

ds
)

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 7. Computation time (left) and number of constraints generated (right) for minimax
regret on artificial random problems (30 variables, 30 factors) as a function of the tightness
of the utility bounds.

point corresponds to one additional generated constraint. As we can see, the con-
straint generation algorithm has very good anytime properties, approaching the true
minimax regret level very quickly as a function of time and number of constraints.
This is due to two factors. First, as a function of the number of constraints gen-
erated, minimax regret lower bounds increase much more quickly early on, thus
exhibiting the desired anytime behavior. Second, solution time with smaller num-
bers of constraints tends to be considerably less than with larger numbers of con-
straints. This enhances the anytime profile with respect to time (providing a much
steeper increase than one would see if plotting the bound with respect to number of
constraints generated). For example, in the rental car problem shown, the first ten
constraints are generated in 1.7s, the first twenty in 4.6s, the first thirty in 8.9s, and
so on until convergence to the true minimax regret after 57 constraints (24.62s).
This anytime property has important implications for real-time preference elicita-
tion as we discuss below.

27

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

Time (s)

M
M

R

MMR v.s. Time, Car Problem

car

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900
MMR v.s. Time, Real Estate Problem

Time (s)

M
M

R

real estate

Fig. 8. Lower bound on minimax regret until convergence as a function of computation
time. Results for Rental Car (left) and Real Estate (right), both at 70% of utility range.
Solution quality is plotted for the solutions generated by adding one additional constraint.
Data points are marked for every fifth constraint generated.

4.4 Minimax Regret with Linear Utility Constraints

The computational methods above exploit the existence of upper and lower bounds
on utility parameters. While some types of queries used in elicitation allow one
to maintain such independent bounds, other forms of queries (e.g., comparison
queries) impose arbitrary linear constraints on these utility parameters, demanding
new methods for computing minimax regret. We now develop an IP-based proce-
dure for solving COPs with linear constraints on the utility parameters.

Suppose we have an imprecise structured COP〈C,U〉 whereU is a polytope de-
fined by a finite set of (arbitrary) linearutility constraintsU over the parameters
ux[k] of a factored utility model{fk : k ≤ K}. Thus we relax the assumption that
the constraintsU take the form of bounds.

Computing the max regret of a statex can no longer rely on the existence of local
pairwise regrets as in Eq. 16. However, we can reformulate the problem somewhat
differently to allow this to be solved linearly even when the constraintsU take this
more general form. First, we can recast the computation of max regret as a quadratic
optimization:

MR(x,U) = max
{Ix′[k],X

′
i,Ux[k]}

∑
k

[
∑
x′[k]

Ux′[k]Ix′[k]]−Ux[k] subject toA, C, andU (21)

We have introduced one real-valued variableUx[k] (denotedUx′[k] when referring
to specific adversarial local statesx′) for each utility parameterux[k], reflecting
their unknown nature; these are constrained byU . The presence of theUx′[k] vari-
ables renders the optimization quadratic. However, this can be reformulated by the
introduction of new real-valued variablesYx′[k] for each such utility variable. Intu-

28

itively, Yx′[k] denotes the productUx′[k]Ix′[k]. This product can be defined by assum-
ing (loose) upper boundsux[k]↑ on the utility parameters. Specifically, we rewrite
Eq. 21 as follows:

MR(x,U)= max
{Ix′[k],X

′
i,Ux[k],Yx′[k]}

∑
k

∑

x′[k]

Yx′[k]

 − Ux[k]

subject to

Yx′[k] ≤ Ix′[k]ux′[k]↑ ∀k,x′[k]

Yx′[k] ≤ Ux′[k] ∀k,x′[k]

A, C andU
(22)

The constraints onYx′[k], together with the fact that the objective aims to maximize
its value, ensure that it takes the value zero ifIx′[k] = 0 and takes the valueUx′[k]

otherwise.15

With the ability to compute max regret by solving a MIP, we can use a variant of
the constraint generation procedure described in Sec. 4.2. Notice that the solution
to the MIP in Eq. 22 produces a witnessx′ as well as a specific utility function in
which each variableUx[k] is set to the value of utility parameterux[k] that maximizes
the regret of the state in question. Notice also that the statex′ must be the optimal
feasible state for the chosen utility functionu ∈ U (otherwise regret could be made
even higher).

We can then express minimax regret in a way similar to Eqs. 18 and 19.

MMR(U) = min
{Ix[k],Xi}

max
x′∈Feas(X′),u∈U

∑
k

ux′[k] −

∑
x[k]

ux[k]Ix[k]

 s.t.A andC

= min
{Ix[k],Xi}

M

s.t.

M ≥ ∑
k

ux′[k] −

∑
x[k]

ux[k]Ix[k]

 ∀x′ ∈ Feas(X′), u ∈ U

A andC
(23)

We can use the max regret computation described in Eq. 22 to generate constraints
iteratively as required for Eq. 23.

15 Note that this relies on the fact that eachUx′[k] is non-negative. If we allow negative local
utility, these constraints can be generalized by exploiting a (loose) lower bound onUx′[k]

as well.

29

5 Elicitation Strategies

While the use of minimax regret provides a useful way of handling imprecise utility
information, the initial bounds on utility parameters provided by users are unlikely
to be tight enough to admit configurations with provably low regret. Instead, we
imagine an interactive process in which the decision software queries the user for
further information about her utility function—refining bounds or constraints on
the parameters—until minimax regret, given the current constraints, reaches an ac-
ceptable levelτ . 16 We can summarize the general form of the interactive elicitation
procedure as follows:

(1) Compute minimax regretmmr.
(2) Repeat untilmmr< τ :

(a) Ask queryq.
(b) Update the constraintsU over utility parameters to reflect the response to

q.
(c) Recomputemmrwith respect to new constraint setU .

We begin by discussing bound queries, the primary type of query that we consider
here, then describe a number of elicitation strategies using bound queries. Through-
out most of this section we assume some imprecise structured COP problem〈C,U〉
whereU is specified by a factored utility model{fk : k ≤ K} with upper and lower
bounds on its parameters. However, we will also discuss comparison queries, and
henceU in which arbitrary linear constraints are present, in Sec. 5.6.

There are a number of important issues regarding user interaction that will need
to be addressed in the development of any interactive decision support software.
The perspective we adopt here is rather rigid and assumes users can (somewhat
comfortably) answer the types of queries we pose. We do not consider issues of
framing, preference construction or exploration, or other issues surrounding the
mode of interaction. Nor we do consider users who may express inconsistent pref-
erences (indeed, none of our strategies will ever ask a query that can be responded
to inconsistently). However, we believe the core of our elicitation techniques can
certainly be incorporated into the larger context in which these important issues are
addressed. For a discussion of some of these issues in the context of constraint-
based optimization, see the work of Pu, Faltings, and Torrens [39].

16 We could insist that regret reaches zero (i.e., that we have a provably optimal solution),
or stop when regret reaches a point where further improvement is outweighed by the cost
of additional interaction.

30

5.1 Bound Queries

Bound queriesform the primary class of queries we consider, in which we ask
the user whether one of her utility parameters lies above a certain value. A positive
response raises the lower bound on that parameter, while a negative response lowers
the upper bound: in both cases, uncertainty is reduced.

While users often have difficulty assessing numerical parameters, they are typically
better at comparing outcomes [30,24]. Fortunately, a bound query can be viewed
as a local form of astandard gamble query (SGQ), commonly used in decision
analysis; these in fact ask for comparisons. An SGQ for a specific statex asks
the user if she prefersx to a gamble in which the best outcomex> occurs with
probabilityl and the worstx⊥ occurs with probability1−l [30]. A positive response
puts a lower bound on the utility ofx, and a negative response puts an upper bound.
Calibration is attained by the use of common best and worst outcomes across all
queries (and numerical assessment is restricted to evaluating probabilities). Thus
a bound query “Isu(x) > q?” can be cast as a standard gamble query: “Do you
preferx to a gamble in whichx> is obtained with probabilityq andx⊥ is obtained
with probability1 − q?” 17

For instance, ignoring factorization, one might ask in the car rental domain: “Would
you preferCAR27 or a gamble in which your receivedCARB with probabilityl and
CARW with probability1 − l?” HereCAR27 is the specificcompleteoutcome of
interest, whileCARB andCARW are the best and worst possible car configurations,
respectively (these need not be feasible in general). Of course, given the factor-
ization of the model, we would prefer not to focus a user’s attention on complete
outcomes, but rather take advantage of the utility independence inherent in the GAI
model to elicit information about local outcomes. As a consequence, we will ask
analogous bound queries on local factors.

Our general elicitation procedure when restricted to bound queries takes the fol-
lowing form:

(1) Compute minimax regretmmr.
(2) Repeat untilmmr< τ :

(a) Ask a bound query “Isux[k] ≤ q?” of some utility parameterux[k].
(b) If ux[k] ≤ q then reduce upper boundux[k]↑ to q. Otherwise raise lower

boundux[k]↓ to q.
(c) Recomputemmrusing the new bounds.

While we focus on bound queries, other forms of queries are quite natural. For

17 If the user is nearly indifferent to the two alternatives, they may be tempted to respond
“I don’t know.” This can be handled by imposing a quantitative interpretation on “near
indifference” and imposing a constraint that makes these two utilities “close.”

31

example, comparison queries ask if one statex is preferred to anotherx′ and are
discussed further in Sec. 5.6. Hierarchical structuring of attributes is another avenue
that could be considered in posing queries, though we leave this for future research
within our model.

The foundations of bound queries can be made precise using results of Fishburn
[22]. Roughly speaking, we require calibration across factors in the GAI model in
order to be sure that the stated comparisons are meaningful. Gonzales and Perny
[25] provide a specific procedure for (full) elicitation in GAI networks that relies on
asking queries over complete outcomes, while Braziunas and Boutilier [15] provide
a algorithm that allows for local queries (over small subsets of attributes). Bound
queries in our framework can be supplemented with a small number of additional
calibration queries as suggested in [15] if one requires calibration across factors
for the user. Alternatively, if the scales associated with each of the GAI factors is
obviously calibrated (e.g., the “utilities” refer to the monetary amount the user is
willing to pay for a specific combination of attributes), then bound queries can be
used directly without need for additional calibration. We refer to [25,15] for further
details.

Several of our bound query strategies rely on the following definitions.

Defn 4 Let 〈C,U〉 be an imprecise COP problem. Anoptimistic statexo, apes-
simistic statexp, and amost uncertain statexmu are any states satisfying (respec-
tively):

xo ∈ arg max
x∈Feas(X)

max
u∈U

u(x)

xp ∈ arg max
x∈Feas(X)

min
u∈U

u(x)

xmu ∈ arg max
x∈Feas(X)

max
u,u′∈U

u(x) − u′(x)

An optimistic state is a feasible state with the greatest upper bound on utility. A
pessimistic state has the greatest lower bound on utility. A most uncertain state has
the greatest difference between its upper and lower bounds. Each of these states
can be computed in a single optimization by setting the parameters of the utility
model to their upper bounds, their lower bounds, or their difference, and solving
the corresponding (precise) COP problem.

5.2 The Halve Largest Gap Strategy

The first query strategy we consider is thehalve largest gap (HLG) strategy. It asks
a query at the midpoint of the interval of the parameterx[k] with the largest gap be-
tween its upper and lower bounds. This is motivated by theoretical considerations,
based on simple worst-case bounds on minimax regret.

32

Defn 5 Define thegap of a utility parameterux[k], the spanof factor fk and
maxspanof our utility model as follows:

gap(x[k]) = ux[k]↑ − ux[k]↓ (24)
span(fk) = max

x[k]∈Dom(X[k])
gap(x[k]) (25)

maxspan(U) =
∑
k

span(fk) (26)

The quantitymaxspanmeasures the largest difference between the upper and lower
utility bound, regardless of feasibility. We can show that this quantity bounds min-
imax regret:

Proposition 1 For any〈C,U〉, MMR(U) ≤ maxspan(U).

Proof: By definition of minimax regret, we haveMMR(U) ≤ MR(xo,U). For
any optimistic statexo and any alternative statex we must have thatu↑(x) −
u↓(xo) ≤ u↑(xo)−u↓(xo) ≤ maxspan(U) (i.e., the difference between the upper
and lower bounds ofx andxo, respectively, is bounded bymaxspan(U), since
the upper bound ofx cannot exceed that ofxo, and the lower bound ofxo can
be no less thanu↑(xo) − maxspan(U)). Thus,MR(xo,U) ≤ maxspan(U). The
result follows immediately.J

We note that the definition ofmaxspancan be tightened in two ways. (a) One could
account for logical consistency across utility factors (e.g., ifX occurs in two fac-
tors, we cannot have a total utility span for a single state that instantiates the span
in one factor withX true, and the span in the other withX false). Computing
this tighter definition of span requires some minor optimization to find the log-
ically consistent state with maximum span, but is otherwise straightforward. (b)
One could make this tighter still by restricting attention to feasible states (w.r.t.
C); in other words, maxspan would be defined as the “span” of any most uncertain
statexmu. The result still holds with these tighter definitions. However, the current
definition requires no optimization to assess.

The relationship betweenmaxspanand minimax regret suggests an obvious query
strategy, the HLG method, in which a bound query is asked of the local statex[k]
with the largest utility gap, at the midway point of its interval,(ux[k]↑ − ux[k]↓)/2.
This method guarantees reasonably rapid reduction in max regret:

Proposition 2 Let U be an uncertain utility model withn parameters and let
m = maxspan(U). Aftern log(m/ε) queries in the HLG strategy, minimax regret
is no greater thanε.

Proof: Given a utility model withn parameters with a specific initial set of gaps,
the largest gap among all states must be reduced by at least half aftern queries ac-

33

cording to the HLG strategy (with this bound being tight only if the largest initial
gap is no more than twice that of the smallest initial gap). Thus afterkn queries,
leading to an updated feasible utility setU′, we havemaxspan(U′) ≤ 2−km. The
result then follows by application of Prop. 1.J

In the worst case, there are classes of utility functions for which the bound is tight,
so setsU and configuration constraintsC exist that ensure regret will never be
reduced to zero in finitely many queries. For example, if we have a linear utility
function overX1, · · · , Xn with

u(X) = f1(X1) + · · · + fn(Xn),

with each local utility parameter having the same gapg and no feasibility con-
straints, then minimax regret can be reduced no more quickly than this.18

This strategy is similar to heuristically motivated polyhedral methods in conjoint
analysis used in product design and marketing [48,29]. In fact, HLG can be viewed
as a special case of the polyhedral method of [48] in which our polyhedra are hyper-
rectangles.

5.3 The Current Solution Strategy

While HLG allows one to provide strong worst-case guarantees on regret improve-
ment, it is “undirected” in that considerations of feasibility play no role in determin-
ing which queries to ask. An alternative strategy is to focus attention on parameters
that participate in defining minimax regret, namely, the minimax optimalx∗ and
the adversarial witnessxw for the current feasible utility setU (recall that the wit-
nessxw maximizes the regret ofx∗). Thecurrent solution (CS) query strategyasks
about the utility parameter in the set{x∗[k] : k ≤ K} ∪ {xw[k] : k ≤ K} with
largestgap(x[k]) and queries the midpoint of the corresponding utility interval.
Intuitively, should the answer to a query raise the lower bound on someux∗[k] or
lower the upper bound on someuxw[k], then the pairwise regretR(x∗,xw,U) will
be reduced, and usually minimax regret will be reduced as well. Of course, if the
answer lowers the upper bound on someux∗[k] or raises the lower bound on some
uxw[k], then pairwise regretR(x∗,xw,U) remains unchanged and minimax regret
is not guaranteed to be reduced (though it may).

We have also experimented with a variant of the CS strategy in which regret is
computed approximately to ensure fast interactive response in the querying pro-
cess. This can be done by imposing a time bound on the solution algorithm for

18 The bound is not generally tight if there is overlap in factors. But the bound is tight if
maxspanis defined to account for logical consistency.

34

computing minimax regret, exploiting the anytime nature of the method described
in Sec. 4.2. While we can’t be sure we have the minimax optimal solution with
early termination, the solution may be good enough to guide the querying process.
Furthermore, since we can compute the max regret of the anytime solution, we
have an upper bound on minimax regret which can be used as a natural termination
criterion.

5.4 Alternative Strategies

Finally, we consider several other strategies, which we describe briefly. Theopti-
mistic query strategycomputes an optimistic statexo and queries (at the midpoint
of the interval) the utility parameter inxo with the largest gap. Intuitively, an op-
timistic xo is a useful adversarial choice, so refining information about it can help
reduce regret. Thepessimistic query strategyis analogous, relying on the intuition
that a pessimistic choice is useful in preventing the adversary from making us re-
gret our decision too much. Theoptimistic-pessimistic (OP) strategycombines the
two intuitions: it chooses the parameter with largest gap among both states. These
strategies are computationally appealing since they require solving only a standard
COP, not a full-fledged minimax optimization.19

The most uncertain state (MUS) strategyis a variant of HLG that accounts for
feasibility: we compute a most uncertain statexmu and query (at the midpoint) the
parameter inxmu with the largest gap. Finally, thesecond-best (SB) strategyis based
on the following intuition: suppose we have the optimistic statexo and the second-
best optimistic statex2o (i.e., that state with the second-highest upper bound—this
is computable with a single optimization). If we could ask a query which reduced
the upper bound utility ofxo to lower than that ofx2o, we ensure that regret is
reduced (since the adversary can no longer attain this most optimistic value); if the
lower bound ofxo were raised to the level ofx2o’s upper bound, then we could
terminate—knowing thatxo is optimal. Thus we would like to queryxo at x2o’s
upper bound: a negative response will reduce regret, a positive response ensuresxo

is optimal. Unfortunately, this cannot be implemented directly, since we can only
query local parameters, but the strategy can be approximated for factored models by
“distributing” this query across the different parameters and asking a set of queries.

The myopically optimal (MY) strategycomputes the average regret reduction of
the midpoint query foreachutility parameter by solving the minimax optimization
problem for each response to each query; it then asks the query with the largest
regret reduction averaged over both possible answers,yesandno. For large prob-
lems, this approach is computationally infeasible, but we test it on small problems

19 Even termination can be determined heuristically, for example, by computing the max
regret of the optimistic state after each query, or doing minimax optimization after everyq
queries.

35

to see how the other methods compare.20

5.5 Empirical Results

To test the effectiveness of the various query strategies, we ran a series of elicitation
experiments on a variety of problems. For each problem we tested the following
elicitation strategies: halve largest gap (HLG), current solution (CS), current solu-
tion with a computation-time bound of five seconds per query (CS-5), optimistic-
pessimistic (OP), second-best (SB), and most uncertain state (MUS). In addition,
on problems small enough to permit it, we also compared these strategies to the
much more computationally demanding myopically optimal method (MY).

We implemented the constraint generation approach outlined in Sec. 4.2 and used
CPLEX 9.0 as the generic IP solver.21 Our experiments considered two realistic
domains—car rental and real estate—as well as randomly generated synthetic prob-
lems, as described in Sec. 4.3, with a factored structure sufficient to admit practical
solution.

First, we experimented with a set of small synthetic problems. We did this to allow
comparison of all of our proposed heuristics with the computationally demanding
MY strategy. Figure 9 reports the average minimax regret over 45 small synthetic
problems constructed by randomly setting the utility bounds and the variables on
which each utility factor depends. Each problem has ten attributes that can take at
most four values and ten factors that depend on at most three attributes. We simulate
user responses by drawing a random utility functionu for each trial, consistent with
the bounds, representing a specific user’s preferences. Responses to queries are
generated usingu, assuming that the user accurately answers all queries relative to
the specific utility functionu.

Results are shown for two cases: first, for utility parameters drawn from a uniform
distribution over the corresponding interval; and second, for parameters drawn from
a truncated Gaussian distribution centered at the midpoint of the corresponding
interval and truncated at the endpoints of that interval. This second regime reflects
the fact that, given some initial unquantified uncertainty about a utility parameter, a
user is somewhat more likely to have a true parameter value nearer the middle of the
range. However, this probabilistic information is used only to generate “simulated
users,” and is not exploited by the elicitation algorithms.22

20 By doing lookahead ofk stages of this type, we could in fact compute the optimal query
plan ofk-steps; however, doing so is infeasible for all but the smallest problems and small
values ofk.
21 These simulations were performed on 3.0 GHz PCs.
22 All experiments show a reasonably small variance so we exclude error bars for legibility.

36

0 50 100 150 200
0

20

40

60

80

100

120

140

Number of queries

M
in

im
ax

 r
eg

re
t

Small Random Problem −− Uniform Prior

 0%

 3%

 6%

 9%

12%

15%

17%

20%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS
MY

SB

OP

0 50 100 150 200
0

20

40

60

80

100

120

140

Number of queries

M
in

im
ax

 r
eg

re
t

Small Random Problem −− Gaussian Prior

 0%

 3%

 6%

 9%

12%

15%

17%

20%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

MY

SB

OP

Fig. 9. Average max regret on small random problems (45 instances) as a function of num-
ber of queries given (a) uniform and (b) Gaussian distributed utilities.

0 50 100 150 200
0

50

100

150

200

250

300

350

399

Number of queries

M
in

im
ax

 r
eg

re
t

Car Rental Problem −− Uniform Prior

 0%

 2%

 4%

 7%

 9%

11%

13%

16%

18%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS
HLG

MUS

SB

OP

0 50 100 150 200
0

100

200

300

399

Number of queries

M
in

im
ax

 r
eg

re
t

Car Rental Problem −− Gaussian Prior

 0%

 4%

 9%

13%

18%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5
CS

HLG

MUS

SB

OP

Fig. 10. Average max regret on car-rental problem (45 instances) as a function of number
of queries given (a) uniform and (b) Gaussian distributed utilities.

In the case of both the uniform and truncated Gaussian distributions, we observe
that the OP, CS and CS-5 elicitation strategies decrease minimax regret at a rate
very close to MY. This suggests that OP, CS and CS-5 are computationally feasible,
yet promising alternatives to the computationally prohibitive MY strategy.

We report on further experiments using all strategies except MY (excluded for com-
putational reasons) with larger synthetic problems, the real-estate problem and the
car-rental problem. All results are averaged over 45 trials and use the same regime
described above, involving both uniform and truncated Gaussian priors to generate
users. Performance of the various query strategies on the car rental problem is de-
picted in Figure 10, showing average minimax regret as a function of the number
of queries. Initial utility bounds are set to give minimax regret of roughly 18% of
the optimal solution.

Both CS and CS-5 perform extremely well: regret is reduced to almost zero within
160 queries on average. Though this may seem like a lot of queries, recall that
the problem is itself large and the utility model has 150 parameters. We inten-

37

0 50 100 150 200
0

100

200

300

400

500

600

764

Number of queries

M
in

im
ax

 r
eg

re
t

House Buying Problem −− Uniform Prior

 0%

 5%

11%

16%

21%

26%

32%

40%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

SB

OP

0 50 100 150 200
0

100

200

300

400

500

600

764

Number of queries

M
in

im
ax

 r
eg

re
t

House Buying Problem −− Gaussian Prior

 0%

 5%

11%

16%

21%

26%

32%

40%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLGMUS

SB

OP

Fig. 11. Average max regret on real-estate problem (45 instances) as a function of number
of queries given (a) uniform and (b) Gaussian distributed utilities.

tionally choose problems this large to push the computational boundaries of regret-
based elicitation. Furthermore, while 160 queries may be large for typical consumer
choice problems, it is more than reasonable for high stakes configuration applica-
tions. More importantly, these methods show excellent anytime performance: after
only 80 queries, average minimax regret has dropped from 18% to under 2%.

Interestingly, the time bound of five seconds imposed by CS-5, while leading to
approximately minimax optimal solutions, does not affect query quality: the ap-
proximate solutions give rise to queries that are virtually as effective as those gen-
erated by the optimal solutions. This demonstrates the importance of the anytime
properties of our constraint generation procedure discussed in the previous section.
The CS strategy requires on average 83 seconds per query, compared to the five
seconds needed by CS-5. The OP strategy works very well too, and requires less
computation time (0.1s per query) since it does not need to solve minimax problems
(except to verify termination “periodically”, which is not reflected in the reported
query computation time). However, both OP and CS-5 are fast enough to be used
interactively on problems of this size. MUS, HLG, and SB do not work nearly as
well, with SB essentially stalling because of the slow progress made in reducing
the upper bounds of the optimistic state.

Note the HLG performs poorly since it fails to account for the feasibility of op-
tions, thus directing its attention to parts of utility space for which no product exists
(hence polyhedral methods alone [48,29] will not offer reasonable elicitation in our
setting). MUS significantly outperforms HLG for just this reason.

The real-estate problem was also tested, with query performance shown in Fig-
ure 11, using the same regime as above. Again, both CS and CS-5 perform best,
and the time bound of CS-5 has no effect on the quality of the CS strategy. Interest-
ingly, OP performs almost identically to these, with somewhat lower computational
cost.23 Each of these methods reduces minimax regret from 40% of optimal to un-

23 CS takes 14 seconds per query, CS-5 takes five seconds, and OP 0.1 seconds. Though

38

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

512

Number of queries

M
in

im
ax

 r
eg

re
t

Large Random Problem −− Uniform Prior

 0%

 4%

 7%

11%

14%

18%

21%

25%

28%

32%

36%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

SB

OP

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

512

Number of queries

M
in

im
ax

 r
eg

re
t

Large Random Problem −− Gaussian Prior

 0%

 3%

 7%

10%

14%

17%

21%

24%

28%

31%

35%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

SB

OP

Fig. 12. Average max regret on large random problems (45 instances) as a function of
number of queries given (a) uniform and (b) Gaussian distributed utilities.

der 5% in about 120 queries. As above, SB fails to make progress, while HLG and
MUS provide reasonable performance. Note that HLG requires no optimization nor
any significant computation (except to test for termination).

Finally, we tested the query strategies on larger randomly generated problems (with
25 variables of domain size no more than four, and 20 utility factors with no more
than three variables each). Results are shown in Figure 12. The same performance
patterns as in the real-estate problem emerge, with CS, CS-5 and OP all performing
much better than the others. Although OP performs slightly better than CS/CS-5,
the difference is not statistically significant.

5.6 Comparison Queries

Comparison queriesprovide a natural alternative to bound queries in many situ-
ations. A comparison query takes the form “Do you preferx to x′?” A positive
response implies thatux > ux′. If the utility model is factored, this corresponds to
the following linear constraint:

∑
k

ux[k] >
∑
k

ux′[k].

A negative response imposes the complementary constraint.

Given a collection of linear constraintsU imposed by responses to a sequence of
comparison queries, the minimax optimal decision can be computed using the con-
straint generation procedure described in Sec. 4.4. Our generic elicitation algorithm
can then be used to ask specific comparison queries until minimax regret reaches
an acceptable level. Though we do not experiment with specific comparison query

we haven’t experimented with this, we expect CS would work equally well on this problem
with a much tighter time bound than five seconds.

39

strategies here, we expect that a modification of the current solution (CS) strategy
proposed for bound queries would work especially well with comparison queries.
More precisely, suppose that given the current constraintsU , the minimax optimal
solution is computed to bex∗ with adversarial witnessxw. The CS query strategy
for comparison queries requires that we ask the user to comparex∗ andxw. Should
the user preferx∗, this rules out the adversary’s chosen utility function from the fea-
sible setU, thus ensuring a reduction in the pairwise regretR(x∗,xw,U) to zero,
and usually reducing minimax regret as well. Ifxw is preferred, this does not rule
out the adversary’s chosen utility function, nor is it guaranteed to reduce regret, but
generally imposes a fairly strong constraint onU. Given the success of this strategy
with respect to bound queries, and the success of related strategies in other domains
[13,14], we expect the CS strategy to perform quite well.

Unlike the case of bound queries, where it is quite clear (due to the focus on gaps in
specific parameters) that a user cannot provide a response that is inconsistent with
prior responses, it is not obvious that a user cannot be inconsistent in responding
to comparison queries. However, the CS strategy for bound queries does indeed
ensure consistency. Unless minimax regret is zero (in which case the process would
terminate), there must be some utility function in the current feasible setU for
which xw is preferred tox∗. Furthermore, there must be some utility function for
which x∗ is preferred toxw; otherwise,xw would have regret no greater that that
of x∗ under allu ∈ U , and would thus be minimax optimal as well (also implying
that, since it is the witness, that minimax regret is zero).

6 Concluding Remarks

Preference elicitation techniques for constraint-based optimization problems are
critical to the development of interactive decision software. We have begun to ad-
dress several important issues in this regard, specifically, how one should make
decisions in the presence of (non-probabilistic) utility function uncertainty, and
elicitation strategies that improve decision quality with minimal interaction. We
have developed techniques for computing minimax optimal decisions in constraint-
based decision problems when a user’s utility function is only partially specified in
the form of upper and lower bounds on utility parameters, or arbitrary linear con-
straints on such parameters. While the corresponding optimizations are potentially
complex, we derived methods whereby they could be solved effectively using a se-
quence of MIPs. Furthermore, we showed how structure in the utility model could
be exploited to ensure that the resulting IPs are compact or could be solved using
an effective constraint generation procedure. Experiments with utility uncertainty
specified by parameter bounds demonstrated the practicality of these techniques.

We also developed a number of query strategies for eliciting bounds on the pa-
rameters of utility models for the purpose of solving imprecise COPs. The most

40

promising of these strategies, CS and OP, perform extremely well, requiring very
few queries (relative to the model size) to provide dramatic reductions in regret. We
have shown that using approximation of minimax regret reduces interactive com-
putation time to levels required for real-time response without a noticeable effect
on the performance of CS. OP also can be executed in real-time, since it does not
require the same intensive minimax computation.

There are a number of directions in which this work can be extended. For example,
the use of search and constraint-propagation methods for solving the COPs asso-
ciated with computing minimax regret is of great interest. Our goal in this paper
was to provide a precise formulation of these computational problems as integer
programs and use off-the-shelf software to solve them. We expect that constraint-
based optimization techniques that are specifically directed toward these problems
should prove fruitful. Along these lines, we hope to develop deeper connections to
existing work on soft constraints, valued-CSPs, and related frameworks.

Experimental validation of our suggested approach for comparison queries is an
important next step, as is the development of new query strategies. In practice, we
can often assume or develop prior distributional information over utilities. Rather
than asking queries at midpoints of intervals, we could optimize the query point us-
ing probabilistic (value of information) computation, while using (distribution-free)
regret to make decisions [50]. We are quite interested in the possibility of integrat-
ing Bayesian methods for reasoning about uncertain utility functions [17,10,27]
with the constraint-based representation of the decision space. Finally, while opti-
mal (non-myopic) strategies could be found (in principle) by solving prohibitively
large continuous MDPs, it would nevertheless be interesting to explore non-myopic
heuristics, and investigate the extent to which lookahead information can improve
the reduction in minimax regret.

Naturally, we would like to consider additional query types, as well as alternative
means for structuring outcomes and interactions to ease the cognitive burden on
users. Developing means to improve robustness of our methods to the types of
errors users typically make is also critical if tools such as those proposed here are
to find widespread use. As such, user studies with our models will be required in
order to assess the naturalness of such interaction models and to further refine our
techniques to make them more understandable and intuitive for users.

An important question left unaddressed is that of eliciting the structure of a GAI
model. Our work here assumes that the GAI factorization has been given and elicits
only parameters of this model. We are currently exploring the application of tech-
niques from decision analysis and elicitation of graphical models to the automated
elicitation of GAI model structure.

41

Acknowledgements

This research was supported by the the Institute for Robotics and Intelligent Sys-
tems (IRIS) and the Natural Sciences and Engineering Research Council (NSERC).
Poupart was supported by a scholarship provided by Precarn Incorporated through
IRIS. Thanks to the anonymous referees for their helpful suggestions.

References

[1] Igor Averbakh. Minmax regret solutions for minimax optimization problems with
uncertainty.Operations Research Letters, 27:57–65, 2000.

[2] Igor Averbakh and Vasilij Lebedev. On the complexity of minmax regret linear
programming.European Journal of Operational Research, 160(1):227–231, 2005.

[3] Fahiem Bacchus and Adam Grove. Graphical models for preference and utility. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-
95), pages 3–10, Montreal, 1995.

[4] David E. Bell. Regret in decision making under uncertainty.Operations Research,
30:961–981, 1982.

[5] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear
programs.Operations Research Letters, 25:1–13, 1999.

[6] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems.Numerische Mathematik, 4:238–252, 1962.

[7] Umberto Bertele and Francesco Brioschi.Nonserial Dynamic Programming.
Academic Press, Orlando, 1972.

[8] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint
satisfaction and optimization.Journal of the ACM, 44(2):201–236, 1997.

[9] Jim Blythe. Visual exploration and incremental utility elicitation. InProceedings of
the Eighteenth National Conference on Artificial Intelligence (AAAI-02), pages 526–
532, Edmonton, 2002.

[10] Craig Boutilier. A POMDP formulation of preference elicitation problems. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-
02), pages 239–246, Edmonton, 2002.

[11] Craig Boutilier. On the foundations ofexpectedexpected utility. InProceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), pages
285–290, Acapulco, 2003.

[12] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-Networks: A directed
graphical representation of conditional utilities. InProceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence (UAI-01), pages 56–64, Seattle,
2001.

42

[13] Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and William E.
Walsh. Cooperative negotiation in autonomic systems using incremental utility
elicitation. InProceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI-03), pages 89–97, Acapulco, 2003.

[14] Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eliciting bid taker non-price
preferences in (combinatorial) auctions. InProceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI-04), pages 204–211, San Jose, CA, 2004.

[15] Darius Braziunas and Craig Boutilier. Local utility elicitation in GAI models. In
Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelligence
(UAI-05), pages 42–49, Edinburgh, 2005.

[16] Urszula Chajewska, Lise Getoor, Joseph Norman, and Yuval Shahar. Utility elicitation
as a classification problem. InProceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI-98), pages 79–88, Madison, WI, 1998.

[17] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using
adaptive utility elicitation. InProceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-00), pages 363–369, Austin, TX, 2000.

[18] Vijay Chandru and John N. Hooker.Optimization Methods for Logical Inference.
Wiley, New York, 1999.

[19] Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference.
In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
(UAI-96), pages 211–219, Portland, OR, 1996.

[20] Rina Dechter.Constraint Processing. Morgan Kaufmann, San Francisco, 2003.

[21] James S. Dyer. Interactive goal programming.Management Science, 19:62–70, 1972.

[22] Peter C. Fishburn. Interdependence and additivity in multivariate, unidimensional
expected utility theory.International Economic Review, 8:335–342, 1967.

[23] Peter C. Fishburn.Utility Theory for Decision Making. Wiley, New York, 1970.

[24] Simon French.Decision Theory. Halsted Press, New York, 1986.

[25] Christophe Gonzales and Patrice Perny. GAI networks for utility elicitation. In
Proceedings of the Ninth International Conference on Principles of Knowledge
Representation and Reasoning (KR2004), pages 224–234, Whistler, BC, 2004.

[26] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for factored
MDPs. InProceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-01), pages 673–680, Seattle, 2001.

[27] Hillary A. Holloway and Chelsea C. White, III. Question selection for multiattribute
decision-aiding.European Journal of Operational Research, 148:525–543, 2003.

[28] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos Rommelse. The
lumiere project: Bayesian user modeling for inferring goals and needs of software
users. InProceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI-98), pages 256–265, Madison, WI, 1998.

43

[29] Vijay S. Iyengar, Jon Lee, and Murray Campbell. Q-Eval: Evaluating multiple attribute
items using queries. InProceedings of the Third ACM Conference on Electronic
Commerce, pages 144–153, Tampa, FL, 2001.

[30] Ralph L. Keeney and Howard Raiffa.Decisions with Multiple Objectives: Preferences
and Value Trade-offs. Wiley, New York, 1976.

[31] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.
Gordon, and John Riedl. Grouplens: Applying collaborative filtering to usenet news.
Communications of the ACM, 40(3):77–87, 1997.

[32] Panos Kouvelis and Gang Yu.Robust Discrete Optimization and Its Applications.
Kluwer, Dordrecht, 1997.

[33] G. Lee, S. Bauer, P. Faratin, and J. Wroclawski. Learning user preferences for wireless
services provisioning. InProceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-04), pages 480–487, New York,
2004.

[34] Graham Loomes and Robert Sugden. Regret theory: An alternative theory of rational
choice under uncertainty.Economic Journal, 92:805–824, 1982.

[35] Amparo M. Mármol, Justo Puerto, and Francisco R. Fern´andez. The use of partial
information on weights in multicriteria decision problems.Journal of Multicriteria
Decision Analysis, 7:322–329, 1998.

[36] George L. Nemhauser and Laurence A. Wolsey.Integer Programming and
Combinatorial Optimization. Wiley, New York, 1988.

[37] Barry O’Sullivan, Eugene Freuder, and Sarah O’Connell. Interactive constraint
acquisition. InCP-2001 Workshop on User Interaction in Constraint Processing,
Paphos, Cyprus, 2001.

[38] Pearl Pu and Boi Faltings. Decision tradeoff using example-critiquing and constraint
programming.Constraints, 9(4):289–310, 2004.

[39] Pearl Pu, Boi Faltings, and Marc Torrens. User-involved preference elicitation. In
IJCAI-03 Workshop on Configuration, Acapulco, 2003.

[40] John C. Quiggan. Stochastic dominance in regret theory.The Review of Economic
Studies, 57(3):503–511, 1990.

[41] Francesca Rossi, Alessandro Sperduti, Kristen Brent Venable, Lina Khatib, Paul H.
Morris, and Robert A. Morris. Learning and solving soft temporal constraints:
An experimental study. InProceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming, pages 249–263, Ithaca, NY,
2002.

[42] Daniel Sabin and Rainer Weigel. Product configuration frameworks—a survey.IEEE
Intelligent Systems and their Applications, 13(4):42–49, 1998.

[43] Ahti Salo and Raimo P. H¨amäläinen. Preference ratios in multiattribute evaluation
(PRIME)–elicitation and decision procedures under incomplete information.IEEE
Trans. on Systems, Man and Cybernetics, 31(6):533–545, 2001.

44

[44] Leonard J. Savage.The Foundations of Statistics. Wiley, New York, 1954.

[45] Leonard J. Savage. The theory of statistical decision.Journal of the American
Statistical Association, 46:55–67, 1986.

[46] Thomas Schiex, Helene Fargier, and G´erard Verfaillie. Valued constraint satisfaction
problems: Hard and easy problems. InProceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI-95), pages 631–637, Montreal,
1995.

[47] Dale Schuurmans and Relu Patrascu. Direct value approximation for factored MDPs.
In Advances in Neural Information Processing Systems 14 (NIPS-2001), pages 1579–
1586, Vancouver, 2001.

[48] Olivier Toubia, John Hauser, and Duncan Simester. Polyhedral methods for
adaptive choice-based conjoint analysis. Technical Report 4285-03, Sloan School of
Management, MIT, Cambridge, 2003.

[49] John von Neumann and Oskar Morgenstern.Theory of Games and Economic
Behavior. Princeton University Press, Princeton, 1944.

[50] Tianhan Wang and Craig Boutilier. Incremental utility elicitation with the minimax
regret decision criterion. InProceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), pages 309–316, Acapulco, 2003.

[51] Martin Weber. Decision making with incomplete information.European Journal of
Operational Research, 28:44–57, 1987.

[52] Chelsea C. White, III, Andrew P. Sage, and Shigeru Dozono. A model of
multiattribute decisionmaking and trade-off weight determination under uncertainty.
IEEE Transactions on Systems, Man and Cybernetics, 14(2):223–229, 1984.

45

