
1

2534 Lecture 6: Tractable Solutions of MDPs
and POMDPs

Discuss basic algorithms for POMDPs (from last time)
POMDPs: Point-based Value Iteration
Structured Models of MDPs
Announcements

• Asst.1 due today
• Project discussions slots on Tues, Thurs, Friday this week

 20 minute time slots (come prepared)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: POMDPs

POMDPs offer a very general model for sequential
decision making allowing:

• uncertainty in action effects
• uncertainty in knowledge of system state, noisy observations
• multiple (possibly conflicting) objectives
• nonterminating, process-oriented problems

It is the uncertainty in system state that distinguishes
them from MDPs

2CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: POMDPs: Basic Model

As in MDPs: S, A, , ,

Observation space: Z (or)

Observation probabilities: for

3CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

a
ijp a

ir
T

ir

aZ
a
ijzp aZz∈

St

Zt

St+1

At

Zt+1

St+2

At+1

Zt+2

Recap: History-based Policies
Information available at time t:

• initial distribution (belief state)

• history of actions, observations: a1, z1, a2, z2,…, at-1, zt-1

Thus, we can view a policy as a mapping:

For given belief state b, it is a conditional plan

• notice distinction with MDPs: can’t map from state to actions

4CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)(Sb ∆∈

AHS Tt →×∆ ≤)(:π

else:MN...
..Def:RP;MN.if

;EXelse:MN;MN

MN...Def:IN;MN;if
MN;MN;EX;e.g.,

Recap: Belief States
History-based policy grows exponentially with horizon

• infinite horizon POMDPs problematic
Belief state summarizes history sufficiently [Aoki

(1965), Astrom (1965)]
Let b be belief state; suppose we take action a, get obs z
Let T(b,a,z) be updated belief state (transition to new b)
If we let bi denote Pr(S = i), we update:

5CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)(Sb ∆∈

∑
∑

=

=

=

jk
a
jkz

a
jkk

j
a
jiz

a
jij

i

ppb

ppb

)b,a|iPr()b,a,i|zPr(

)b,z,a|iPr()z,a,b(T

α

Recap: Belief State MDP

POMDP now an MDP with state space

Reward:

Transitions: if b' = T(b,a,z); 0 o.w.

Optimality Equations:

6CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)(S∆
a

ii i
aa

b rbrbr ∑=⋅=

),|Pr(', abzpa
bb =

))]z,a,b(T(Vppr[b

)b(Vprb)b(Q
k

z
a
ijzj

a
ij

a
ii i

k
'b

a
'b,b

ak
a

1

1

−+

−+

∑∑∑=

∑⋅=

)(max)(bQbV k
aa

k =)(maxarg)(bQb k
a

a

k =π

Recap: Belief State MDP Graphically

7CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

b

b1=T(b,a,z1)

b2=T(b,a,z2)

b3=T(b,a,z3)

Pr(z1|a,b)

Pr(z2|a,b)

Pr(z3|a,b)

Belief State Transitions for Action a, Belief State b

Recap: PWLC Value Function

8CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Belief Stateb(s1)=0 b(s1)=1

Value

Recap: Representation of Q-function

9CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

σ1

z1

z2

σ2 z1
z2

σ3

σ4

z1,z2

z1,z2

PWLC Representation of Qa

σ1 corresponds to “Do(a);
if z1, do(red);
if z2, do(green)”

Recap: Linear Support Graphically

10CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Belief State

α1

α2

α3

w1 w2

αnew

Value at
witness w1

Value at
witness w2

Sources of Intractability

Size of α-vectors
• each is size of state space (exponential in number of variables)

Number of α-vectors
• potentially grows exponentially with horizon

Belief state monitoring
• must maintain belief state online in order to implement policy

using value function
• belief state representation: size of state space

11CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Approximation Strategies

Sizes of problems solved exactly are quite small
• various approximation methods developed
• often deal with 1000 or so states, not much more

Grid-Based Approximations
• compute value at small set of belief states
• require method to “interpolate” value function
• require grid-selection method (uniform, variable, etc.)
• we’ll discuss one method (Perseus/PBVI) today

Finite Memory Approximations
• e.g., policy as function of most recent actions, observations
• can sometimes convert VF into finite-state controller

12CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Approximation Strategies

Learning Methods
• assume specific value function representation
• e.g., linear value function, smooth approximation, neural net
• train representation through simulation

Heuristic Search Methods
• search through belief space from initial state
• requires good heuristic for leverage
• heuristics could be generated by other methods

Structure-based Approximations
• E.g., based on decomposability of problem

13CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Grid-based Approximations

High level motivation:
• number of a vectors grows exponentially (even in practice) with

horizon (one of biggest impediments to solving POMDPs)
• intuitively, need optimal policies for every belief point
• instead, we could select a finite sample (or grid) of belief points

on the n-dimensional simplex and compute optimal value
function (or policy) for those points

• for any other belief points not on grid, use some interpolation
scheme

• can define a simple value iteration scheme based on this idea

14CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Belief Grid (2-D, 3-D), with VF (2-D)

15CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

b1 b2 b3 b40 1
0 1

1

P(s1)

P(s2)

P(s1)

2 state POMDP (s0,s1) 3 state POMDP (s0,s1,s2)

Grid-based Value Iteration
Given value function V(k-1) on grid B
Compute value V(k) at grid points in usual way

Problem: T(b,a,z) not usually on grid even if b is
Solution: use some form of interpolation over V(k-1)

16CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

))]z,a,b(T(Vppr[b)b(Q k
z

a
ijzj

a
ij

a
ii ik

a
1−+ ∑∑∑=

b1 b2 b3 b40 1
V(k-1)

b1 b2 b3 b40 1
V(k)

z1

z2do(a)

Point-based Value Iteration

Grid-based methods expensive, performance debatable
• Selecting suitable grid, interpolation can be expensive

But recall approximation based on Cheng’s linear support
• just use a subset of α-vectors

PBVI methods combine the two insights
• select a small subset of belief points
• but compute/backup α-vectors instead of just values
• no interpolation, use collection of α-vectors as VF representation

Briefly, let’s look at:
• Pineau’s original PBVI
• Spaan and Vlassis Perseus

17CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Point-based Value Iteration
Main idea (roughly)

• fix a small set of belief points B
• assume approximate set of α-vectors V(k-1)
• do backups for each b in B, using V(k-1), to construct V(k)
• can prune (remove dominated vectors)
• can expand set of belief points in an anytime fashion (add new belief

points if you want, as time permits)

18CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

α1

α4

α3

α2

α(k-1)α(k)

z1

z2a

b1 b2 b3 b4b1 b2 b3 b4

PBVI: Which Belief States (Grid)?

 Initial belief states B
• starting at b0, consider updated T(b,z,a) reached by taking action a and

sampling a random observation z (sample z with Pr(z|b,a))
• take belief state from one of these actions, the one that is greatest

distance (L1 or L2) from any belief point in the set
 aim: trying to get maximum coverage of belief space (diversity, but

informed by reachability considerations)
Repeat as time permits, consider expanding belief set B by

• using same process as above, for each b in B
• double size of belief set at each iteration until you are “satisfied” with

coverage (or number of belief states reaches some threshold)

Paper discusses other methods for generating belief points
• experiments don’t show large differences except for one (large) domain

19CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

PBVI: Observations

Time complexity: each backup takes O(SAOVB) ≈ O(SAOB2)
• each backup requires AO belief projections
• each projection required V value evaluations (to determine which vector

has max value)
• each projection/evaluation takes O(S) time
• B points to backup (and V is bounded by B)

Error can be bounded based on density of belief grid
• result is straightforward, bound is a bit too loose to be useful

20CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Introduce an error by pruning
away alpha vectors at each
stage of:
Rmax-Rmin*eps / (1-gamma)

PBVI:
Performance
(works pretty
well)

21CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

PERSEUS
Perseus makes a small but useful tweak on PBVI

• fixes a set of belief states B
• given V(k-1), does not update all belief states to get V(k), instead:

 select a random b from B
 do a point-based backup to get a new α-vector α(b) for b

• if new α-vector not improving, use best old one from V(k-1)
 if α(b) improves any other b’ in B, then do not backup b’
 continue until all belief states b’ in B have “improved”, either

through their own backup or by that of some other b

Simple idea: don’t waste backups on b in B if other
backups have improved its value anyway

• little you can prove about this, but it keeps the size of the sets
V(k) of α-vectors much smaller in practice

22CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Perseus Performance (TAG domain)

23CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

24CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Perseus Performance (Comparative)

State Space Explosion
For MDPs/POMDPs, state space explosion is a key issue

• MDPs, POMDPs: transition, reward, obs rep’n are O(S2), O(S)
• MDPs: value functions and policies: O(S)
• POMDPs: each α-vector (just a VF): O(S)

Most problems (in AI especially) are feature-based
• S is exponential in number of variables
• Specification/representation of problem in state form impractical
• Explicit state-based dynamic programming impractical

Require structured representations
• exploit regularities in probabilities, rewards

Require structured computation
• exploit regularities in policies, value functions
• can aid in approximation (anytime computation)

25CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Structured Representation

States decomposable into state variables

Structured representations the norm in AI
• STRIPS, Sit-Calc., Bayesian networks, etc.
• Describe how actions affect/depend on features
• Natural, concise, can be exploited computationally

Same ideas can be used for MDPs
• actions, rewards, policies, value functions, etc.
• dynamic Bayes nets [DeanKanazawa89,BouDeaGol95]
• decision trees and diagrams [BouDeaGol95,Hoeyetal99]

26CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

𝑆𝑆 = 𝑋𝑋1 × 𝑋𝑋2 × … 𝑋𝑋𝑛𝑛

Action Representation – DBN/ADD

27CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Jt

Lt

Pt

Et

Jt+1

Lt+1

Pt+1

Et+1

Pickup Printout

fP(Lt,Pt,Et,Pt+1)

fJ(Jt,Jt+1)

L E P P(t+1) P(t+1)
T T T 1.0 0.0
F T T 1.0 0.0
T F T 1.0 0.0
F F T 1.0 0.0
T T F 0.8 0.2
F T F 0.0 1.0
T F F 0.0 1.0
F F F 0.0 1.0

J J(t+1) J(t+1)
T 1.0 0.0
F 0.0 1.0

J – Joe needs coffee
L – robot in printer room
P – robot has printout
E – robot gripper empty

Action Representation – DBN/ADD

28CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Jt

Lt

Pt

Et

Jt+1

Lt+1

Pt+1

Et+1

Pr(Jt+1,Lt+1,Pt+1,Et+1 | Jt,Lt,Pt,Et)

= fJ(Jt,Jt+1) * fP(Lt,Pt,Et,Pt+1)
* fL(Lt,Lt+1) * fE(Et,Et+1)

- Only 28 parameters vs.
256 for matrix

-Removes global exponential
dependence

s1 s2 ... s256
s1 0.9 0.05 ... 0.0
s2 0.0 0.20 ... 0.1

s6 0.1 0.0 ... 0.0

...

Action Representation – DBN/ADD

29CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Jt

Lt

Pt

Et

Jt+1

Lt+1

Pt+1

Et+1

Pickup Printout

- ADDs, decision trees, Horn rules,
- both compact and natural

P

1.0 0.0 0.8

E

L

P(t+1) P(t+1) P(t+1)

0.2

Algebraic
Decision

Diagram
(ADD)

DBN Remarks

Dynamic Bayes net action representation
• each state variable occurs at time t and t+1
• dependence of time t+1 variables on time t variables

 can also depend on other time t+1 variables (provided the
DBN remains acyclic) to capture correlations in action effects

• no quantification of time t variables is specified (since we don’t
care about prior)
 so DBN represents a family of conditional distributions over

the time t+1 variables given the time t variables
• compact representation of CPTs using trees, ADDs, Horn rules

exploits context-specific independence [BFGK96]

30CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Reward Representation

Rewards represented similarly
• save on 2n size of vector rep’n

31CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

JC

10 0 12

CP

CC

JP BC JP

9

JC – Joe has coffee
JP – Joe has printout
CC – Craig has coffee
CP – Craig has printout
BC- Battery charged

Reward Representation

Rewards represented similarly
• save on 2n size of vector representation

Additive independent (or GAI) reward
also very common

• as in multi-attribute utility theory
• offers more natural and concise

representation for many types of
problems

32CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

10 0

CP

CC

CT

20 0

+

Structured Computation

Given compact representation, can we solve MDP
without explicit state space enumeration?
Can we avoid O(|S|)-computations by exploiting

regularities made explicit by DBNs/ADDs?

33CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

State Space Abstraction

General method: state aggregation
• group states, treat aggregate as single state
• commonly used in OR [SchPutKin85, BertCast89]

• viewed as automata minimization [DeanGivan96]

Abstraction is a specific aggregation technique
• aggregate by ignoring details (features)
• ideally, focus on relevant features

34CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Graphical View of Abstraction

35CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

A

A B C

A B

A B C

A

B

C

=

Value function (or policy choice) depends only on a small
subset of variables (A,B,C) and not others (D,E,F,…);

and may do so in a “structured” fashion.

Decision-Theoretic Regression

Goal regression a classical abstraction method
• Regr(G,a) is a logical condition C under which a leads to G

(aggregates C states and ~C states)

Decision-theoretic analog: given “logical description” of
Vt+1, produce such a description of Vt or optimal policy
(e.g., using ADDs)

Cluster together states at any point in calculation with
same best action (policy), or with same value (VF)

36CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

A Graphical View of DTR

37CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Vt+1Qt(a)

Ap1

p2

p3
ABC

A AB

ABC

AB

AB

Functional View of DTR

Generally, Vt+1 depends on only a subset of variables
(usually in a structured way)
What is value of action a at time t (at any s)?

38CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

fP(Lt,Pt,Et,Pt+1)

fJ(Jt,Jt+1)Jt

Lt

Pt

Et

Jt+1

Lt+1

Pt+1

Et+1

fL(Lt,Lt+1)

fE(Et,Et+1)

P

E

20 0

Vt+1

Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing
action a at time t ?
Use variable elimination!

39CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

40CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Qat(Jt,Lt,Pt,Et)

Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

41CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Qat(Jt,Lt,Pt,Et)

= R+ ΣJ,L,P,E(t+1) Pra(Jt+1,Lt+1,Pt+1,Et+1 | Jt,Lt,Pt,Et) Vt+1(Jt+1,Lt+1,Pt+1,Et+1)

Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

42CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Qat(Jt,Lt,Pt,Et)

= R+ ΣJ,L,P,E(t+1) Pra(Jt+1,Lt+1,Pt+1,Et+1 | Jt,Lt,Pt,Et) Vt+1(Jt+1,Lt+1,Pt+1,Et+1)

= R+ ΣJ,L,P,E(t+1) fJ(Jt,Jt+1) fP(Lt,Pt,Et,Pt+1) fL(Lt,Lt+1) fE(Et,Et+1) Vt+1(Pt+1,Et+1)

Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

43CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Qat(Jt,Lt,Pt,Et)

= R+ ΣJ,L,P,E(t+1) Pra(Jt+1,Lt+1,Pt+1,Et+1 | Jt,Lt,Pt,Et) Vt+1(Jt+1,Lt+1,Pt+1,Et+1)

= R+ ΣJ,L,P,E(t+1) fJ(Jt,Jt+1) fP(Lt,Pt,Et,Pt+1) fL(Lt,Lt+1) fE(Et,Et+1) Vt+1(Pt+1,Et+1)

= R+ ΣL,P,E(t+1) fP(Lt,Pt,Et,Pt+1) fL(Lt,Lt+1) fE(Et,Et+1) Vt+1(Pt+1,Et+1)

Functional View of DTR

When Vt+1 depends on subset of variables:
• Qt(a) usually depends on subset of variables as well
• Computation can be structured without exponential blowup (VE)
• Further enhancements: Each function represented as ADD
• … and ADD operations allow structure to be preserved

44CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Qat(Jt,Lt,Pt,Et)

= R+ ΣJ,L,P,E(t+1) Pra(Jt+1,Lt+1,Pt+1,Et+1 | Jt,Lt,Pt,Et) Vt+1(Jt+1,Lt+1,Pt+1,Et+1)

= R+ ΣJ,L,P,E(t+1) fJ(Jt,Jt+1) fP(Lt,Pt,Et,Pt+1) fL(Lt,Lt+1) fE(Et,Et+1) Vt+1(Pt+1,Et+1)

= R+ ΣL,P,E(t+1) fP(Lt,Pt,Et,Pt+1) fL(Lt,Lt+1) fE(Et,Et+1) Vt+1(Pt+1,Et+1)

Structured Value Iteration

Assume compact representation of Vk
• start with R at stage-to-go 0 (say)

For each action a, compute Qk+1 using variable
elimination on the two-slice DBN

• eliminate all k-stage-to-go variables, leaving only k+1 variables
• use ADD operations when initial representation (Pr, R) are ADDs

Compute Vk+1 = maxa Qk+1

• use ADD operations again to preserve structure, efficiency
Policy iteration can be approached similarly

45CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Structured Policy and Value Function

46CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

DelC BuyC

GetU

Noop

U

R

W

Loc

Go

Loc

HCR

HCU

8.368.45

7.45

U

R

W

6.817.64

6.64

U

R

W

5.626.19

5.19

U

R

W

6.106.83

5.83

U

R

W

Loc Loc

HCR

HCU

9.00

W

10.00

Example Action Reward/Representation

47CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

ADD: Example Value Function

48CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

SPUDD Results

49CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Decision-theoretic Regression: Relative Merits

Adaptive, nonuniform, exact abstraction method
• provides exact solution to MDP
• much more efficient on certain problems (time/space)
• see SPUDD package

Some drawbacks
• produces piecewise constant VF
• some problems admit no compact solution representation

(though ADD overhead “minimal”)
• approximation may be desirable or necessary

50CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Approximate Decision-theoretic Regression

Straightforward to approximate solution using DTR
Simple pruning of value function

• Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]

51CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

A Pruned Value ADD

52CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

8.368.45

7.45

U

R

W

6.817.64

6.64

U

R

W

5.626.19

5.19

U

R

WLoc

HCR

HCU

9.00

W

10.00

[7.45, 8.45]

Loc

HCR

HCU

[9.00, 10.00]

[6.64, 7.64]

[5.19, 6.19]

Approximate Decision-theoretic Regression

Straightforward to approximate solution using DTR
Simple pruning of value function

• Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]

Gives regions of approximately same value
Can derive simple error bounds as well

• e.g., for pruned versions of value iteration (with discount factor β,
stopping criterion ε and maximum approximation span δ:

53CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

β
εδβ

π −
+

≤−
1
22)(* VV

Approximate DTR: Relative Merits
Relative merits of ADTR

• fewer regions implies faster computation
• can provide leverage for optimal computation

 e.g., start with aggressive pruning, then relax (exploit contraction)
• allows fine-grained control of time vs. solution quality with dynamic (a

posteriori) error bounds
• technical challenges: variable ordering, convergence, fixed vs. adaptive

tolerance, etc.

Some drawbacks
• (still) produces piecewise constant VF
• doesn’t exploit additive structure of VF at all

Many other ways of exploiting structure, DBNs, etc.
• function approximation (especially linear approximations)
• decompositions (sub-problem structure, etc.)
• …

54CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

State-based Decomposition
MDP may have weakly or non-interacting subcomponents

• E.g., policy for running several assembly lines, robots, …
 Actions taken for one may have no (or little) impact on others
 Can solve for policies independently if no interaction
 If some interaction, use “independent” policies and values to guide

the coordination (e.g., interaction limited to occasional assignment of
resources to each assembly line)

55CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Temporal Abstraction
Solve local MDPs over specific “regions” of state space

• Macro-actions, “local policies,” temporally-extended actions
• Use the local policies as actions in an smaller abstract MDP
• Fast value propagation, small abstract MDP, prior knowledge, …
• Issues: which macros, computing macro-models (state space),

transferability/reuse for new domains/objectives, …

56CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

From Sutton, Precup, Singh, AIJ-99

Linear Value Function Approximation
Set of basis functions: 𝐵𝐵 = {𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘}

• Each 𝑏𝑏𝑖𝑖: 𝑆𝑆 → ℝ assigns value to states, compact (e.g., depends
only on a few state features)

Approx. V with linear combination: �𝑉𝑉(𝑠𝑠) = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖(𝑠𝑠)
• Compact representation: weight vector 𝒘𝒘 and small basis f’ns
• Limits VF to fall within space spanned by B

Approx. value iteration: sequence 𝒘𝒘(𝑘𝑘) of k-stage-to-go VFs
• Run Bellman back up on 𝒘𝒘(𝑘𝑘)to produce 𝒘𝒘(𝑘𝑘+1) = 𝐿𝐿(𝒘𝒘 𝑘𝑘)
• Trick: 𝒘𝒘(𝑘𝑘+1) usually falls out of B-space, but still compact; project

back into B-space before moving to next iteration
• Issues: good set of basis functions? Keeping computation tractable

(Bellman backup, projection), e.g., exploiting DBNs? etc.
Policy iteration, etc. can also be used

57CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

	2534 Lecture 6: Tractable Solutions of MDPs and POMDPs
	Recap: POMDPs
	Recap: POMDPs: Basic Model
	Recap: History-based Policies
	Recap: Belief States
	Recap: Belief State MDP
	Recap: Belief State MDP Graphically
	Recap: PWLC Value Function
	Recap: Representation of Q-function
	Recap: Linear Support Graphically
	Sources of Intractability
	Approximation Strategies
	Approximation Strategies
	Grid-based Approximations
	Belief Grid (2-D, 3-D), with VF (2-D)
	Grid-based Value Iteration
	Point-based Value Iteration
	Point-based Value Iteration
	PBVI: Which Belief States (Grid)?
	PBVI: Observations
	PBVI: Performance (works pretty well)
	PERSEUS
	Perseus Performance (TAG domain)
	Slide Number 24
	State Space Explosion
	Structured Representation
	Action Representation – DBN/ADD
	Action Representation – DBN/ADD
	Action Representation – DBN/ADD
	DBN Remarks
	Reward Representation
	Reward Representation
	Structured Computation
	State Space Abstraction
	Graphical View of Abstraction
	Decision-Theoretic Regression
	A Graphical View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Structured Value Iteration
	Structured Policy and Value Function
	Example Action Reward/Representation
	ADD: Example Value Function
	SPUDD Results
	Decision-theoretic Regression: Relative Merits
	Approximate Decision-theoretic Regression
	A Pruned Value ADD
	Approximate Decision-theoretic Regression
	Approximate DTR: Relative Merits
	State-based Decomposition
	Temporal Abstraction
	Linear Value Function Approximation

