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2534 Lecture 9: Bayesian Games, 
Mechanism Design and Auctions
Wrap up (quickly) extensive form/dynamic games
Mechanism Design

• Bayesian games, mechanisms, auctions (a bit)
• will focus on Shoham and Leyton-Brown for next couple of classes
• today: Ch.6.3, main parts of Ch.10 
• next week: auctions (skim Ch.11), topics in mechanism design

Announcements
• Problem Set 2 due next week
• Project Proposals due today (unless pre-proposal was “approved”)

 will return next week with final feedback
• Projects Due on Dec.17
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Games with Incomplete Information

So far: assume agents know structure of the game
• opponents, opponent actions, and (our focus) payoffs

Unrealistic in many scenarios
• e.g., consider prior game of two firms marketing in two territories
• neither firm realistically knows the exact payoff of the other

 firms may have unknown costs of developing area A
 e.g., if “low cost” to firm, payoffs as before, but if high cost to 

Firm 1, lose -3 from profit; if HC to Firm 2, lose -1 from profit
• how would we model this?
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Simultaneous Market Movers Game
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 Example: two firms competing for market in two areas
• Each firm, 1 and 2, can tackle one area only
• Total revenue ($M) in Area A: 12, Area B: 9
• If firm is alone in one area, get all of that area’s revenue
• If both firms target same area, “bigger” firm Firm 1 gets 2/3, 

Firm 2 gets 1/3
• If Firm 1 is low cost, payoffs as before, but if high cost, penalty 

(cost) -3 to develop A; if Firm 2 is high cost, penalty -1 in A
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Auctioning a Single Item
Another example: prelude to mechanism design

• want to give away my phone to person who values it most
• assume valuations in set {100, 125, 150, 175, 200, 225, 250}

How? I don’t know your valuations!
Ask you to write valuation (sealed), give it to highest “bidder”

• Creates a game (moves are your bids)
• But dominant strategy is to bid 250

 Instead, give to highest bidder, but charge the bid price
• Much more interesting game, not obvious how to bid
• But notice game has incomplete info: you don’t know valuations of others
• It’s like you’re playing one of many possible games: uncertain which one

What if I charge high bidder the second highest price?
• Despite uncertainty of others’ payoffs, becomes much more obvious…
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Bayesian Games

A Bayesian game (of incomplete information)
• set of agents (or players)   i = {1, … N}
• action set Ai for each agent i, with joint actions  A  =  X Ai
• type space Θi for each agent i, with joint type space Θ = X Θi

• utility functions   ui : A X Θi →R 
 ui(a,θi) is utility of action a to agent i when type is θi ∈ Θi

• common prior distribution P over Θ
Type represents private information i has about the game

• usually, we’ll speak of i’s type as its “utility function” since this is 
what dictates i’s utility for any joint action

• i is assumed to know its type (it is revealed before action taken)
 also reveals partial info about others’ types (conditioning)

• game is common knowledge
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Simultaneous Market Movers Game
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 Type space: {L, H} for both firms
 Prior: P(L1,L2)=0.40; P(L1,K2)=0.16; P(H1,L2)=0.16; P(H1,H2)=0.28

• Intuitively, suppose there’s a 0.4 chance that A is a difficult territory
• A firm’s cost is high w/ p=0.8 if A is difficult; low w/ p=0.8 if not
• Gives distribution over possible games we’re playing

 Types revealed:  Firm1 learns whether it’s low, high; ditto Firm 2 
• Types are correlated: if 1 is low, believes greater chance 2 is low
• e.g. P(L2)=0.56;  but P(L2 | L1)= 0.4/(0.4+0.16) = 5/7 = 0.714
• Type revelation induces new (and different) posteriors for both agents 

 Utility: payoffs are given as described

Pr = 0.40 Pr = 0.16 Pr = 0.16 Pr = 0.28θ1 =L1 θ1 =H1

θ2 =L2
θ2 =H2



Strategies
Types revealed, so players may condition choice on type

• Analogous to extensive form games
Pure strategy is a mapping si : Θi → Ai
 e.g., if type is Low, move into A, but if type is High move into B

Mixed strategy σi is a distribution over pure strategies 
• write σi (ai | θi)  to denote probability of playing action given type

• σ denotes a strategy profile
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Expected Utilities
Ex post expected utility

• utility of a strategy profile σ given type profile θ (abusing notation)

• not realistic: players don’t know the types of the other players
Ex interim expected utility

• expected utility of a strategy profile σ given own type θi

• this is i’s best prediction of his expected utility
Ex ante expected utility

• expected utility of a strategy profile σ prior to type revelation
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Best Responses

A best response for i to profile σ-i is any strategy σi
satisfying ui(σi ∙σ-i) ≥ ui(σ’i ∙σ-i) for all σ’i

Note: this doesn’t prevent i from optimizing choice for 
each of its possible types:  Given σ-i , the strategy that 
maximizes ex ante utility will map each possible type θi to 
the choice that maximizes ex interim utility for θi 

Note: given fixed strategies of others, a player reasons 
about the (conditional) predicted types of others, and how 
this will lead to probabilities of various actions being 
played

9CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Bayes Nash Equilibria

A Bayes Nash equilibrium is a strategy profile s.t σi is a 
best response to σ-i for each player i
Note: not sufficient to reason just about revealed types 

• even though i knows its type, other agents do not; so it is 
strategies that are in equilibrium (other agents must predict how i
will act for any of its types in order to compute expected utility)

• somewhat analogous to extensive form games, but instead of 
just predicting the strategy, expectation over the realization of 
that strategy for possible type profiles must also be accounted 
for

Unlike Nash equilibria, players not only make predictions 
about others strategies, they must rely on their beliefs 
about the types of the other players too
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Conversion to Normal Form

Since we converted all of these choices into a (finite) set of pure 
strategies (assuming a finite type space), we can formulate it as a 
normal form game
New actions: set of pure strategies σi (mappings of types into 

actions)
Payoff to player i is just i’s ex ante expected utility ui(σ)

• Notice that we can’t use ex interim utility: that would place information in 
the game matrix that is not knowable to all players

• Using ex interim provides no additional leverage to player i: again, the 
strategy that provides highest ex ante utility (given a fixed strategy by 
others) also provides the highest ex interim utility for any of i’s types

The Nash equilibria in the resulting game are exactly the Bayes-Nash 
equilibria in the Bayesian game
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Normal Form Market Mover Game (I)
Strategies: AL/AH (AA), AL/BH (AB), BL/AH (BA), BL/BH (BB)
u1(AB1,BB2) = ∑θ u1(AB1,BB2|θ)Pr(θ) 

= u1(A,B|LL)Pr(LL) + u1(B,B|HL)Pr(HL)
+ u1(A,B|LH)Pr(LH) + u1(B,B|HH)Pr(HH)
= u1(A,B|L1)Pr(L1) + u1(B,B|H1)Pr(H1) 
= 12(0.56) + 6(0.44) 
= 9.36
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Normal Form Market Mover Game (II)
Strategies: AL/AH (AA), AL/BH (AB), BL/AH (BA), BL/BH (BB)
u1(AA1,BB2) = ∑θ u1(AA1,BB2|θ)Pr(θ) 

= u1(A,B|LL)Pr(LL) + u1(A,B|HL)Pr(HL)
+ u1(A,B|LH)Pr(LH) + u1(A,B|HH)Pr(HH)
= u1(A,B|L1)Pr(L1) + u1(A,B|H1)Pr(H1) 
= 12(0.56) + 9(0.44) 
= 10.68
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Normal Form Market Mover Game (III)
 u1(AB1,BA2) = ∑θ u1(AB1,BA2|θ)Pr(θ) 

= u1(A,B|LL)Pr(LL) + u1(B,B|HL)Pr(HL)
+ u1(A,A|LH)Pr(LH) + u1(B,A|HH)Pr(HH)

= 12(0.4) + 6(0.16) + 8(0.16) + 9(0.28) = 9.56
 u2(AB1,BA2) = ∑θ u2(AB1,BA2|θ)Pr(θ) 

= u2(A,B|LL)Pr(LL) + u2(B,B|HL)Pr(HL) 
+ u2(A,A|LH)Pr(LH) + u2(B,A|HH)Pr(HH)

= 9(0.4) + 3(0.16)  + 3(0.16) + 11(0.28) = 7.64
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Notice that this strategy profile makes some intuitive sense: firms can’t  “select” profiles that 
max social welfare in each game (don’t know others type; but 1 goes for A if Low, B if High; if 2 
is Low, higher belief that 1 is Low, so stays away (goes for B); if 2 is High, higher belief 1 is 
High, so goes for A.



Normal Form Market Mover Game (III)

Exercise: fill in rest of table
• fill in red question marks to see if AB/BA is a Bayes Nash eq.
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Other Incomplete Information

Harsanyi (1967) argued that other forms of uncertainty in 
structure can be modeled using payoff uncertainty

• uncertainty in player actions; e.g., can player P1 do A,B or A,B,C
 include action C as a move in all games, but create type(s) for P1

that gives C such low payoff that it would never choose that action
 assign probability to that type equal to 1 – Pr(C exists)

• uncertainty about players; e.g., is P1 in the game?
 include player P1 in all games, but create new type corresponding 

to non-existence and an action that is dominant for P1 under that 
type such that payoffs for other players are as if P1 is not present
 assign probability to this type equal to 1-Pr(P1 exists)
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Stronger Equilibrium Notions
Dominant Strategy Equilibrium

• σi is dominant for player i if it has max expected utility no matter what 
strategies other players play

• DSE: a profile in which each player plays a dominant strategy
• concept applies to normal form games too (Prisoners dilemma)
• very robust: does not rely on predictions about behavior of opponents, 

nor on accurate beliefs about other’s types
Ex Post Equilibrium

• profile σ is an EPE if, for all i:   ui(σi ∙σ-i | θ) ≥ ui(σ’i ∙σ-i | θ) for all θ, σ’i
• no matter what i learns about your type, would not deviate from σi 

• different than dominant: depends on prediction about others’ strategies
• still quite robust: does not rely on accurate beliefs about types of others, 

only predictions of strategies (much like regular Nash equilibrium)
Both notions important in mechanism design

17CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Return to the Second Price Auction

I want to give away my phone to person values it most
• in other words, I want to maximize social welfare
• but I don’t know valuations, so I decide to ask and see who’s 

willing to pay: use 2nd-price auction format
Bidders submit “sealed” bids; highest bidder wins, pays 

price bid by second-highest bidder
• also known as Vickrey auctions
• special case of Groves mechanisms, Vickrey-Clarke-Groves 

(VCG) mechanisms

2nd-price seems weird but is quite remarkable
• truthful bidding, i.e., bidding your true value, is a dominant 

strategy

To see this, let’s formulate it as a Bayesian game
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Second-Price Auction: Bayesian Game

n players (bidders)
Types: each player k has value vk ∊ [0,1] for item
strategies/actions for player k: any bid bk between [0,1]
outcomes: player k wins, pays price p (2nd highest bid)

• outcomes are pairs (k,p), i.e., (winner, price)
payoff for player k:

• if k loses: payoff is 0
• if k wins, payoff depends on price p: payoff is vk – p

Prior: joint distribution over values (will not specify for now)
• we do assume that values (types) are independent and private
• i.e., own value does not influence beliefs about value of other bidders

Note: action space and type space are continuous
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Truthful Bidding: A DSE
Needn’t specify prior: even without knowing others’ 

payoffs, bidding true valuation is dominant for every k
• strategy depends on valuation: but k selects bk equal to vk

Not hard to see deviation from truthful bid can’t help (and 
could harm) k, regardless of what others do

We’ll consider two cases: if k wins with truthful bid bk = vk
and if k loses with truthful bid bk = vk
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Equilibrium: Second-Price Auction Game
Suppose k wins with truthful bid vk

• Notice k’s payoff must be positive (or zero if tied)
Bidding bk higher than vk:

• vk already highest bid, so k still wins and still pays price p equal 
to second-highest bid b(2)

Bidding bk lower than vk:
• If bk remains higher than second-highest bid b(2) no change in 

winning status or price
• If bk falls below second-highest bid b(2) k now loses and is worse 

off, or at least no better (payoff is zero)
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Equilibrium: Second-Price Auction Game
Suppose k loses with truthful bid vk

• Notice k’s payoff must be zero and highest bid b(1) > vk

Bidding bk lower than vk:
• vk already a losing bid, so k still loses and gets payoff zero

Bidding bk higher than vk:
• If bk remains lower than highest bid b(1), no change in winning 

status (k still loses)
• If bk is above highest bid b(1), k now wins, but pays price p equal 

to b(1) > vk (payoff is negative since price is more than it’s value)

So a truthful bid is dominant: optimal no matter what 
others are bidding
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Truthful Bidding in Second-Price Auction

Consider actions of bidder 2
• Ignore values of other 

bidders, consider only their 
bids. Their values don’t 
impact outcome, only bids 
do.

What if bidder 2 bids:
• truthfully $105?

 loses (payoff 0)
• too high: $120

 loses (payoff 0)
• too high: $130

wins (payoff -20)
• too low: $70

 loses (payoff 0)
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Truthful Bidding in Second-Price Auction

Consider actions of bidder 2
• Ignore values of other 

bidders, consider only their 
bids. Their values don’t 
impact outcome, only bids 
do.

What if bidder 2 bids:
• truthfully $105?

wins (payoff 10)
• too high: $120

wins (payoff 10)
• too low: $98

wins (payoff 10)
• too low: $90

 loses (payoff 0)
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Other Properties: Second-Price Auction
Elicits true values (payoffs) from players in game even though they 

were unknown a priori
Allocates item to bidder with highest value (maximizes social welfare)
Surplus is divided between seller and winning buyer

• splits based on second-highest bid (this is the lowest price the winner 
could reasonably expect)

Outcome is similar to Japanese/English auction (ascending auction)
• consider process of raising prices, bidders dropping out, until one 

bidder remains (Japanese auction)
• until price exceeds k’s value, k should stay in auction

 drop out too soon: you lose when you might have won
 drop out too late: will pay too much if you win

• last bidder remaining has highest value, pays 2nd highest value!
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Mechanism Design

SPA offers a different perspective on use of game theory
• instead of predicting how agents will act, we design a game to facilitate 

interaction between players
• aim is to ensure a desirable outcome assuming agents act rationally

This is the aim of mechanism design (implementation theory)
Examples:

• voting/policy decisions: want policy preferred by majority of constituents
• resource allocation/usage: want to assign resources for maximal 

societal benefit (or maximal benefit to subgroup, or …); often includes 
determination of fair payments

• task distribution: want to allocate tasks fairly (relative to current 
workload), or in a way that ensures efficient completion, or …

Recurring theme: we usually don’t know the preferences 
(payoffs) of society (participants): hence Bayesian games

• and often incentive to keep these preferences hidden (see examples)
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Mechanism Design: Basic Setup
Set of possible outcomes O
n players, with each player k having:

• type space Θk

• utility function uk : O X Θk →R 
 uk(o,θk) is utility of outcome o to agent k when type is θk ∈ Θk

 think of θk as an encoding of k’s preferences (or utility function)
 (Typically) a common prior distribution P over Θ
A social choice function (SCF) C: Θ → O

• intuitively C(θ) is the most desirable option if player preferences are θ
• can allow “correspondence”, social “objectives” that score outcomes

Examples of social choice criteria:
• make majority “happy”;  maximize social welfare (SWM);  find “fairest” 

outcome;  make one person as happy as possible (e.g., revenue 
max’ztn in auctions), make least well-off person as happy as possible…

• set up for SPA: types: values; outcomes: winner-price; SCF: SWM

27CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



A Mechanism

A mechanism ((Ak),M) consists of:
• (A1,…, An): action (strategy) sets (one per player) 
• an outcome function  M: A ⟶ Δ(O)     (or  M: A ⟶ O ) 
• intuitively, players given actions to choose from; based on 

choice, outcome is selected (stochastically or deterministically)
• for many mechanisms, we’ll break up outcomes into core 

outcome plus monetary transfer (but for now, glom together)
Second-price auction:

• Ak is the set of bids:  [0,1]
• M selects winner-price in obvious way

Given a mechanism design setup (players, types, utility 
functions, prior), the mechanism induces a Bayesian 
game in the obvious way
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Implementation
What makes a mechanism useful?

• it should implement the social choice function C
• i.e., if agents act “rationally” in the Bayesian game, outcome proposed 

by C will result
• of course, rationality depends on the equilibrium concept

A mechanism (A,M) S-implements C iff for (some/all) S-solutions σ of 
the induced Bayesian game we have, for any θ ∈ Θ, M(σ(θ)) = C(θ)

• here S may refer to DSE, ex post equilibrium, or Bayes-Nash equilibrium
• in other words, when agents play an equilibrium in the induced game, 

whenever the type profile is θ, then the game will give the same outcome 
as prescribed for θ by the social choice function

• notice some indeterminacy (in case of multiple equilibria)
For SCF C = “maximize social welfare” (including seller as a player, 

and assuming additive utility in price/value), the SPA implements SCF 
in dominant strategies
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Revelation Principle

Given SCF C, how could one even begin to explore space of 
mechanisms?

• actions can be arbitrary, mappings can be arbitrary, …
Notice that SPA keeps actions simple: “state your value”

• it’s a direct mechanism:   Ak = θk (i.e., actions are “declare your type”)
• …and stating values truthfully is a DSE
• Turns out this is an instance of a broad principle

Revelation principle: if there is an S-implementation of SCF C, then 
there exists a direct, mechanism that S-implements C and is truthful

• intuition: design new outcome function M’ so that when agents report 
truthfully, the mechanism makes the choice original M would have 
realized in the S-solution

Consequence: much work in mechanism design focuses on direct 
mechanisms and truthful implementation
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Revelation Principle
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Gibbard-Satterthwaite Theorem
Dominant strategy implementation a frequent goal

• agents needn’t rely on any strategic reasoning, beliefs about types
• unfortunately, DS implementation not possible for general SCFs

Thm (Gibbard73, Sattherwaite75): Let C (over N, O) be s.t.:
(i) |O| > 2; 
(ii) C is onto (every outcome is selected for some profile θ); 
(iii) C is non-dictatorial (there is no agent whose preferences “dictate” the 
outcome, i.e., who always gets max utility outcome); 
(iv) all preferences are possible.

Then C cannot be implemented in dominant strategies.
Proof (and result) similar to Arrow’s Thm (which we’ll see shortly)
Ways around this:

• use weaker forms of implementation
• restrict the setting (especially consider special classes of preferences)
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Groves Mechanisms
Despite GS theorem, truthful implementation in DS is possible for an 

important class of problems
• assume outcomes allow for transfer of utility between players
• assume agent preferences over such transfers are additive
• auctions are an example (utility function in SPA)

Quasi-linear mechanism design problem (QLMD)
• extend outcome space with “monetary” transfers

 outcomes: O x T, where T is set of vectors of form (t1, … tn)
• quasi-linear utility: uk((o,t),θk) = vk(o,θk) + tk
• SCF is SWM (i.e., maximization of social welfare SW(o,t,θ) )

Assumptions:
• value for “concrete” outcomes and transfer commensurate
• players are risk neutral

 In SPA, utility is valuation less price paid (negt’v transfer to winner), or price 
paid (pos’tv transfer to seller) (see formalization on slide 3)
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Groves Mechanisms
A Groves mechanism (A,M) for QLMD problem is:

• Ak = θk = Vk : agent k announces values v*k  for outcomes
• M(v*) = (o, t1, … tn) where:

 o = argmaxo∊O ∑k v*k(o)
 tk(v*k) = ∑j≠k v*j(o) – hk(v*-k),   where hk is an arbitrary function

 Intuition is simple:
• choose SWM-outcome based on declared values v*
• then transfer to k: the declared welfare of chosen outcome to the other 

agents, less some “social cost” function hk which depends on what 
others said (but critically, not on what k reports)

Some notes:
• in fact, a family of mechanisms, for various choices of hk

• if agents reveal true values, i.e., v*k = vk for all k, then it maximizes SW
• SPA: is an instance of this
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Truthfulness of Groves

Thm: Any Groves mechanism is truthful in dominant 
strategies (strategyproof) and efficient.
Proof (easy to see):

• outcome is:  o = argmaxo∊O ∑k v*k(o)
• k receives:   tk(v*k) = ∑j≠k v*j(o) – hk(v*-k) 
• k’s utility for report v*k is:  vk(o) + ∑j≠k v*j(o) – hk(v*-k), 

 here o depends on the report v*k

• k wants to report v*k that maximizes vk(o) + ∑j≠k v*j(o) 
 this is just k’s utility plus reported SW of others
 notice k’s report has no impact on third term hk(v*-k)

• but mechanism chooses o to max reported SW, so no report by k
can lead to a better outcome for k than vk

• efficiency (SWM) follows immediately
This is why SPA is truthful (and efficient)
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Other Properties of Groves

Famous theorem of Green and Laffont: The Groves mechanism is 
unique: any mechanism for a QLMD problem that is truthful, efficient 
is a Groves mechanism (i.e., must have payments of the Groves 
form)

• see proof sketch in S&LB

Famous theorem of Roberts: the only SCFs that can be implemented 
truthfully (with no restrictions on preferences) are affine maximizers
(basically, SWM but with weights/biases for different agents’ 
valuations)

Together, these show the real centrality of Groves mechanisms
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Participation in the mechanism
While agents participating will declare truthfully, why would agent 

participate? What if hk = -LARGEVALUE?
 Individual rationality: no agent loses by participating in mechanism

• basic idea: is your expected utility positive (non-negative), i.e., is value 
of outcome greater than your payment

Ex interim IR: your expected utility is positive for every one of your 
types/valuations (taking expectation over Pr(v-k | vk) )?

• E [ vk(M(σk(vk), σ-k(v-k))) - tk(σk(vk), σ-k(v-k)) ] ≥ 0   for all k, vk

 where σ is the (DS, EP, BN) equilibrium strategy profile
Ex post IR: your utility is positive for every type/valuation (even if you 

learn valuations of others?
• vk(M(σ(v))) - tk(σ(v)) ≥ 0   for all k, v

 where σ is the (DS, EP, BN) equilibrium strategy profile

 Ex ante IR can be defined too (a bit less useful, but has a role in places)
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VCG Mechanisms
Clarke tax is a specific social cost function h

• hk(v*-k) = maxo∊O[-k] ∑j≠k v*j(o)
• assumes subspace of outcomes O[-k] that don’t involve k
• hk(v*-k) : how well-off others would have been had k not participated
• total transfer is value others received with k’s participation less value that 

they would have received without k (i.e., “externality” imposed by k)
With Clarke tax, called Vickrey-Clarke-Groves (VCG) mechanism

Thm: VCG mechanism is strategyproof, efficient and ex interim 
individually rational (IR).

 It should be easy to see why SPA (aka Vickrey auction) is a VCG 
mechanism

• what is externality winner imposes?
• valuation of second-highest bidder (who doesn’t win because of presence)
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Other Issues
Budget balance: transfers sum to zero

• transfers in VCG need not be balanced (might be OK to run a surplus; 
but mechanism may need to subsidize its operation)

• general impossibility result: if type space is rich enough (all valuations 
over O), can’t generally attain efficiency, strategy proofness, and budget 
balance

• some special cases can be achieved (e.g., see “no single-agent effect”, 
which is why VCG works for very general single-sided auctions), or the 
dAGVA mechanism (BNE, ex ante IR, budget-balanced)

 Implementing other choice functions
• we’ll see this when we discuss social choice (e.g., maxmin fairness)

Ex post or BN implementation
• e.g., the dAGVA mechanism
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Issues with VCG
Type revelation

• revealing utility functions difficult; e.g., large (combinatorial) outcomes
 privacy, communication complexity, computation

• can incremental elicitation work?
 sometimes: e.g., descending (Dutch auction)

• can approximation work?
 in general, no; but sometime yes… we’ll discuss more in a bit…

Computational approximation
• VCG requires computing optimal (SWM) outcomes

 not just one optimization, but n+1 (for all n “subeconomies”)
 often problematic (e.g., combinatorial auctions)
 focus of algorithmic mechanism design

• But approximation can destroy incentives and other properties of VCG
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Issues with VCG
Frugality

• VCG transfers may be more extreme than seems necessary
 e.g., seller revenue, total cost to buyer
 we’ll see an example in combinatorial auctions

• a fair amount of study on design of mechanisms that are “frugal” (e.g., 
that try to minimize cost to a buyer) in specific settings (e.g., network 
and graph problems)

Collusion
• many mechanisms are susceptible to collusion, but VCG is largely 

viewed as being especially susceptible (we’ll return to this: auctions)

Returning revenue to agents
• an issue studied to some extent: if VCG extracts payments over and 

above true costs (e.g., Clarke tax for public projects), can some of this 
be returned to bidders (in a way that doesn’t impact truthfulness)?
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Combinatorial Auctions

Already discussed 2nd price auctions in depth, 1st price auctions a bit 
(and will return in a few slides to auctions in general)

Often sellers offer multiple (distinct) items, buyers need multiple items
• buyer’s value may depend on the collection of items obtained

Complements: items whose value increase when combined
• e.g., a cheap flight to Siena less valuable if you don’t have a hotel room

Substitutes: items whose value decrease when combined
• e.g., you’d like the 10AM flight or the 7AM flight; but not both

 If items are sold separately, knowing how to bid is difficult
• bidders run an “exposure” risk: might win item whose value is 

unpredictable because unsure of what other items they might win
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We Will Continue Mechanism Design 
Next Week…
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