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2534 Lecture 7: Reinforcement Learning (Brief 
Introduction)

Structured Models of MDPs and MDP approximations
• (wrap up from last time)

Introduction to Reinforcement Learning
Announcements

• “Preliminary” project proposals due today if you want feedback 
before the Nov.4 deadline.

• For those who didn’t meet me last week: slots today
 20 minute time slots (come prepared)
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Reinforcement Learning: What is it?

Reinforcement learning: a number of different views
• Psychology: operant conditioning (Konorkski, Skinner)
• Neuroscience
• Statistics: bandit problems
• OR/control engineering

From our perspective:
• Somewhat abstractly: learning how to behave/act based on 

interactions with environment
• More precisely: solving a (PO)MDP without model “specified in 

advance”
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Reinforcement Learning: Why?

Stochastic planning problems where model (transition 
probabilities, rewards, even state space) is unknown, but 
information can be gleaned while interacting with the 
environment

• Robotics, adaptive control (industrial processes, queues, 
networks), logistics, etc.

Problems where simulation models are available (e.g., 
return 𝑠𝑠(𝑡𝑡+1), 𝑟𝑟(𝑡𝑡+1) given 𝑠𝑠(𝑡𝑡), 𝑎𝑎(𝑡𝑡)), but explicit transition 
models/rewards not given
Problems with large state spaces where explicit dynamic 

programming is intractable/infeasible
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Reinforcement Learning: Basic Picture

Agent acting in a (we’ll assume finite) MDP M=(S, A, P, R)
• Assume state, action spaces known
• Assume transition model P and reward function R unknown

Agent can take actions at each time t:
• Collects a series of observations 𝑠𝑠(𝑡𝑡), 𝑎𝑎(𝑡𝑡), 𝑟𝑟(𝑡𝑡), 𝑠𝑠(𝑡𝑡+1)

Key question: what is “best” action to take at time t given 
all past observations: 

{𝑠𝑠(𝑘𝑘), 𝑎𝑎(𝑘𝑘), 𝑟𝑟(𝑘𝑘), 𝑠𝑠(𝑘𝑘+1): 𝑘𝑘 < 𝑡𝑡}

4CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



A First Simple Approach
One simple approach:

• Collect samples for “sufficient period of time” (data/learning phase)
• Build an approximate model of the MDP (say �𝑀𝑀)

Estimate transitions P(s,a,t) and R(s,a) using empirical observed 
distributions (or update some prior beliefs using these obsvtn’s)

• Solve �𝑀𝑀 = (𝑆𝑆,𝐴𝐴, �𝑃𝑃, �𝑅𝑅) using standard technique (e.g., policy itert’n)
Drawbacks (or at least “issues”)? There are many:

• Performance during learning phase?
• How long should learning phase be to have high-quality est. of �𝑀𝑀?
• How do you ensure the data collected is sufficient to learn �𝑀𝑀?

 Transitions not just handed to you: you actively collect them---
the exploration problem (need to cover (s,a)-space)

• Why not use partially learned model during phase 1? Why stop 
learning during phase 2?
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Model-based vs. Model-free RL
The model-based approach above does have some value

• If learning to act in a simulated model, exploration matters; but 
performance while learning less critical (apart from efficiency)

• If learning to act in real-world, one should address all of the issues 
above, but this can still be a valuable approach

Model-free methods are, however, far more common
• Rough idea: based on interactions with environment, attempt to 

directly learn the MDP value function (and/or MDP optimal policy)
We’ll focus on model-free methods, but mention issues and 

usefulness of model-based methods at the end
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Learning a Value Function
Simpler problem: learn 𝑉𝑉𝜋𝜋 for fixed (stationary) policy 𝜋𝜋

• Policy may be deterministic or stochastic, but regardless, induces 
Markov chain and Markov reward process (MRP)

• Predict expected sum of discounted rewards from any state s
• Given data 𝑠𝑠(0), 𝑟𝑟(0), 𝑠𝑠(1), 𝑟𝑟(1), … , 𝑠𝑠 𝑡𝑡 , 𝑟𝑟 𝑡𝑡 , …

Sometimes called value prediction problem

7CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Aside: Robbins-Munro Stochastic Approximation

Given samples of random variable V: {𝑟𝑟(𝑡𝑡): 𝑡𝑡 ≤ 𝑁𝑁}

Typically estimate mean of V as: �𝑉𝑉 = 1
𝑁𝑁
∑𝑡𝑡𝑁𝑁 𝑟𝑟(𝑡𝑡)

Can instead estimate online as data collected
• Estimate at time t (t th data point):

• Refer to 𝑟𝑟(𝑡𝑡)- �𝑉𝑉(𝑡𝑡−1) as “error”, 0 < 𝛼𝛼𝑡𝑡 < 1 is “step size”
This converges to true mean of V almost surely if
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�𝑉𝑉(𝑡𝑡) = �𝑉𝑉(𝑡𝑡−1) + 𝛼𝛼𝑡𝑡(𝑟𝑟(𝑡𝑡)- �𝑉𝑉(𝑡𝑡−1)) = (1 − 𝛼𝛼𝑡𝑡) �𝑉𝑉(𝑡𝑡−1) + 𝛼𝛼𝑡𝑡𝑟𝑟(𝑡𝑡)

�
𝑡𝑡=1

∞

𝛼𝛼𝑡𝑡 = ∞ 𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑡𝑡=1

∞

𝛼𝛼𝑡𝑡2 < ∞ E.g., let 𝛼𝛼𝑡𝑡 = 1
𝑡𝑡



Episodic MDPs
To start, assume an “episodic” MDP:

• (any) policy eventually reaches a zero-reward absorbing state, then 
restart MDP in a new initial state (with some distribution P0)

• So we get distinct episodes/trajectories with “restarts”
• Assume K such episodes (of varying, stochastic length)
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Monte Carlo Value Prediction (Episodic MDPs)
Simple method: after each episode k

• Let return be discounted sum of rewards: 𝑅𝑅𝑅𝑅𝑡𝑡𝑘𝑘 = ∑𝑡𝑡=0
𝑁𝑁𝑘𝑘 𝛾𝛾𝑡𝑡 𝑟𝑟(𝑡𝑡)

• Update �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘
0 ) ← �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘

0 ) + 𝛼𝛼(𝑅𝑅𝑅𝑅𝑡𝑡𝑘𝑘 − �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘
(0)))

• Intuition: Return of episode k is a new sample of expected value of 
policy when starting at state 𝑠𝑠𝑘𝑘

(0)

Some inefficiencies and problems:
• Not all MDPs are episodic
• Does not update state values frequently: only at end of episodes
• Does not update values of “intermediate” states on trajectory
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Every Visit Monte Carlo Estimation
Tackles 3rd problem 
Simple method: after each episode k

• Define return for each state in episode: 𝑅𝑅𝑅𝑅𝑡𝑡𝑘𝑘 𝑡𝑡 = ∑𝑖𝑖=𝑡𝑡
𝑁𝑁𝑘𝑘 𝛾𝛾𝑖𝑖 𝑟𝑟𝑘𝑘

(𝑖𝑖)

• Update: �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘
𝑡𝑡 ) ← �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘

𝑡𝑡 ) + 𝛼𝛼(𝑅𝑅𝑅𝑅𝑡𝑡𝑘𝑘 𝑡𝑡 − �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘
(𝑡𝑡)))

Update Intuition: Each visit of 𝑠𝑠𝑘𝑘
(𝑡𝑡) provides a sample of 

expected value of policy when starting at state 𝑠𝑠𝑘𝑘
(𝑡𝑡)
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Temporal Difference Learning
Tackles 2nd problem: don’t wait until end of episode

• Bootstrap prediction of current state using predicted val of next state

After each transition (𝑠𝑠𝑘𝑘
(𝑡𝑡), 𝑟𝑟𝑘𝑘

(𝑡𝑡), 𝑠𝑠𝑘𝑘
(𝑡𝑡+1))

• Define temporal difference: 𝑇𝑇𝑇𝑇𝑘𝑘,𝑡𝑡 = 𝑟𝑟𝑘𝑘
(𝑡𝑡) + 𝛾𝛾 �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘

𝑡𝑡+1 ) − �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘
(𝑡𝑡))

• Update �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘
(𝑡𝑡)) ← �𝑉𝑉𝜋𝜋(𝑠𝑠𝑘𝑘

(𝑡𝑡)) + 𝛼𝛼 � 𝑇𝑇𝑇𝑇𝑘𝑘,𝑡𝑡

• Intuition: use recursive nature of value function (Bellman equation)
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Temporal Difference Learning: TD(0)
Method above is sometimes known as TD(0)
Core of most approaches to reinforcement learning

• Allows full online updates
• Note: no reliance on episodic MDPs
• Will converge to true value of stationary policy under mild conditions 

(e.g., ergodicity)
• Very simple to implement
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Temporal Difference Learning: TD(𝝀𝝀)
Monte Carlo and TD(0) are extreme points

• MC uses no bootstrapping: only actual rewards recv’d in trajectory
• TD(0) uses only immediate reward, future value “bootstrapped”

TD(𝝀𝝀) uses weighted combination “multi-step returns”

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕) 𝒓𝒓(𝒕𝒕+𝟏𝟏) 𝒓𝒓(𝒕𝒕+𝟐𝟐) 𝒓𝒓(𝒕𝒕+𝒌𝒌)

𝑠𝑠(𝑡𝑡+𝑘𝑘+1)

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,𝑘𝑘 = �
𝑖𝑖=𝑡𝑡

𝑡𝑡+𝑘𝑘

𝛾𝛾𝑖𝑖−𝑡𝑡 𝑟𝑟(𝑖𝑖) + 𝛾𝛾𝑘𝑘+1 �𝑉𝑉(𝑠𝑠(𝑡𝑡+𝑘𝑘+1))

�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝒌𝒌+𝟏𝟏))

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕) 𝒓𝒓(𝒕𝒕+𝟏𝟏) 𝒓𝒓(𝒕𝒕+𝟐𝟐)

𝑠𝑠(𝑡𝑡+3)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝟑𝟑))

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕) 𝒓𝒓(𝒕𝒕+𝟏𝟏)

𝑠𝑠(𝑡𝑡+2)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝟐𝟐))

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕)

𝑠𝑠(𝑡𝑡+1)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝟏𝟏))𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝟎𝟎

𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝟏𝟏

𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝟐𝟐

𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝒌𝒌
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Temporal Difference Learning: TD(𝝀𝝀)
TD(𝝀𝝀) uses weighted combination “multi-step returns”

• Target Value of 𝑠𝑠(𝑡𝑡):  Tar(𝑠𝑠 𝑡𝑡 ) = (1 − λ)∑𝑘𝑘=0∞ 𝜆𝜆𝑘𝑘𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,𝑘𝑘

• Update �𝑉𝑉𝜋𝜋(𝑠𝑠 𝑡𝑡 ) ← �𝑉𝑉𝜋𝜋(𝑠𝑠 𝑡𝑡 ) + 𝛼𝛼[Tar 𝑠𝑠 𝑡𝑡 − �𝑉𝑉𝜋𝜋(𝑠𝑠 𝑡𝑡 )]

TD(0) is what we’ve seen before, TD(1) is MC (if episodic, 
def’n above needs a “terminal” value)

• Can adjust 𝝀𝝀 over time (from larger to smaller values)
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𝒓𝒓(𝒕𝒕) 𝒓𝒓(𝒕𝒕+𝟏𝟏) 𝒓𝒓(𝒕𝒕+𝟐𝟐) 𝒓𝒓(𝒕𝒕+𝒌𝒌)

𝑠𝑠(𝑡𝑡+𝑘𝑘+1)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝒌𝒌+𝟏𝟏))

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕) 𝒓𝒓(𝒕𝒕+𝟏𝟏) 𝒓𝒓(𝒕𝒕+𝟐𝟐)

𝑠𝑠(𝑡𝑡+3)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝟑𝟑))

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕) 𝒓𝒓(𝒕𝒕+𝟏𝟏)

𝑠𝑠(𝑡𝑡+2)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝟐𝟐))

𝑠𝑠(𝑡𝑡)

𝒓𝒓(𝒕𝒕)

𝑠𝑠(𝑡𝑡+1)
�𝑽𝑽(𝒔𝒔(𝒕𝒕+𝟏𝟏))𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝟎𝟎

𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝟏𝟏

𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝟐𝟐

𝑹𝑹𝑹𝑹𝒕𝒕𝒕𝒕,𝒌𝒌

(𝟏𝟏 − 𝝀𝝀)

(𝟏𝟏 − 𝝀𝝀)𝝀𝝀

(𝟏𝟏 − 𝝀𝝀)𝝀𝝀𝟐𝟐

(𝟏𝟏 − 𝝀𝝀)𝝀𝝀𝒌𝒌



Eligibility Traces
TD implemented using the notion of eligibility traces:

• Don’t wait until you see all returns before updating�𝑉𝑉𝜋𝜋(𝑠𝑠 𝑡𝑡 )
• Update incrementally, by keeping track of “eligibility score”: how 

much should any past-seen state be updated based on most 
recently observed temporal difference

• At any point in time, current estimated value is based on current set 
of truncated eligibility traces

For details see Csepesvari (or Sutton and Barto)
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Control: Deciding How to Act

Value prediction OK for fixed policy
• …but we want to find an optimal policy

First idea:
• Use value prediction to evaluate a policy
• Use policy improvement step (like policy iteration) to change 

policy given current estimated values
• Seems OK but requires some significant assumptions to make 

work in practice…
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Learning Approach to Policy Iteration

Hypothetically, we could:
• Execute a policy 𝜋𝜋 for a while, learn an estimated value function 
�𝑉𝑉𝜋𝜋 using a TD method

• Improve policy (find greedy policy w.r.t. �𝑉𝑉𝜋𝜋):
 𝜋𝜋 𝑠𝑠 ← argmax 𝑎𝑎 {𝑅𝑅 𝑠𝑠,𝑎𝑎 + ∑𝑠𝑠′ 𝑃𝑃 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ �𝑉𝑉𝜋𝜋 𝑠𝑠′ }
 equivalently: 𝜋𝜋 𝑠𝑠 ← argmax 𝑎𝑎 { �𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 }

• Repeat until convergence
Works in principle even if value estimate is approximate

• E.g., see our discussion of modified policy iteration
Relies only on being able to estimate greedy policy

• But this requires we know a model to estimate �𝑄𝑄𝜋𝜋 𝑠𝑠, 𝑎𝑎 given �𝑉𝑉𝜋𝜋
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Issues: No Model, Exploration

With no model, perhaps we could estimate �𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 ?
• But no reason policy 𝜋𝜋 would ever do action a state s
• We could explicitly explore (“exploring starts”) in episodic MDPs

At episode start, try arbitrary action with some probability
• If policy is stochastic and tries each (s,a)-pair with positive 

probability, then we can estimate �𝑄𝑄𝜋𝜋 directly
In either case, we see that we (usually) need to 

incorporate explicit exploration actions into our policy in 
order to ensure we “learn enough” about all actions to 
engage in policy improvement

• We’ll come back to exploration-exploitation tradeoff shortly
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Off-policy vs. On-policy RL

Method above is an on-policy method:
• Learns values (V,Q) of specific policy being executed

Off-policy method: learns value (V,Q) of policy different 
from that being executed (ideally, optimal policy)
Methods above adaptable to be (inefficiently) off-policy
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Q-learning

Q-learning: very simple, powerful off-policy method
• Learn Q-function for optimal policy directly
• Probably most important practical insight for AI-based RL
• Very simple update rule: sample-based Bellman backup

Q-learning guaranteed to converge to optimal Q-values if 
all actions tried infinitely often and learning rate set 
according to RM conditions
Can be extended to multi-step returns (Q(𝜆𝜆)), etc.
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Exploration-Exploitation Tradeoff

To ensure convergence, RL methods need to sample all 
actions at every state sufficiently often

• At odds with acting optimally given current estimated �𝑉𝑉
Exploration-exploitation tradeoff

• Exploit: execute best estimated action?
• Explore: try a new action with lower estimated value, but for 

which I may learn something useful?
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Exploration Methods

Assume n actions, a* optimal at current state s, estimated Q
Epsilon-greedy: choose a* with prob. 1-ε, others with prob. 1/ε(n-1)

Boltzmann (softmax): execute each action with prob 1
𝑍𝑍
𝑅𝑅𝑄𝑄(𝑠𝑠,𝑎𝑎)�𝜏𝜏−1

• 𝜏𝜏 is a temperature parameter: 𝜏𝜏 → ∞ means all actions equally 
likely, 𝜏𝜏 → 0 means a* will be chosen with near certainty

• 1/Z is normalization term
Confidence-based methods:

• Roughly: use statistical tests to estimate a confidence bounds on 
estimated Q-values, then choose actions based on mean values 
but with an “exploration bonus” if high uncertainty (e.g., large 
upper confidence bound)

• Many heuristic and theoretically sound variants: interval-
estimation, UCT, “optimism in the face of uncertainty,” …
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Function Approximation

As with MDPs, RL methods will be wildly intractable if 
state (action) space is large
Problem not just computational: we need a lot of data 

(i.e., (s,a,r,s) samples), not just computation
The ability to generalize predicted values from one state, 

or (s,a)-pair, to others invaluable for computation and to 
derive maximum benefit from experience

• E.g., the first time you visit state s, it would be nice to estimate 
its value from other “similar” states
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Some approaches

K-nearest neighbors (memory-based RL)
• Predict value of a state s based on the values of nearby states 

(even if s has been visited in the past)
• Issues: need similarity metric (sometimes natural), computational 

search for NNs (esp. in high-dim. state space)
• Other similarity kernels can be used…

Gradient descent (or other learning method) on some 
differentiable approx. function to reduce error in prediction

• Neural network, linear function approximator, etc.
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Linear Function Approximation of V

For instance, suppose �𝑉𝑉 𝑠𝑠 = 𝒘𝒘𝜽𝜽(𝑠𝑠)
• Feature vector (basis f’ns) 𝜽𝜽(𝑠𝑠), weight vector 𝒘𝒘
• Train weight vector using RMSE of V, using current target value 

tar(s), e.g. tar 𝑠𝑠 𝑡𝑡 = 𝑟𝑟(𝑡𝑡) + 𝛾𝛾 �𝑉𝑉𝜋𝜋(𝑠𝑠 𝑡𝑡+1 ;𝒘𝒘)

In linear case:
• 𝛻𝛻𝑤𝑤 �𝑉𝑉𝜋𝜋(𝑠𝑠;𝑤𝑤) = 𝜽𝜽(𝑠𝑠) is simple to work with
• Under certain conditions, TD(𝝀𝝀), Q, can be proven to converge
• Of course, it is still an approximation, since true VF may not be 

representable in liner fashion
Beyond linear, few theoretical results (but very useful)
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Model-based RL

Use experience tuple to estimate MDP model
Advantage: you can update state value predictions using 

dynamic programming with approximate model
• Often can wring much more value out of existing experience 

rather than waiting for state visits in real-world (or simulation)
Uncertainty in model can be exploited to schedule DP 

backups in an effective fashion:
• E.g., prioritized sweeping
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Bayesian RL

Bayesian reinforcement learning
• Have a prior distribution over model parameters
• Update distribution based on observed transitions
• Choose actions with greatest expected long-term value

In principle, solves the exploration-exploitation problem 
optimally
In practice, very difficult to work with computationally

• Large POMDP, with high-dim. continuous state space (model 
parameters)

• Approximations and heuristics often show very good 
performance: tractability is largest bottleneck
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