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2534 Lecture 6: Tractable Solutions of MDPs 
and POMDPs

Discuss basic algorithms for POMDPs (from last time) 
POMDPs: Point-based Value Iteration
Structured Models of MDPs
Announcements

• Asst.1 due today
• Project discussions slots on Tues, Thurs, Friday this week

 20 minute time slots (come prepared)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Recap: POMDPs

POMDPs offer a very general model for sequential 
decision making allowing:

• uncertainty in action effects
• uncertainty in knowledge of system state, noisy observations
• multiple (possibly conflicting) objectives
• nonterminating, process-oriented problems

It is the uncertainty in system state that distinguishes 
them from MDPs
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Recap: POMDPs: Basic Model

As in MDPs: S, A,     ,     ,

Observation space: Z (or )

Observation probabilities:         for 
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Recap: History-based Policies
Information available at time t:

• initial distribution (belief state)

• history of actions, observations: a1, z1, a2, z2,…, at-1, zt-1

Thus, we can view a policy as a mapping:

For given belief state b, it is a conditional plan

• notice distinction with MDPs: can’t map from state to actions
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Recap: Belief States
History-based policy grows exponentially with horizon

• infinite horizon POMDPs problematic
Belief state                summarizes history sufficiently [Aoki 

(1965), Astrom (1965)] 
Let b be belief state; suppose we take action a, get obs z
Let T(b,a,z) be updated belief state (transition to new b)
If we let bi denote Pr(S = i), we update:
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Recap: Belief State MDP

POMDP now an MDP with state space 

Reward:

Transitions:                             if b' = T(b,a,z);  0 o.w.

Optimality Equations:
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Recap: Belief State MDP Graphically
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b

b1=T(b,a,z1)

b2=T(b,a,z2)

b3=T(b,a,z3)

Pr(z1|a,b)

Pr(z2|a,b)

Pr(z3|a,b)

Belief State Transitions for Action a, Belief State b



Recap: PWLC Value Function
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Recap: Representation of Q-function
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Recap: Linear Support Graphically
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Sources of Intractability

Size of α-vectors
• each is size of state space (exponential in number of variables)

Number of α-vectors
• potentially grows exponentially with horizon

Belief state monitoring
• must maintain belief state online in order to implement policy 

using value function
• belief state representation: size of state space
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Approximation Strategies

Sizes of problems solved exactly are quite small
• various approximation methods developed
• often deal with 1000 or so states, not much more

Grid-Based Approximations
• compute value at small set of belief states
• require method to “interpolate” value function
• require grid-selection method (uniform, variable, etc.)
• we’ll discuss one method (Perseus/PBVI) today

Finite Memory Approximations
• e.g., policy as function of most recent actions, observations
• can sometimes convert VF into finite-state controller
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Approximation Strategies

Learning Methods
• assume specific value function representation
• e.g., linear value function, smooth approximation, neural net
• train representation through simulation

Heuristic Search Methods
• search through belief space from initial state
• requires good heuristic for leverage
• heuristics could be generated by other methods

Structure-based Approximations
• E.g., based on decomposability of problem
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Grid-based Approximations

High level motivation:
• number of a vectors grows exponentially (even in practice) with 

horizon (one of biggest impediments to solving POMDPs)
• intuitively, need optimal policies for every belief point
• instead, we could select  a finite sample (or grid) of belief points 

on the n-dimensional simplex and compute optimal value 
function (or policy) for those points

• for any other belief points not on grid, use some interpolation 
scheme

• can define a simple value iteration scheme based on this idea
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Belief Grid (2-D, 3-D), with VF (2-D)
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Grid-based Value Iteration
Given value function V(k-1) on grid B
Compute value V(k) at grid points in usual way

Problem: T(b,a,z) not usually on grid even if b is
Solution: use some form of interpolation over V(k-1)
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Point-based Value Iteration

Grid-based methods expensive, performance debatable
• Selecting suitable grid, interpolation can be expensive

But recall approximation based on Cheng’s linear support
• just use a subset of α-vectors

PBVI methods combine the two insights
• select a small subset of belief points
• but compute/backup α-vectors instead of just values
• no interpolation, use collection of α-vectors as VF representation

Briefly, let’s look at:
• Pineau’s original PBVI
• Spaan and Vlassis Perseus
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Point-based Value Iteration
Main idea (roughly)

• fix a small set of belief points B
• assume approximate set of α-vectors V(k-1)
• do backups for each b in B, using V(k-1), to construct V(k)
• can prune (remove dominated vectors)
• can expand set of belief points in an anytime fashion (add new belief 

points if you want, as time permits)
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PBVI: Which Belief States (Grid)?

 Initial belief states B
• starting at b0, consider updated T(b,z,a) reached by taking action a and 

sampling a random observation z (sample z with Pr(z|b,a) )
• take belief state from one of these actions, the one that is greatest 

distance (L1 or L2) from any belief point in the set
 aim: trying to get maximum coverage of belief space (diversity, but 

informed by reachability considerations)
Repeat as time permits, consider expanding belief set B by

• using same process as above, for each b in B
• double size of belief set at each iteration until you are “satisfied” with 

coverage (or number of belief states reaches some threshold)

Paper discusses other methods for generating belief points
• experiments don’t show large differences except for one (large) domain
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PBVI: Observations

Time complexity: each backup takes O(SAOVB) ≈ O(SAOB2)
• each backup requires AO belief projections
• each projection required V value evaluations (to determine which vector 

has max value)
• each projection/evaluation takes O(S) time
• B points to backup (and V is bounded by B)

Error can be bounded based on density of  belief grid
• result is straightforward, bound is a bit too loose to be useful
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Introduce an error by pruning 
away alpha vectors at each 
stage of:
Rmax-Rmin*eps / (1-gamma)



PBVI: 
Performance 
(works pretty 
well)
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PERSEUS
Perseus makes a small but useful tweak on PBVI

• fixes a set of belief states B
• given V(k-1), does not update all belief states to get V(k), instead:

 select a random b from B
 do a point-based backup to get a new α-vector α(b) for b

• if new α-vector not improving, use best old one from V(k-1)
 if α(b) improves any other b’ in B, then do not backup b’
 continue until all belief states b’ in B have “improved”, either 

through their own backup or by that of some other b 

Simple idea: don’t waste backups on b in B if other 
backups have improved its value anyway

• little you can prove about this, but it keeps the size of the sets 
V(k) of α-vectors much smaller in practice
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Perseus Performance (TAG domain)
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State Space Explosion
For MDPs/POMDPs, state space explosion is a key issue

• MDPs, POMDPs: transition, reward, obs rep’n are O(S2), O(S)
• MDPs: value functions and policies: O(S)
• POMDPs: each α-vector (just a VF):  O(S)

Most problems (in AI especially) are feature-based
• S is exponential in number of variables
• Specification/representation of problem in state form impractical
• Explicit state-based dynamic programming impractical

Require structured representations
• exploit regularities in probabilities, rewards

Require structured computation
• exploit regularities in policies, value functions
• can aid in approximation (anytime computation)
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Structured Representation

States decomposable into state variables

Structured representations the norm in AI
• STRIPS, Sit-Calc., Bayesian networks, etc.
• Describe how actions affect/depend on features
• Natural, concise, can be exploited computationally

Same ideas can be used for MDPs
• actions, rewards, policies, value functions, etc.
• dynamic Bayes nets [DeanKanazawa89,BouDeaGol95]
• decision trees and diagrams [BouDeaGol95,Hoeyetal99]
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Action Representation – DBN/ADD
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Action Representation – DBN/ADD
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* fL(Lt,Lt+1) * fE(Et,Et+1) 

- Only 28 parameters vs.
256 for matrix

-Removes global exponential
dependence

s1 s2 ... s256
s1 0.9 0.05 ... 0.0
s2 0.0 0.20 ... 0.1

s6 0.1  0.0 ... 0.0

...



Action Representation – DBN/ADD

29CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Jt

Lt

Pt

Et

Jt+1

Lt+1

Pt+1

Et+1

Pickup Printout

- ADDs, decision trees, Horn rules, 
- both compact and natural

P

1.0 0.0 0.8

E

L

P(t+1) P(t+1) P(t+1)

0.2

Algebraic
Decision

Diagram
(ADD)



DBN Remarks

Dynamic Bayes net action representation
• each state variable occurs at time t and t+1
• dependence of time t+1 variables on time t variables

 can also depend on other time t+1 variables (provided the 
DBN remains acyclic) to capture correlations in action effects

• no quantification of time t variables is specified (since we don’t 
care about prior)
 so DBN represents a family of conditional distributions over 

the time t+1 variables given the time t variables
• compact representation of CPTs using trees, ADDs, Horn rules 

exploits context-specific independence [BFGK96]
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Reward Representation

Rewards represented similarly 
• save on 2n size of vector rep’n
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Reward Representation

Rewards represented similarly 
• save on 2n size of vector representation

Additive independent (or GAI) reward 
also very common

• as in multi-attribute utility theory
• offers more natural and concise 

representation for many types of 
problems 
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Structured Computation

Given compact representation, can we solve MDP 
without explicit state space enumeration?
Can we avoid  O(|S|)-computations by exploiting 

regularities made explicit by DBNs/ADDs?
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State Space Abstraction

General method: state aggregation
• group states, treat aggregate as single state
• commonly used in OR [SchPutKin85, BertCast89]

• viewed as automata minimization [DeanGivan96]

Abstraction is a specific aggregation technique
• aggregate by ignoring details (features)
• ideally, focus on relevant features
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Graphical View of Abstraction
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Decision-Theoretic Regression

Goal regression a classical abstraction method
• Regr(G,a) is a logical condition C under which a leads to G   

(aggregates C states and ~C states)

Decision-theoretic analog: given “logical description” of 
Vt+1, produce such a description of Vt or optimal policy 
(e.g., using ADDs)

Cluster together states at any point in calculation with 
same best action (policy), or with same value (VF)
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A Graphical View of DTR
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Functional View of DTR

Generally, Vt+1 depends on only a subset of variables 
(usually in a structured way)
What is value of action a at time t (at any s)?
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Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing 
action a at time t ?
Use variable elimination!
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Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing 
action a at time t ? (Use variable elimination!)
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Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing 
action a at time t ? (Use variable elimination!)
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Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing 
action a at time t ? (Use variable elimination!)
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Functional View of DTR

Assume VF Vt+1 is structured: what is value of doing 
action a at time t ? (Use variable elimination!)
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Functional View of DTR

When Vt+1 depends on subset of variables: 
• Qt(a) usually depends on subset of variables as well
• Computation can be structured without exponential blowup (VE)
• Further enhancements: Each function represented as ADD
• … and ADD operations allow structure to be preserved
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Structured Value Iteration

Assume compact representation of Vk
• start with R at stage-to-go 0 (say)

For each action a, compute Qk+1 using variable 
elimination on the two-slice DBN

• eliminate all k-stage-to-go variables, leaving only k+1 variables
• use ADD operations when initial representation (Pr, R) are ADDs

Compute Vk+1 = maxa Qk+1

• use ADD operations again to preserve structure, efficiency
Policy iteration can be approached similarly
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Structured Policy and Value Function
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Example Action Reward/Representation
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ADD: Example Value Function
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SPUDD Results
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Decision-theoretic Regression: Relative Merits

Adaptive, nonuniform, exact abstraction method
• provides exact solution to MDP
• much more efficient on certain problems (time/space)
• see SPUDD package

Some drawbacks
• produces piecewise constant VF
• some problems admit no compact solution representation 

(though ADD overhead “minimal”)
• approximation may be desirable or necessary
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Approximate Decision-theoretic Regression

Straightforward to approximate solution using DTR
Simple pruning of value function 

• Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]
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A Pruned Value ADD
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Approximate Decision-theoretic Regression

Straightforward to approximate solution using DTR
Simple pruning of value function 

• Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]

Gives regions of approximately same value
Can derive simple error bounds as well

• e.g., for pruned versions of value iteration (with discount factor β, 
stopping criterion ε and maximum approximation span δ:
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Approximate DTR: Relative Merits
Relative merits of ADTR

• fewer regions implies faster computation
• can provide leverage for optimal computation

 e.g., start with aggressive pruning, then relax (exploit contraction)
• allows fine-grained control of time vs. solution quality with dynamic (a 

posteriori) error bounds
• technical challenges: variable ordering, convergence, fixed vs. adaptive 

tolerance, etc.

Some drawbacks
• (still) produces piecewise constant VF
• doesn’t exploit additive structure of VF at all

Many other ways of exploiting structure, DBNs, etc.
• function approximation (especially linear approximations)
• decompositions (sub-problem structure, etc.) 
• …
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State-based Decomposition
MDP may have weakly or non-interacting subcomponents

• E.g., policy for running several assembly lines, robots, …
 Actions taken for one may have no (or little) impact on others
 Can solve for policies independently if no interaction
 If some interaction, use “independent” policies and values to guide 

the coordination (e.g., interaction limited to occasional assignment of 
resources to each assembly line)
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Temporal Abstraction
Solve local MDPs over specific “regions” of state space

• Macro-actions, “local policies,” temporally-extended actions
• Use the local policies as actions in an smaller abstract MDP
• Fast value propagation, small abstract MDP, prior knowledge, …
• Issues: which macros, computing macro-models (state space), 

transferability/reuse for new domains/objectives, …
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Linear Value Function Approximation
Set of basis functions: 𝐵𝐵 = {𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘}

• Each 𝑏𝑏𝑖𝑖: 𝑆𝑆 → ℝ assigns value to states, compact (e.g., depends 
only on a few state features)

Approx. V with linear combination: �𝑉𝑉(𝑠𝑠) = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖(𝑠𝑠)
• Compact representation: weight vector 𝒘𝒘 and small basis f’ns
• Limits VF to fall within space spanned by B

Approx. value iteration: sequence 𝒘𝒘(𝑘𝑘) of k-stage-to-go VFs
• Run Bellman back up on 𝒘𝒘(𝑘𝑘)to produce 𝒘𝒘(𝑘𝑘+1) = 𝐿𝐿(𝒘𝒘 𝑘𝑘 )
• Trick: 𝒘𝒘(𝑘𝑘+1) usually falls out of B-space, but still compact; project 

back into B-space before moving to next iteration
• Issues: good set of basis functions? Keeping computation tractable 

(Bellman backup, projection), e.g., exploiting DBNs? etc.
Policy iteration, etc. can also be used
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