2534 Lecture 9: Bayesian Games, Mechanism Design and Auctions

- Wrap up (quickly) extensive form/dynamic games
- Mechanism Design
 - Bayesian games, mechanisms, auctions (a bit)
 - will focus on Shoham and Leyton-Brown for next couple of classes
 - today: Ch.6.3, main parts of Ch.10
 - next week: auctions (skim Ch.11), topics in mechanism design
- Announcements
 - Problem Set 2 due next week
 - Project Proposals due today (unless pre-proposal was "approved")
 - will return next week with final feedback
 - Projects Due on Dec.17

Games with Incomplete Information

So far: assume agents know structure of the game

- opponents, opponent actions, and (our focus) payoffs
- Unrealistic in many scenarios
 - e.g., consider prior game of two firms marketing in two territories
 - neither firm realistically knows the exact payoff of the other
 - firms may have unknown costs of developing area A
 - e.g., if "low cost" to firm, payoffs as before, but if high cost to Firm 1, lose -3 from profit; if HC to Firm 2, lose -1 from profit
 - how would we model this?

Auctioning a Single Item

- Another example: prelude to mechanism design
 - want to give away my phone to person who values it most
 - assume valuations in set {100, 125, 150, 175, 200, 225, 250}
- How? I don't know your valuations!
- Ask you to write valuation (sealed), give it to highest "bidder"
 - Creates a game (moves are your bids)
 - But dominant strategy is to bid 250
- Instead, give to highest bidder, but charge the bid price
 - Much more interesting game, not obvious how to bid
 - But notice game has *incomplete info*: you don't know valuations of others
 - It's like you're playing one of many possible games: uncertain which one
- What if I charge high bidder the second highest price?
 - Despite uncertainty of others' payoffs, becomes much more obvious...

Bayesian Games

A Bayesian game (of incomplete information)

- set of agents (or players) $i = \{1, \dots, N\}$
- action set A_i for each agent *i*, with joint actions $A = X A_i$
- type space Θ_i for each agent *i*, with joint type space $\Theta = X \Theta_i$
- utility functions $u_i : A X \Theta_i \rightarrow \mathbf{R}$
 - $u_i(\boldsymbol{a}, \theta_i)$ is utility of action \boldsymbol{a} to agent *i* when type is $\theta_i \in \Theta_i$
- common prior distribution P over Θ

Type represents private information i has about the game

- usually, we'll speak of i's type as its "utility function" since this is what dictates i's utility for any joint action
- *i* is assumed to know its type (it is revealed before action taken)
 also reveals *partial* info about others' types (conditioning)
- game is common knowledge

Type space: {L, H} for both firms

- Prior: P(L₁,L₂)=0.40; P(L₁,K₂)=0.16; P(H₁,L₂)=0.16; P(H₁,H₂)=0.28
 - Intuitively, suppose there's a 0.4 chance that A is a difficult territory
 - A firm's cost is high w/ *p*=0.8 if A is difficult; low w/ *p*=0.8 if not
 - Gives distribution over possible games we're playing
- Types revealed: Firm1 learns whether it's low, high; ditto Firm 2
 - Types are correlated: if 1 is low, believes greater chance 2 is low
 - e.g. $P(L_2)=0.56$; but $P(L_2 | L_1)=0.4/(0.4+0.16)=5/7=0.714$
 - Type revelation induces new (and different) posteriors for both agents
- Utility: payoffs are given as described

Strategies

Types revealed, so players may condition choice on type

- Analogous to extensive form games
- Pure strategy is a mapping $s_i : \Theta_i \to A_i$
 - e.g., if type is Low, move into A, but if type is High move into B
- *Mixed strategy* σ_i is a distribution over pure strategies
 - write σ_i ($a_i \mid \theta_i$) to denote probability of playing action given type
 - σ denotes a strategy profile

Expected Utilities

- Ex post expected utility
 - utility of a strategy profile σ given type *profile* θ (abusing notation)

 $u_i(\sigma|\theta) = u_i(\sigma_1(\theta_1), \sigma_2(\theta_2), \dots, \sigma_n(\theta_n))$

- not realistic: players don't know the types of the other players
- Ex interim expected utility
 - expected utility of a strategy profile σ given own type θ_i

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i}} u_i(\sigma \mid \theta_{-i}\theta_i) P(\theta_{-i}|\theta_i)$$

- this is is is best prediction of his expected utility
- Ex ante expected utility
 - expected utility of a strategy profile σ prior to type revelation

$$u_i(\sigma) = \sum_{\theta} u_i(\sigma \mid \theta) \operatorname{P}(\theta)$$

Best Responses

■A *best response* for *i* to profile σ_{-i} is any strategy σ_i satisfying $u_i(\sigma_i \cdot \sigma_{-i}) \ge u_i(\sigma'_i \cdot \sigma_{-i})$ for all σ'_i

Note: this doesn't prevent *i* from optimizing choice for each of its possible types: Given σ_{-i} , the strategy that maximizes *ex ante* utility will map each possible type θ_i to the choice that maximizes *ex interim* utility for θ_i

Note: given fixed strategies of others, a player reasons about the (conditional) predicted types of others, and how this will lead to probabilities of various actions being played

Bayes Nash Equilibria

- A Bayes Nash equilibrium is a strategy profile s.t σ_i is a best response to σ_{-i} for each player *i*
- Note: not sufficient to reason just about revealed types
 - even though *i* knows its type, other agents do not; so it is strategies that are in equilibrium (other agents must predict how *i* will act for any of its types in order to compute expected utility)
 - somewhat analogous to extensive form games, but instead of just predicting the strategy, expectation over the *realization of that strategy for possible type profiles* must also be accounted for
- Unlike Nash equilibria, players not only make predictions about others strategies, they must rely on their beliefs about the types of the other players too

Conversion to Normal Form

- Since we converted all of these choices into a (finite) set of pure strategies (assuming a finite type space), we can formulate it as a normal form game
- New actions: set of pure strategies σ_i (mappings of types into actions)
- Payoff to player *i* is just *i*'s *ex ante* expected utility $u_i(\sigma)$
 - Notice that we can't use *ex interim* utility: that would place information in the game matrix that is *not knowable to all players*
 - Using *ex interim* provides no additional leverage to player *i*: again, the strategy that provides highest ex ante utility (given a fixed strategy by others) also provides the highest ex interim utility for any of i's types
- The Nash equilibria in the resulting game are exactly the Bayes-Nash equilibria in the Bayesian game

Normal Form Market Mover Game (I)

Strategies: AL/AH (AA), AL/BH (AB), BL/AH (BA), BL/BH (BB)

 $u_1(AB_1, BB_2) = \sum_{\theta} u_1(AB_1, BB_2|\theta) Pr(\theta)$ $= u_1(A, B|LL) Pr(LL) + u_1(B, B|HL) Pr(HL)$ $+ u_1(A, B|LH) Pr(LH) + u_1(B, B|HH) Pr(HH)$ $= u_1(A, B|L_1) Pr(L_1) + u_1(B, B|H_1) Pr(H_1)$ = 12(0.56) + 6(0.44)

= 9.36

Normal Form Market Mover Game (II)

■ Strategies: AL/AH (AA), AL/BH (AB), BL/AH (BA), BL/BH (BB) ■ $u_1(AA_1, BB_2) = \sum_{\theta} u_1(AA_1, BB_2|\theta)Pr(\theta)$ = $u_1(A, B|LL)Pr(LL) + u_1(A, B|HL)Pr(HL)$ + $u_1(A, B|LH)Pr(LH) + u_1(A, B|HH)Pr(HH)$ = $u_1(A, B|L_1)Pr(L_1) + u_1(A, B|H_1)Pr(H_1)$ = 12(0.56) + 9(0.44)

= 10.68

Normal Form Market Mover Game (III)

 $u_1(AB_1, BA_2) = \sum_{\theta} u_1(AB_1, BA_2|\theta) Pr(\theta)$ = $u_1(A, B|LL) Pr(LL) + u_1(B, B|HL) Pr(HL)$ + $u_1(A, A|LH) Pr(LH) + u_1(B, A|HH) Pr(HH)$ = 12(0.4) + 6(0.16) + 8(0.16) + 9(0.28) = 9.56 $u_2(AB_1, BA_2) = \sum_{\theta} u_2(AB_1, BA_2|\theta) Pr(\theta)$ = $u_2(A, B|LL) Pr(LL) + u_2(B, B|HL) Pr(HL)$ + $u_2(A, A|LH) Pr(LH) + u_2(B, A|HH) Pr(HH)$ = 9(0.4) + 3(0.16) + 3(0.16) + 11(0.28) = 7.64

Notice that this strategy profile makes some intuitive sense: firms can't "select" profiles that max social welfare in each game (don't know others type; but 1 goes for A if Low, B if High; if 2 is Low, higher belief that 1 is Low, so stays away (goes for B); if 2 is High, higher belief 1 is High, so goes for A.

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Normal Form Market Mover Game (III)

	AA	AB	BA	BB
AA	?, ?	?, ?	? , ?	10.68, ?
AB	?, ?	?, ?	9.56, 7.64	9.36, <mark>?</mark>
BA	?, ?	?, ?	?, ?	?, ?
BB	?, ?	?, ?	?, ?	?, ?

Exercise: fill in rest of table

• fill in red question marks to see if AB/BA is a Bayes Nash eq.

Other Incomplete Information

- Harsanyi (1967) argued that other forms of uncertainty in structure can be modeled using payoff uncertainty
 - uncertainty in player actions; e.g., can player P1 do A,B or A,B,C
 - include action C as a move in all games, but create type(s) for P1 that gives C such low payoff that it would never choose that action
 - assign probability to that type equal to 1 Pr(C exists)
 - uncertainty about players; *e.g., is P1 in the game?*
 - include player P1 in all games, but create new type corresponding to non-existence and an action that is dominant for P1 under that type such that payoffs for other players are as if P1 is not present
 - assign probability to this type equal to 1-Pr(P1 exists)

Stronger Equilibrium Notions

Dominant Strategy Equilibrium

- σ_i is *dominant* for player *i* if it has max expected utility no matter what strategies other players play
- DSE: a profile in which each player plays a dominant strategy
- concept applies to normal form games too (Prisoners dilemma)
- very robust: does not rely on predictions about behavior of opponents, nor on accurate beliefs about other's types

Ex Post Equilibrium

- profile σ is an EPE if, for all *i*: $u_i(\sigma_i \cdot \sigma_{-i} \mid \theta) \ge u_i(\sigma'_i \cdot \sigma_{-i} \mid \theta)$ for all θ , σ'_i
- no matter what *i* learns about your type, would not deviate from σ_i
- different than dominant: depends on prediction about others' strategies
- still quite robust: does not rely on accurate beliefs about types of others, only predictions of strategies (much like regular Nash equilibrium)
- Both notions important in mechanism design

Return to the Second Price Auction

I want to give away my phone to person values it most

- in other words, I want to maximize social welfare
- but I don't know valuations, so I decide to ask and see who's willing to pay: use 2nd-price auction format
- Bidders submit "sealed" bids; highest bidder wins, pays price bid by second-highest bidder
 - also known as Vickrey auctions
 - special case of Groves mechanisms, Vickrey-Clarke-Groves (VCG) mechanisms
- 2nd-price seems weird but is quite remarkable
 - truthful bidding, i.e., bidding your true value, is a *dominant* strategy
- To see this, let's formulate it as a Bayesian game

Second-Price Auction: Bayesian Game

- n players (bidders)
- Types: each player k has value $v_k \in [0,1]$ for item
- strategies/actions for player k: any bid b_k between [0,1]
- outcomes: player k wins, pays price p (2nd highest bid)
 - outcomes are pairs (k,p), i.e., (winner, price)
- payoff for player k:
 - if *k* loses: payoff is 0
 - if k wins, payoff depends on price p: payoff is $v_k p$
- Prior: joint distribution over values (will not specify for now)
 - we do assume that values (types) are independent and private
 - i.e., own value does not influence beliefs about value of other bidders
- Note: action space and type space are continuous

Truthful Bidding: A DSE

- Needn't specify prior: even without knowing others' payoffs, bidding true valuation is *dominant* for every k
 - strategy depends on valuation: but k selects b_k equal to v_k
- Not hard to see deviation from *truthful bid* can't help (and could harm) k, regardless of what others do

•We'll consider two cases: if *k* wins with truthful bid $b_k = v_k$ and if *k* loses with truthful bid $b_k = v_k$

Equilibrium: Second-Price Auction Game

Suppose k wins with truthful bid v_k

- Notice *k*'s payoff must be positive (or zero if tied)
- Bidding b_k higher than v_k :
 - v_k already highest bid, so k still wins and still pays price p equal to second-highest bid $b_{(2)}$
- Bidding b_k lower than v_k :
 - If b_k remains higher than second-highest bid $b_{(2)}$ no change in winning status or price
 - If b_k falls below second-highest bid $b_{(2)}$ k now loses and is worse off, or at least no better (payoff is zero)

Equilibrium: Second-Price Auction Game

Suppose k loses with truthful bid v_k

- Notice k's payoff must be zero and highest bid $b_{(1)} > v_k$
- Bidding b_k lower than v_k :
 - v_k already a losing bid, so k still loses and gets payoff zero
- Bidding b_k higher than v_k :
 - If b_k remains lower than highest bid b₍₁₎, no change in winning status (k still loses)
 - If b_k is above highest bid $b_{(1)}$, k now wins, but pays price p equal to $b_{(1)} > v_k$ (payoff is negative since price is more than it's value)

So a truthful bid is *dominant*: optimal no matter what others are bidding

Truthful Bidding in Second-Price Auction

Consider actions of bidder 2

 Ignore values of other bidders, consider only their bids. Their values don't impact outcome, only bids do.

•What if bidder 2 bids:

- truthfully \$105?
 - Ioses (payoff 0)
- too high: \$120
 - Ioses (payoff 0)
- too high: \$130
 - wins (payoff -20)
- too low: \$70
 - Ioses (payoff 0)

Truthful Bidding in Second-Price Auction

Consider actions of bidder 2

- Ignore values of other bidders, consider only their bids. Their values don't impact outcome, only bids do.
- •What if bidder 2 bids:
 - truthfully \$105?
 - wins (payoff 10)
 - too high: \$120
 - wins (payoff 10)
 - too low: \$98
 - wins (payoff 10)
 - too low: \$90
 - Ioses (payoff 0)

Other Properties: Second-Price Auction

- Elicits true values (payoffs) from players in game even though they were unknown a priori
- Allocates item to bidder with highest value (maximizes social welfare)
- Surplus is divided between seller and winning buyer
 - splits based on second-highest bid (this is the lowest price the winner could reasonably expect)
- Outcome is similar to Japanese/English auction (ascending auction)
 - consider process of raising prices, bidders dropping out, until one bidder remains (Japanese auction)
 - until price exceeds k's value, k should stay in auction
 - drop out too soon: you lose when you might have won
 - drop out too late: will pay too much if you win
 - last bidder remaining has highest value, pays 2nd highest value!

Mechanism Design

SPA offers a different perspective on use of game theory

- instead of predicting how agents will act, we *design* a game to facilitate interaction between players
- aim is to ensure a *desirable outcome* assuming agents act rationally
- This is the aim of mechanism design (implementation theory)

Examples:

- voting/policy decisions: want policy preferred by majority of constituents
- resource allocation/usage: want to assign resources for maximal societal benefit (or maximal benefit to subgroup, or ...); often includes determination of fair payments
- task distribution: want to allocate tasks fairly (relative to current workload), or in a way that ensures efficient completion, or ...
- Recurring theme: we usually don't know the preferences (payoffs) of society (participants): hence Bayesian games
 - and often incentive to keep these preferences hidden (see examples)

Mechanism Design: Basic Setup

- Set of possible outcomes O
- n players, with each player k having:
 - type space Θ_k
 - utility function u_k : $O X \Theta_k \rightarrow \mathbf{R}$
 - $u_k(o, \theta_k)$ is utility of outcome o to agent k when type is $\theta_k \in \Theta_k$
 - think of θ_k as an encoding of k's preferences (or utility function)
- (Typically) a common prior distribution P over Θ
- A social choice function (SCF) C: $\Theta \rightarrow O$
 - intuitively $C(\theta)$ is the most desirable option if player preferences are θ
 - can allow "correspondence", social "objectives" that score outcomes
- Examples of social choice criteria:
 - make majority "happy"; maximize social welfare (SWM); find "fairest" outcome; make one person as happy as possible (e.g., revenue max'ztn in auctions), make least well-off person as happy as possible...
 - set up for SPA: types: values; outcomes: winner-price; SCF: SWM

A Mechanism

A mechanism ((A_k),M) consists of:

- (*A*₁,..., *A*_n): action (strategy) sets (one per player)
- an *outcome function* $M: A \rightarrow \Delta(O)$ (or $M: A \rightarrow O$)
- intuitively, players given actions to choose from; based on choice, outcome is selected (stochastically or deterministically)
- for many mechanisms, we'll break up outcomes into core outcome plus monetary transfer (but for now, glom together)

Second-price auction:

- A_k is the set of bids: [0,1]
- *M* selects winner-price in obvious way
- Given a mechanism design setup (players, types, utility functions, prior), the mechanism induces a *Bayesian game* in the obvious way

Implementation

What makes a mechanism useful?

- it should implement the social choice function C
- i.e., if agents act "rationally" in the Bayesian game, outcome proposed by *C* will result
- of course, rationality depends on the equilibrium concept
- A mechanism (*A*,*M*) S-implements C iff for (some/all) S-solutions σ of the induced Bayesian game we have, for any $\theta \in \Theta$, $M(\sigma(\theta)) = C(\theta)$
 - here S may refer to DSE, ex post equilibrium, or Bayes-Nash equilibrium
 - in other words, when agents play an equilibrium in the induced game, whenever the type profile is θ , then the game will give the same outcome as prescribed for θ by the social choice function
 - notice some indeterminacy (in case of multiple equilibria)
- For SCF C = "maximize social welfare" (including seller as a player, and assuming additive utility in price/value), the SPA implements SCF in dominant strategies

Revelation Principle

- Given SCF C, how could one even begin to explore space of mechanisms?
 - actions can be arbitrary, mappings can be arbitrary, ...
- Notice that SPA keeps actions simple: "state your value"
 - it's a *direct mechanism:* $A_k = \theta_k$ (i.e., actions are "declare your type")
 - ...and stating values truthfully is a DSE
 - Turns out this is an instance of a broad principle
- Revelation principle: if there is an S-implementation of SCF C, then there exists a direct, mechanism that S-implements C and is truthful
 - intuition: design new outcome function *M*' so that when agents report truthfully, the mechanism makes the choice original *M* would have realized in the S-solution
- Consequence: much work in mechanism design focuses on direct mechanisms and truthful implementation

Gibbard-Satterthwaite Theorem

Dominant strategy implementation a frequent goal

- agents needn't rely on any strategic reasoning, beliefs about types
- unfortunately, DS implementation not possible for general SCFs

Thm (Gibbard73, Sattherwaite75): Let C (over N, O) be s.t.:

(i) |*O*/ > *2*;

(ii) C is onto (every outcome is selected for some profile θ);

(iii) C is non-dictatorial (there is no agent whose preferences "dictate" the outcome, i.e., who always gets max utility outcome);

(iv) all preferences are possible.

Then C cannot be implemented in dominant strategies.

Proof (and result) similar to Arrow's Thm (which we'll see shortly)

Ways around this:

- use weaker forms of implementation
- restrict the setting (especially consider special classes of preferences)

Groves Mechanisms

Despite GS theorem, truthful implementation in DS is possible for an important class of problems

- assume outcomes allow for transfer of utility between players
- assume agent preferences over such transfers are additive
- auctions are an example (utility function in SPA)
- Quasi-linear mechanism design problem (QLMD)
 - extend outcome space with "monetary" transfers
 - outcomes: $O \times T$, where T is set of vectors of form (t_1, \ldots, t_n)
 - quasi-linear utility: $u_k((o,t), \theta_k) = v_k(o, \theta_k) + t_k$
 - SCF is SWM (i.e., maximization of social welfare SW(o,t,θ))
- Assumptions:
 - value for "concrete" outcomes and transfer commensurate
 - players are risk neutral
- In SPA, utility is valuation less price paid (negt'v transfer to winner), or price paid (pos'tv transfer to seller) (see formalization on slide 3)

Groves Mechanisms

A Groves mechanism (A,M) for QLMD problem is:

- $A_k = \theta_k = V_k$: agent *k* announces values v_k^* for outcomes
- $M(v^*) = (0, t_1, \dots, t_n)$ where:
 - $o = argmax_{o \in O} \sum_{k} v_{k}^{*}(o)$
 - $t_k(v_k^*) = \sum_{j \neq k} v_j^*(o) h_k(v_{-k}^*)$, where h_k is an arbitrary function
- Intuition is simple:
 - choose SWM-outcome based on *declared* values v*
 - then transfer to k: the declared welfare of chosen outcome to the other agents, less some "social cost" function h_k which depends on what others said (but critically, not on what k reports)

Some notes:

- in fact, a family of mechanisms, for various choices of h_k
- if agents reveal true values, i.e., $v_k^* = v_k$ for all k, then it maximizes SW
- SPA: is an instance of this

Truthfulness of Groves

- Thm: Any Groves mechanism is truthful in dominant strategies (*strategyproof*) and efficient.
- Proof (easy to see):
 - outcome is: $o = argmax_{o \in O} \sum_{k} v_{k}^{*}(o)$
 - *k* receives: $t_k(v_k^*) = \sum_{j \neq k} v_j^*(o) h_k(v_{-k}^*)$
 - *k*'s utility for report v_k^* is: $v_k(o) + \sum_{j \neq k} v_j^*(o) h_k(v_{-k}^*)$,
 - here o depends on the report v_k^*
 - k wants to report v_k^* that maximizes $v_k(o) + \sum_{j \neq k} v_j^*(o)$
 - this is just k's utility plus reported SW of others
 - notice k's report has no impact on third term h_k(v*-k)
 - but mechanism chooses o to max reported SW, so no report by k can lead to a better outcome for k than vk
 - efficiency (SWM) follows immediately
- This is why SPA is truthful (and efficient)

Other Properties of Groves

- Famous theorem of Green and Laffont: The Groves mechanism is unique: any mechanism for a QLMD problem that is truthful, efficient is a Groves mechanism (i.e., must have payments of the Groves form)
 - see proof sketch in S&LB
- Famous theorem of Roberts: the only SCFs that can be implemented truthfully (with no restrictions on preferences) are affine maximizers (basically, SWM but with weights/biases for different agents' valuations)
- Together, these show the real centrality of Groves mechanisms

Participation in the mechanism

- While agents *participating* will declare truthfully, why would agent participate? What if $h_k = -LARGEVALUE$?
- Individual rationality: no agent loses by participating in mechanism
 - basic idea: is your expected utility positive (non-negative), i.e., is value of outcome greater than your payment
- Ex interim IR: your expected utility is positive for every one of your types/valuations (taking expectation over Pr(v_{-k} | v_k))?
 - $E[v_k(M(\sigma_k(v_k), \sigma_{-k}(v_{-k}))) t_k(\sigma_k(v_k), \sigma_{-k}(v_{-k}))] \ge 0$ for all k, v_k
 - where σ is the (DS, EP, BN) equilibrium strategy profile
- Ex post IR: your utility is positive for every type/valuation (even if you learn valuations of others?
 - $v_k(M(\sigma(v))) t_k(\sigma(v)) \ge 0$ for all k, v
 - where σ is the (DS, EP, BN) equilibrium strategy profile
- Ex ante IR can be defined too (a bit less useful, but has a role in places)

VCG Mechanisms

- Clarke tax is a specific social cost function h
 - $h_k(v_{-k}^*) = \max_{o \in O[-k]} \sum_{j \neq k} v_j^*(o)$
 - assumes subspace of outcomes O[-k] that don't involve k
 - $h_k(v_{-k}^*)$: how well-off others would have been had k not participated
 - total transfer is value others received with k's participation less value that they would have received without k (i.e., "externality" imposed by k)
- With Clarke tax, called Vickrey-Clarke-Groves (VCG) mechanism
- Thm: VCG mechanism is strategyproof, efficient and ex interim individually rational (IR).
- It should be easy to see why SPA (aka Vickrey auction) is a VCG mechanism
 - what is externality winner imposes?
 - valuation of second-highest bidder (who doesn't win because of presence)

Other Issues

Budget balance: transfers sum to zero

- transfers in VCG need not be balanced (might be OK to run a surplus; but mechanism may need to subsidize its operation)
- general impossibility result: if type space is rich enough (all valuations over O), can't generally attain efficiency, strategy proofness, and budget balance
- some special cases can be achieved (e.g., see "no single-agent effect", which is why VCG works for very general single-sided auctions), or the dAGVA mechanism (BNE, ex ante IR, budget-balanced)

Implementing other choice functions

- we'll see this when we discuss social choice (e.g., maxmin fairness)
- Ex post or BN implementation
 - e.g., the dAGVA mechanism

Issues with VCG

- Type revelation
 - revealing utility functions difficult; e.g., large (combinatorial) outcomes
 - privacy, communication complexity, computation
 - can incremental elicitation work?
 - sometimes: e.g., descending (Dutch auction)
 - can approximation work?
 - in general, no; but sometime yes... we'll discuss more in a bit...
- Computational approximation
 - VCG requires computing optimal (SWM) outcomes
 - not just one optimization, but n+1 (for all n "subeconomies")
 - often problematic (e.g., combinatorial auctions)
 - focus of algorithmic mechanism design
 - But approximation can destroy incentives and other properties of VCG

Issues with VCG

- Frugality
 - VCG transfers may be more extreme than seems necessary
 - e.g., seller revenue, total cost to buyer
 - we'll see an example in combinatorial auctions
 - a fair amount of study on design of mechanisms that are "frugal" (e.g., that try to minimize cost to a buyer) in specific settings (e.g., network and graph problems)

Collusion

 many mechanisms are susceptible to collusion, but VCG is largely viewed as being especially susceptible (we'll return to this: auctions)

Returning revenue to agents

 an issue studied to some extent: if VCG extracts payments over and above true costs (e.g., Clarke tax for public projects), can some of this be returned to bidders (in a way that doesn't impact truthfulness)?

Combinatorial Auctions

- Already discussed 2nd price auctions in depth, 1st price auctions a bit (and will return in a few slides to auctions in general)
- Often sellers offer multiple (distinct) items, buyers need multiple items
 - buyer's value may depend on the collection of items obtained
- Complements: items whose value increase when combined
 - e.g., a cheap flight to Siena less valuable if you don't have a hotel room
- Substitutes: items whose value decrease when combined
 - e.g., you'd like the 10AM flight or the 7AM flight; but not both
- If items are sold separately, knowing how to bid is difficult
 - bidders run an "exposure" risk: might win item whose value is unpredictable because unsure of what other items they might win

We Will Continue Mechanism Design Next Week...