
Robust Winners and Winner Determination Policies under Candidate Uncertainty

Craig Boutilier
Department of Computer Science

University of Toronto
cebly@cs.toronto.edu

Jérôme Lang
LAMSADE

Université Paris-Dauphine
lang@lamsade.dauphine.fr

Joel Oren
Department of Computer Science

University of Toronto
oren@cs.toronto.edu

Héctor Palacios
Departament de Tecnologies
Universitat Pompeu Fabra

hector.palacios@upf.edu

Abstract

We consider voting situations in which some candidates may
turn out to be unavailable. When determining availability is
costly (e.g., in terms of money, time, or computation), vot-
ing prior to determining candidate availability and testing the
winner’s availability after the vote may be beneficial. How-
ever, since few voting rules are robust to candidate deletion,
winner determination requires a number of such availability
tests. We outline a model for analyzing such problems, defin-
ing robust winners relative to potential candidate unavailabil-
ity. We assess the complexity of computing robust winners
for several voting rules. Assuming a distribution over avail-
ability, and costs for availability tests/queries, we describe al-
gorithms for computing optimal query policies, which mini-
mize the expected cost of determining true winners.

Introduction
There are many social choice situations in which members
of a group must specify their preferences over a set of al-
ternatives or candidates without knowing whether any spe-
cific candidate is in fact viable or available for selection.
Selecting a winner requires knowing which candidates are
available, but determining availability may in fact be costly.
In such a setting, voting over the set of potential candidates
prior to determining availability often makes sense. For ex-
ample, a group of dinner companions may attempt to (par-
tially) determine their aggregate preferences prior to calling
restaurants to check reservation availability. A committee
deciding among various public projects may vote prior to
knowing the feasibility or precise cost of any project, since
assessment (e.g., engineering estimates, environmental stud-
ies) is itself costly. In AI planning, a group may vote on a
goal to pursue prior to knowing its feasibility, since plan-
ning for a goal can be computationally expensive. In each
case, as estimate of the potential winners can narrow the set
of required availability tests, and reduce the financial, time
or computational cost of determining the true winner.

Unfortunately, few voting rules are robust to candidate
deletion, so declaring a winner generally requires testing
availability. We describe a model for addressing such prob-
lems, identify a number of key concepts and computational
questions, and make some first steps toward solving them.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We assume a set of potential candidates X , voter prefer-
ences over X , and a voting rule r. Since candidate avail-
ability is uncertain, we assume a distribution over potential
available sets A ⊆ X , and assume that each candidate x
can be queried, for a cost, to determine its availability. Our
aim is to determine the winner of the election over the ac-
tual available set A in a way that minimizes expected query
cost (e.g., number of phone calls, planning problems to be
solved, etc.). We focus on query policies that propose a (con-
ditional) sequence, or tree, of queries that extracts enough
information about A to declare a winner. Critically, we need
not know A precisely to determine the winner of an elec-
tion. Responses to certain queries may render others irrel-
evant; e.g., if x is a majority winner in a plurality election,
the status of other candidates is irrelevant once we know x
is available. Given an information set about the availability
of some candidates, we say x is a robust winner if this in-
formation suffices to determine that x wins regardless of the
availability of the remaining candidates.

The problem of determining a robust winner has tight con-
nections to that of control by candidate addition, thus can be
computationally difficult for some rules, and easy for oth-
ers. However, our primary concern is minimizing query
costs. Query policies need only pose enough tests to de-
termine a robust winner. We formulate this problem as one
of constructing a minimal cost decision tree whose features
denote availability of specific candidates, and whose goal
is to classify available sets A according to their winners.
We describe a (relatively) inexpensive dynamic program-
ming algorithm for optimal query policies, and also inves-
tigate more tractable decision tree induction methods based
on information gain. Together with several observations
about query complexity, our empirical results demonstrate
the value and feasibility of well-designed query policies.

Voting with Uncertain Availability
We first outline our model for robust winners with uncertain
candidate availability and briefly discuss related work.

Background: We assume a standard voting model, with
a set of n voters N and a set of m potential candidates X ,
with each voter i ∈ N having a complete, strict preference
ordering or vote vi over X , with vote profile v denoting the
vector of all votes. A voting rule r maps every profile to a

(unique) winning candidate (with ties broken in some fash-
ion). We consider specific rules below, but our framework is
completely general. We assume familiarity with the plural-
ity, Borda and Copeland rules. Given a profile v, let M(v)
be its majority graph, and M(v)∗ the transitive closure of
M(v). For ease of exposition, we assume n is odd so that
M(v) is a tournament. N(x, y,v) denotes the number of
votes in v that rank x above y. The top cycle TC (v) of v is
the set of all candidates x s.t. for all y 6= x, (x, y) ∈M(v)∗.
The uncovered set UC(v) of v is the set of all candidates x
from which there is a path of length at most 2 in M(v) to
every y 6= x. TC and UC (plus a tie-breaking mechanism)
can also be used as voting rules. We assume r can be applied
to profiles over arbitrary subsets of X . Let v(A) denote the
restriction of v to candidates A, obtained by deleting ele-
ments of X \ A from each vote, and r(v(A)) the winner
w.r.t. this restricted profile.

The Model: Suppose certain candidates in X may be un-
available. There are two ways to address this. First, we
might check the availability of all candidates inX , and elicit
votes over the set of available candidates A ⊆ X . This has
the advantage of minimizing vote elicitation costs: voters
need not rank or compare unavailable candidates. However,
if candidate availability testing is costly, as discussed above,
this may require far more availability tests than are actually
needed given voter preferences.

Instead we could first elicit voter rankings over the entire
setX , then use this information to focus on “relevant” avail-
ability tests. This can reduce the cost of availability tests,
and is appropriate when they are costly relative to preference
elicitation, as in our examples above. Determining suitable
tests is, nonetheless, far from straightforward.

One obvious approach is to use the voting rule r to rank
candidates, test availability in the order of this aggregate
ranking, and select the first available candidate as the win-
ner. However, this works only if the choice function imple-
mented by r is rationalizable, which is rarely the case. Con-
sider a profile v with 4 votes abc, 3 votes bca and 2 votes
cab. Ranking candidates by plurality score gives ranking
abc. The policy above, once learning a is available, selects
a as the winner without further tests; but if we learned b is
unavailable and c is available, the true plurality winner for
v({a, c}) is c. This paradox arises since, under mild con-
ditions, no non-dictatorial voting rule is robust to the dele-
tion of non-winning alternatives (Dutta, et al. 2001). Thus,
choosing a winner usually requires confirming the availabil-
ity of specific sets of candidates.1 Furthermore, minimizing
the costs of such tests is non-trivial.

To model candidate availability we partition X into a
(possibly empty) known set Y ⊆ X of candidates that are
sure to be available, and an unknown set U = X \ Y for
which availability is uncertain. (Candidates unavailable a
priori are removed fromX .) LetA denote the family of sub-
sets Y ⊆ A ⊆ X , where A ∈ A is a possible available set.
The general unavailable candidate model (Lu and Boutilier
2010) requires a distribution P over 2U , where P (S) de-

1At a minimum, one might require that the winner itself be
available, but we consider exceptions to this below.

notes the probability that S ⊆ U is the true available set of
candidates in U . We assume for simplicity that the availabil-
ity of each candidate x ∈ U is given by probability px, and
is independent of that of other candidates. This induces the
obvious distribution over A.

For any x ∈ U , one can query x using an availability test
(e.g., call for a restaurant reservation, compute a plan for a
goal x), which incurs a cost cx. Informally, a query policy
consists of a tree whose interior nodes are labeled by queries,
edges by availability, and leaves by winners. We desire poli-
cies that, given a profile v, determine the winner w.r.t. the
true available set A with minimum expected query cost. Af-
ter any sequence of queries and responses, we have refined
information about A: an information set is an ordered pair
Q = 〈Q+, Q−〉, where Q+, Q− ⊆ U , and Q+ ∩ Q− = ∅;
intuitively, Q+ (resp. Q−) is the set of candidates for which
positive (resp. negative) availability has been verified.

Clearly, winners can often be determined without full
knowledge of candidate availability. In our example above,
knowing that a and b are available suffices to declare a the
winner: availability of c is irrelevant (knowing a is available
and c is unavailable is also sufficient to select a).
Definition 1 Let r be a voting rule, v a profile over candi-
date set X , and Y ⊆ X a set of candidates known to be
available. x ∈ Y is a robust winner w.r.t. 〈X,Y,v, r〉 if, for
any A s.t. Y ⊆ A ⊆ X , r(v(A)) = x.

Intuitively, a winner is robust if it not only wins in the
original profile v, but continues to win no matter which can-
didates in X \ Y are deleted. The existence of a robust win-
ner relative to an information set is necessary and sufficient
to stop any querying process. Specifically, we say that infor-
mation setQ is r-sufficient if there is a robust winner x w.r.t.
〈X \ Q−, Y ∪ Q+,v, r〉. For any r-sufficient information
set Q, let w(Q) denote this (unique) robust winner.

Related Work: Lu and Boutilier (2010) study a setting
where the set of available candidates is unknown at the time
of voting, and assume a distribution over available sets A
as we do. Unlike our model, they assume a’s availability
cannot be tested without “offering it the win,” hence fo-
cus on optimal ranking policies, as discussed above (see
also (Baldiga and Green. 2013)). Wojtas and Faliszewski
(2012) also consider candidates with uncertain availability
in a counting version of control by adding candidates (see
below), a problem closely related to ours. They assume a
known available set Y , a distribution over subsets of X \ Y ,
votes over X , and consider the complexity of computing the
probability that some x ∈ X wins.

Chevaleyre et al. (2012; 2011), study the possible winner
problem where the candidate set is not known at vote time,
but take the opposite perspective to ours. An initial lower
bound on the candidate set is known, and new candidates
may join after initial preferences have been elicited; prefer-
ence elicitation (as opposed to availability testing) protocols
are developed to identify the winner. Rastegari et al. (2013)
also develop optimal knowledge-gathering policies in a so-
cial choice context, though in a different stable matching set-
ting. Our notion of robust winners differs from that in (Pro-
caccia, et al. 2007; Xia 2012; Shiryaev, et al. 2013), where

a winner is robust if it remains a winner after some changes
in the votes. Finally, our model is also strongly related to
control via adding candidates (as we elaborate below).

Computing Robust Winners
We first consider the problem of identifying or verifying ro-
bust winners given some available set. If x is a robust winner
w.r.t. 〈X,Y,v, r〉, it must meet these obvious necessary con-
ditions: x ∈ Y , x = r(Y) (setting A = Y) and x = r(v)
(setting A = X). The following key result makes a connec-
tion to destructive control via adding candidates (Bartholdi,
et al. 1992), in which an initial candidate set can be aug-
mented by “spoiler” candidates, and a chair, knowing the
votes, attempts to find certain spoilers whose addition makes
her preferred candidate win.

Proposition 1 Candidate x ∈ Y is a robust winner w.r.t.
〈X,Y,v, r〉 if there is no destructive control against x by
adding candidates, where the spoiler set is U = X \ Y .

The proof is immediate: the chair has destructive con-
trol against x via adding candidates iff there is a spoiler
set S ⊆ U such that r(v(Y ∪ S)) 6= x (i.e., x is not
a robust winner). Since the robust winner problem is
equivalent to the complement of the problem of DESTRUC-
TIVE CONTROL BY ADDING CANDIDATES, results in elec-
tion control directly determine the complexity of checking
the existence of robust winners for several voting rules:
it is coNP-complete for plurality (Bartholdi, et al. 1992;
Hemaspaandra, et al. 2007), Bucklin (Erdélyi et al. 2011)
and ranked pairs with immediate tie-breaking (Parkes and
Xia 2012); and it is polynomial for Copeland (Faliszewski,
et al. 2008) and maximin (Faliszewski, et al. 2011). The
latter two results come with efficient algorithms for the ro-
bust winner problem. These results suggest that the problem
tends to be simpler for voting rules based on the majority
graph, since the majority preference between two candidates
x, y does not depend on the availability of others. We pro-
vide a simple characterization of robust winners for top cy-
cle and the uncovered set (recall, we assume n odd; and for
simplicity we assume favorable tie-breaking):

Proposition 2 Let r be the top cycle rule. x is a robust win-
ner w.r.t. 〈X,Y,v, r〉 iff, for all y ∈ X , there is a path from
x to y in M(v) that goes only through candidates in Y .

Proposition 3 Let r be the uncovered set rule. x is a robust
winner w.r.t. 〈X,Y,v, r〉 iff, for all y ∈ X , either x → y is
in M(v) or there is a z ∈ Y such that x → z and z → y
are both in M(v).

Surprisingly, the prominent Borda rule lacks similar re-
sults w.r.t. control. However, we can show that:

Proposition 4 x ∈ Y is a robust Borda winner for v (as-
suming unfavorable tie-breaking) iff for all z ∈ X \ {x}:

B(x,v(A(x, z))) > B(z,v(A(x, z)))

where B(x, ·) is the Borda score of x, and

A(x, z) = Y ∪{z}∪{t ∈ X\(Y ∪{z}) |N(z, t,v) > N(x, t,v)}.

Here B(x,v(A(x, z))) is the Borda score of x when assum-
ing that all “unsure” candidates whose pairwise score vs. z
is larger (resp., no larger) than that vs. x are available (resp.,
unavailable). The key point in the proof is that, for all z 6= x,
the maximum value ofB(z,v(A))−B(x,v(A)) over avail-
able sets A containing z is obtained by A(x, z).

Corollary 1 Checking if x is a robust winner for top cycle,
uncovered set and Borda can be done in polynomial time.

Another interesting notion is that of an irrelevant candi-
date, which can be exploited in computing both robustness
and optimal query policies.

Definition 2 Let v be a profile over X , x ∈ X , Y ⊆ X \
{x} be the known available candidates, and r a voting rule.
Candidate x is irrelevant w.r.t. 〈v, Y, r〉 if for any A ⊆ X \
(Y ∪ {x}), we have r(v(Y ∪A ∪ {x})) = r(v(Y ∪A)).

If x is irrelevant for Y , we need not consider the availabil-
ity of x when testing the robustness of any candidate in
X \ (Y ∪ {x}) w.r.t. Y (or any superset of Y). Similarly, in
any policy for determining winners, an availability test for
an irrelevant x is useless once Y (or any superset) is known
to be available, a fact we exploit below. The following sim-
ple characterization of irrelevant candidates for a rich class
of voting rules states that once we know that at least one can-
didate in the top cycle is available, removing anyone outside
the top cycle cannot impact the choice of winner.

Proposition 5 Let r be s.t. for any profile v, if x /∈ TC (v)
then r(v(X \ {x})) = r(v). For any v, any Y ⊆ X s.t.
Y ∩ TC (v) 6= ∅, and any x ∈ X \ TC (v), x is irrelevant
w.r.t. 〈v, Y, r〉.
Prop. 5 applies, in particular, to the top cycle, Copeland,
Slater and Banks rules.2

Minimizing Expected Query Cost
We now address computing optimal query policies that al-
low one to declare a (robust) winner, formulating the prob-
lem as one of cost-sensitive decision tree construction.

Optimal Query Policies
A query policy is a binary decision tree T in which each non-
leaf node n is labeled by a query q(n) ∈ U , the two outgoing
edges from non-leaf node n are labeled by responses yes
(or “available”) and no (or “unavailable”), and each leaf l is
labeled by an element w(l) ofX (the proposed winner given
the query-response path to l). Let yes(n) and no(n) denote
the yes/no successors of node n in T . Any path from the root
of T to a leaf l induces the obvious information set Q(l) =
〈Q+(l), Q−(l)〉. A policy/tree T is r-sufficient w.r.t. v if: (a)
the information set Q(l) for each leaf l is r-sufficient; and

2For Slater and Banks, this is easy to check. For Copeland, we
give a brief proof sketch. Denote by C(x,v) the Copeland score
of x in v. Let q = |X \ TC (v)| and x /∈ TC (v). For every
y ∈ TC (v): C(y,v) ≥ q and C(y,v(X \ {x})) ≥ q − 1. For
z /∈ TC (v): C(z,v) ≤ q − 1 and C(z,v(X \ {x})) ≤ q − 2:
z is not a Copeland winner in v(X \ {x}). For y, y′ ∈ TC (v):
C(y,v(X \ {x})) ≥ C(y′,v(X \ {x})) iff C(y,v) ≥ C(y′,v):
Copeland winners in v and v(X \ {x}) coincide.

c

wins

a

wins

b

a

wins

b

a

b

wins

e

e

wins
no

winner

d

d

wins

c

c

wins

Y N

Legend

c

Figure 1: A vote profile and plurality-sufficient query policy.

(b) each leaf l is labeled with the robust winnerw(Q(l)). For
any A ∈ A and tree T , let l(A) denote the (unique) leaf that
will be reached when responses are dictated by A, and π(A)
the corresponding path. Fig. 1 shows a vote profile and an
r-sufficient tree for plurality voting.

The query cost of a (complete) path π in T is c(π) =∑
x∈π c(x), i.e., the sum of the costs of the queries on

π. The expected query cost c(T) of policy T is simply
EA∼P c(π(A)). This can be computed in bottom up fash-
ion as follows, with c(T) being the cost of the root of T :

c(l) =0 for any leaf node l;
c(n) =cq(n) + pq(n)c(yes(n)) + (1− pq(n))c(no(n))

for non-leaf node n.

If all candidates are available with probability p = 0.9, the
tree in Fig. 1 has an expected query cost of 2.10. Our aim
is to find an optimal policy T (i.e., an r-sufficient tree with
minimal cost):

argmin{c(T) : T is r-sufficient for v}.

Computing a minimal cost policy can be cast as a standard
decision tree construction problem (Quinlan 1993), taking
as input an initial set of training examples

{〈A,w(A)〉 : A ∈ A},

where A is any possible available set—we can view it as
a |U |-vector of binary features indicating availability of un-
known candidates—and w(A) its winner. This set has expo-
nential size in |U |, requiring winner computation for expo-
nentially many “elections” (of various sizes). Even if winner
determination for a fixed candidate set is easy (i.e., polyno-
mial time) for the voting rule in question, constructing this
training set will be difficult (indeed, NP-hard in general3).

Cost-optimal decision trees can be computed using dy-
namic programming (DP) (Garey 1972), but for general
binary classification, is NP-complete, even with uniform
probabilities and costs (Hyafil and Rivest 1976). However,
given the importance of minimizing query costs, even in-
tense computation will often be worthwhile.

Standard DP for decision trees uses sets of training ex-
amples E ⊆ E = 2A. A set E is pure if all examples in
E are labeled with the same winner. A split of E on can-
didate/query q partitions E into those examples E+

q ⊆ E

where q is available, and E−q ⊆ E where q is not. The op-
timal cost function c∗ for any E is the cost of the optimal

3We thank a reviewer of a working paper for this observation.

policy given that the available set A lies within E:

c∗(E) =

 0 if E is pure
minq∈U p(q+|E)c∗(E+

q)
+p(q−|E)c∗(E−q) + cq if E is not pure

Since c∗(E) depends only on the costs for subsets of E, DP
can be used, computing costs for smaller sets first.

While naı̈ve DP is doubly exponential in |U | (since |E| =
22

|U|
), our problem structure restricts the possible subsets of

training examples. Since the set E0 = A at the root consists
of all subsets A, every response path of length k gives a
training set E equal to E0 restricted to k responses. Thus
the only realizable sets E have size 2|U |−k, for some 0 ≤
k ≤ |U |, of this form. Hence, the number of “reachable”
example sets is (only) exponential:

∑|U|
k=0 2

k
(|U|

k

)
= 3|U|.

Thus the optimal query policy can be computed in O(3|U |)
time for any profile and any voting rule.

The DP approach exploits no structure in the profile, nor
any special properties of the voting rule. Refinements for
specific voting rules could greatly prune the subsets A that
need to be considered. For example, for rules such as
Copeland, Prop. 5 allows us to “collapse” potentially large
numbers of candidate subsets—those that vary only in the
availability of “irrelevant candidates”—and treat them as a
single training example with a unique winner. Similarly,
rules that satisfy the “majority winner property” (i.e., if a
candidate is first in a majority of votes, it must win) admit
significant pruning: in any subset Y with a majority winner
x, x’s availability renders all others irrelevant. Such pruning
reduces both the setA of training examples, and the number
of subsets E of A that must be considered.

Myopic Query Tree Construction
Because of the complexity of optimal decision tree construc-
tion, myopic approaches are widely used. C4.5 is among
the most popular, and is based on information gain (Quinlan
1993). Extensions to cost-sensitive classification also exist
(Greiner, et al. 1992; Turney 1995), and such schemes can
be adapted to our setting easily.

For any set of examples E ⊆ E , define w(E) to be the set
of winners w(A) that occur in some example A ∈ E. Let
pE(x) =

∑
{P (A) : A ∈ E,w(A) = x} be the probability

that x wins in training set E. The entropy of E is:

H(E) =
∑

x∈w(E)

−pE(x) log pE(x).

The conditional entropy of E given q is:

H(E|q) = p(q+|E)H(E+
q) + p(q−|E)H(E+

q).

The information gain associated with query q is:

IG(E|q) = H(E)−H(E|q).

Myopic decision tree construction begins at with a single
root node associated with initial training set E0 = A. At
each iteration, any “unprocessed” node n is evaluated and
becomes processed: if n is pure, it becomes a leaf in the
(final) tree. Otherwise, the gain IG(E(n)|q) of each (nonre-
dundant) query q is evaluated, and the query with greatest

gain is applied to n, creating two new children of n, with the
appropriate edge labels, and each associated with the posi-
tive (resp., negative) examples from E(n). When no nodes
remain unprocessed, all leaves in the tree are pure.

Processing a node n is linear in the number of training
examples at n (at most |A|) and the number of splits being
evaluated (at most |U |). Hence the complexity of myopic
induction is linear in (a possibly pruned) A and the size of
the resulting tree. Since A has size 2|U | in the worst case
(if unpruned), complexity is O(2|U |) for trees of bounded
size, i.e., significantly more efficient than DP. The myopic
method is not guaranteed to produce a policy with minimal
expected query cost. However, it works well in practice (see
below); and it is guaranteed to provide a correct policy that
determines the true winner.

Various forms of policy approximation can be used if we
are willing to admit the possibility of error in declaring a
winner. One approximation allows terminating the query-
ing process at impure leaves, requiring only that we be “sure
enough” about its identity to allow winner prediction despite
residual uncertainty. This is analogous to cost-sensitive clas-
sification (Greiner, et al. 1992; Turney 1995), where both
tests and prediction errors have costs. In our model, we
have two types of misclassification errors: (a) if we choose
a winner who turns out to be unavailable; (b) if we choose
a winner that is available, but is not the true winner given
the actual (unknown) available set. In general, we expect
the former to be much worse than the latter. This can be
implemented in both DP and the myopic algorithm. In the
latter, we simply stop splitting leaves when one winner has
sufficiently high probability.

Another approximation uses of sampled availability sets,
with examples A drawn from the distribution P over A,
thereby reducing the number of training examples to make
myopic tree construction fully tractable. Sample complexity
results then become vital (Greiner, et al. 1992). We leave
these approximations to future research.

Query Complexity
Apart from optimizing query policies, the theoretical ques-
tion of both worst-case and average-case query complexity
is of interest. Here we sketch some partial results that sug-
gest the types of questions one might ask in our model.

Worst-case results take the form: given a voting rule r and
availability distribution P , what is the greatest (over vote
profiles v) expected (over availabilities) query cost of the
optimal query policy? If availability is highly likely, we can
construct profiles where determining the winner requires al-
most m queries in expectation, for both plurality and Borda.
For plurality, consider candidates X = {c1, . . . , c2m} ∪
{x, y}, and known available set Y = {x, y}. Define a pro-
file over 2m voters where x and y are each ranked second
in exactly half of the rankings: ci � x � . . . for voters
i = 1, . . . ,m, and ci � y � . . . for i = m + 1, . . . , 2m
(other candidates are ordered arbitrarily). Let p = 0.5. The
plurality score of x is the number of candidates in {ci}mi=1
that are unavailable (similarly for y). As m increases, one
of x or y wins with high probability. However, one can
show (due to concentration of the binomial distribution) that

the difference in their plurality scores becomes sub-linear,
with high probability, as m grows. Hence, Ω(m) queries are
needed to determine the winner. Similar constructions work
for Borda and Copeland. As a result, we have:

Proposition 6 For plurality, Borda and Copeland, worst-
case (over profiles) expected query complexity for determin-
ing a robust winner is Ω(m).

One can also analyze expected optimal query cost for vote
profiles drawn from particular distributions (e.g., impartial
culture, Mallows models, mixtures, etc.). As availability
probabilities approach 1 (i.e., unavailability is rare), con-
structing optimal policies becomes easier, as does analysis
of query complexity. Assume px = p = 1 − O(ε) for
all x and all query costs are identical. The query policy
Extreme(v) (informally) proceeds as follows: initialize the
potential set X with all candidates, the known set Y = ∅,
and the current winner w = r(v(X)) = r(v). Then repeat:
1. find a minimum-size subset Z ofX \Y s.t. w is a robust winner

for Y ∪ Z (w ∈ Z if w is not known to be available);
2. check availability of all candidates in Z; add to Y those that are

available, and remove from X those that are not;
3. if all candidates in Z are available, stop and output w;
4. if not, recompute w = r(v(X)), and go back to step 1.

It is not hard to show that Extreme(v) terminates, and re-
turns the true winner r(v(A)) for the actual available set A
if at least one candidate is available. If Y ⊆ X is a smallest
(cardinality) set of candidates such that r(v) is a robust win-
ner for Y , then its expected query cost is |Y | + O(ε). We
can also show that any r-sufficient policy has an expected
cost of at least |Y | −O(ε).4 These facts prove:

Proposition 7 The policy Extreme(·) is asymptotically op-
timal as ε→ 0.

Empirical Evaluation
We now discuss experiments that test the effectiveness of
our algorithms for computing query policies, and exam-
ine the expected costs of these policies for various voting
rules, preference distributions and availability distributions.
We generate vote profiles using Mallows distributions over
rankings (Mallows 1957), given by a modal ranking σ over
X and dispersion φ ∈ (0, 1]: the probability of vote v
is Pr(v|σ, φ) ∝ φd(r,σ), where d is Kendall’s τ -distance.
Smaller φ concentrates mass around σ while φ = 1 gives
the uniform distribution (i.e., impartial culture). We use
m = 10 candidates and n = 100 voters, generating profiles
for φ ∈ {0.3, 0.8, 1.0}, and consider three voting rules: plu-
rality, Borda and Copeland. We vary the availability proba-
bilities p with each candidate having the same p. Results for
each problem instance (combination of voting rule, φ, p) are
averaged over 25 random vote profiles.

Before exploring query policies, we measure the proba-
bility of selecting an incorrect winner using a policy that se-
lects the naı̈ve winner, r(v), ignoring candidate unavailabil-
ity. An obvious lower bound on this error is 1−p (i.e., when

4This bound is discontinuous at ε = 0, but then all candidates
are available, so the query cost is zero. Thanks to a reviewer for
pointing this out.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.5

0.6

0.7

0.8

0.9

1.0

Plurality

0.0 0.2 0.4 0.6 0.8 1.0
p

0.5

0.6

0.7

0.8

0.9

1.0

Borda

0.0 0.2 0.4 0.6 0.8 1.0
p

0.5

0.6

0.7

0.8

0.9

1.0

Copeland

0.0 0.2 0.4 0.6 0.8 1.0
p

0.5

0.6

0.7

0.8

0.9

1.0

Copeland

φ=0.3

φ=0.8

φ=1.0

Figure 2: Probability an available naı̈ve winner is the true winner.

Query Cost. φ = 0.8 Query Cost. φ = 1.0 Tree Size. φ = 0.8 Tree Size. φ = 1.0

p 0.3 0.5 0.9 0.3 0.5 0.9 0.3 0.5 0.9 0.3 0.5 0.9

Plur-DP 4.1 (3.2,5.2) 3.4 (2.0,5.4) 2.7 (1.1,5.4) 6.7 (5.9,7.6) 6.6 (4.9,7.4) 5.4 (2.4,7.9) 52.0 (9,128) 49.6 (9,124) 57.0 (9,148) 233 (133,311) 221 (121,302) 249 (136,318)
Borda-DP 3.7 (3.2,4.5) 2.7 (2.0,3.9) 1.7 (1.1,5.0) 5.4 (4.4,6.7) 4.8 (3.2,6.4) 3.3 (1.2,6.2) 24.4 (9,61) 24.0 (9,57) 26.2 (9,63) 114 (42,209) 110 (41,197) 125 (44,226)
Cope-DP 3.2 (3.2,3.6) 2.0 (2.0,2.5) 1.1 (1.1,1.3) 4.6 (3.4,5.9) 3.6 (2.1,5.6) 2.2 (1.1,4.5) 10.3 (9,19) 10.3 (9,19) 10.3 (9,19) 58.4 (17,161) 57.8 (17,160) 63.1 (17,185)

Plur-IG 4.1 (3.2,5.2) 3.5 (2.0,5.5) 2.8 (1.1,5.6) 7.0 (6.2,8.0) 6.9 (5.0,7.7) 5.6 (2.4,8.2) 59.5 (9,140) 55.4 (9,140) 62.2 (9,163) 290 (163,379) 258 (145,351) 296 (171,402)
Borda-IG 3.7 (3.2,4.6) 2.7 (2.0,3.9) 1.7 (1.1,5.0) 5.5 (4.5,7.0) 4.9 (3.2,6.7) 3.3 (1.2,6.2) 26.8 (9,63) 24.1 (9,59) 26.5 (9,68) 136 (49,264) 117 (42,229) 135 (46,253)
Cope-IG 3.2 (3.2,3.6) 2.0 (2.0,2.5) 1.1 (1.1,1.3) 4.7 (3.5,6.7) 3.7 (2.1,5.9) 2.2 (1.1,4.5) 10.3 (9,19) 10.3 (9,19) 10.4 (9,20) 67.1 (21,211) 60.8 (18,178) 70.2 (18,213)

Table 1: Avg. query cost and tree size (min, max) for optimal (DP) and myopic (IG) query policies

the winner is unavailable). Fig. 2 shows this error probabil-
ity conditional on the winner being available for the three
voting rules considered and different φ, as we vary p. For
p near 1, the naı̈ve winner is, of course, almost always cor-
rect. At the other extreme, the naı̈ve winner is also usually
correct, since it is highly likely to be the only available op-
tion. When preferences are very peaked (φ = 0.3), candi-
date availability has little impact (most voters have similar
rankings; but as they become more uniform the impact is
dramatic. This suggests that testing availability is important
even for reasonably high values of p. These results give only
a crude sense of the “degree of robustness” of a winner who
is assumed to be available, even for low p, and provide min-
imal insight into the value of intelligent availability testing.

We now consider the expected number of queries needed
to determine the winner in the settings described above (us-
ing the same values of φ) under different availability proba-
bilities: p = 0.3, 0.5, 0.9. Results for all three voting rules
and six of nine parameter settings, with average expected
cost (min, max) over 25 trials, are shown in the left half of
Table 1.5 In most settings, optimal query policies offer sig-
nificant savings relative to the approach that first tests the
availability of all ten candidates. The myopic heuristic tends
to produce trees with costs very close to the optimum: even
in problems with the largest gap (i.e., plurality with φ = 1),
myopic trees have an average expected cost of only 0.3 more
queries than optimal; in most cases, myopic trees are almost
identical to the optimum; so the more efficient myopic ap-
proach effectively minimizes query costs in practice. Not
surprisingly, we see strong (negative) correlations between
cost and availability probability in all three rules. Query
cost is also correlated with dispersion φ: when φ is greater
(more uniform), costs are higher since preferences are more
diverse. When dispersion φ is low, given a fixed p, expected
cost is the essentially the same for each rule, and the myopic
approach is virtually optimal.

The right half of Table 1 shows the sizes of the decision

5Results for φ = 0.3 are not shown, as they are identical for
all three voting rules and both algorithms. For p = 0.3, avg. query
cost is 3.2; p = 0.5, avg. cost is 2.0; and p = 0.9 avg. cost is 1.1.
Tree sizes (right half of the table) for φ = 0.3 are constant (size is
always 9 nodes) across all rules, algorithms, and p values.

trees that result when running both of our algorithms: tree
size is only indirectly related to expected query cost, since
the relative balance of the trees also impacts costs. Nonethe-
less we see an expected correlation, though plurality tends to
result in larger trees, especially for φ = 1. The myopic trees
are not significantly larger than the optimal trees, though the
differences in size are somewhat more pronounced than the
differences in query cost.

We also ran experiments to test the effectiveness of query-
ing for approximate robustness, that is, terminating the
querying process when the information set ensures that a
specific candidate is the true winner with probability at least
1−δ. Space precludes a full discussion, but using a modified
version of the DP algorithm, we computed optimal query
policies for values of δ ∈ {0.001, 0.01, 0.1} (i.e., exactly
optimal policies given the goal of finding a 1−δ-robust win-
ner). With plurality, dispersion φ = 1.0 and p = 0.9, fully
robust policies had an expected cost of 5.42 queries on av-
erage. Allowing 1 − δ-robust winners greatly reduced the
expected cost: with δ = 0.001 average expected cost was
4.97 queries; for δ = 0.01, 4.36 queries; and for δ = 0.1,
3.04 queries. For p = 0.3, setting δ = 0.1 saw a reduction to
5.28 queries (compared to 6.73 for exact robustness). Other
voting rules exhibited similar patterns.

Future Directions
We have offered a new perspective on voting in the unavail-
able candidate model, assuming that testing the viability or
availability of candidates is costly. Using robust winners, ir-
relevant candidates, and query policies, our algorithms for
computing query policies were shown to be effective, and
empirical results demonstrated the value of optimal query-
ing. A number of important research directions remain, in-
cluding: efficient methods for pruning available sets w.r.t.
specific voting rules; sample-based methods for reducing
training set size; further development of policies that “pre-
dict” winners; deeper theoretical study of query and com-
munication complexity; and analysis of manipulation.

Acknowledgments: Thanks to the reviewers for helpful
suggestions. This work was supported in part by NSERC
and by MICINN project TIN2011-27652-C03-02.

References
Baldiga, K., and Green., J. 2013. Assent-maximizing social
choice. Social Choice and Welfare 40(2):439–460.
Bartholdi, J.; Tovey, C.; and Trick, M. 1992. How hard is
it to control an election? Social Choice and Welfare 16(8-
9):27–40.
Chevaleyre, Y.; Lang, J.; Maudet, N.; and Monnot, J. 2011.
Compilation/communication protocols for voting rules with
a dynamic set of candidates. In Proceedings of the 13th Con-
ference on Theoretical Aspects of Rationality and Knowl-
edge (TARK-11), 153–160.
Chevaleyre, Y.; Lang, J.; Maudet, N.; Monnot, J.; and Xia,
L. 2012. New candidates welcome! possible winners with
respect to the addition of new candidates. Mathematical So-
cial Sciences 64(1):74–88.
Dutta, B.; Jackson, M. O.; and Breton, M. L. 2001.
Strategic candidacy and voting procedures. Econometrica
69(4):1013–1037.
Erdélyi, G.; Fellows, M. R.; Piras, L.; and örg Rothe, J.
2011. Control complexity in Bucklin and fallback voting.
arXiv 1103.2230.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2011. Multimode control attacks on elections. Journal of
Artificial Intelligence Research 40:305–351.
Faliszewski, P.; Hemaspaandra, E.; and Schnoor, H. 2008.
Copeland voting: Ties matter. In Proceedings of the Seventh
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-08), 983–990.
Garey, M. R. 1972. Optimal binary identification proce-
dures. SIAM Journal of Applied Mathematics 23:173–186.
Greiner, R.; Grove, A. J.; and Roth, D. 1992. Learn-
ing cost-sensitive active classifiers. Artificial Intelligence
139(2):137–174.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007.
Anyone but him: The complexity of precluding an alterna-
tive. Artificial Intelligence 171(5-6):255–285.
Hyafil, L., and Rivest, R. L. 1976. Constructing optimal bi-
nary decision trees is NP-complete. Information Processing
Letters 5:15–17.
Lu, T., and Boutilier, C. 2010. The unavailable candi-
date model: A decision-theoretic view of social choice. In
Proceedings of the Eleventh ACM Conference on Electronic
Commerce (ACM EC-10), 263–274.
Mallows, C. L. 1957. Non-null ranking models. Biometrika
44:114–130.
Parkes, D. C., and Xia, L. 2012. A complexity-of-strategic-
behavior comparison between schulze’s rule and ranked
pairs. In Proceedings of the Twenty-sixth AAAI Conference
on Artificial Intelligence (AAAI-12), 1429–1435.
Procaccia, A. D.; Rosenschein, J. S.; and Kaminka, G. A.
2007. On the robustness of preference aggregation in noisy
environments. In Proceedings of the Sixth International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-07), 416–422.

Quinlan, J. R. 1993. C45: Programs for Machine Learning.
Morgan Kaufmann.
Rastegari, B.; Condon, A.; Immorlica, N.; and Leyton-
Brown, K. 2013. Two-sided matching with partial infor-
mation. In Proceedings of the Fourteenth ACM Conference
on Electronic Commerce (ACM EC-13), 733–750.
Shiryaev, D.; Yu, L.; and Elkind, E. 2013. On elections with
robust winners. In Proceedings of the Twelfth Conference on
Autonomous Agents and Multiagent Systems (AAMAS-13),
415–422.
Turney, P. D. 1995. Cost-sensitive classification: Empirical
vvaluation of a hybrid genetic decision tree induction algo-
rithm. Journal of Artificial Intelligence Research 2:369–409.
Wojtas, K., and Faliszewski, P. 2012. Possible win-
ners in noisy elections. In Proceedings of the Twenty-
sixth AAAI Conference on Artificial Intelligence (AAAI-12),
1499–1505.
Xia, L. 2012. Computing the margin of victory for various
voting rules. In Proceedings of the Thirteenth ACM Confer-
ence on Electronic Commerce (ACM EC-12), 982–999.

