2534 Lecture 6: Tractable Solutions of MDPs and POMDPs

- Discuss basic algorithms for POMDPs (from last time)
- POMDPs: Point-based Value Iteration
- Structured Models of MDPs
- Announcements
 - Asst.1 due today
 - Project discussions slots on Tues, Thurs, Friday this week
 - 20 minute time slots (come prepared)

Recap: POMDPs

POMDPs offer a very general model for sequential decision making allowing:

- uncertainty in action effects
- uncertainty in knowledge of system state, noisy observations
- multiple (possibly conflicting) objectives
- nonterminating, process-oriented problems

It is the uncertainty in system state that distinguishes them from MDPs

Recap: POMDPs: Basic Model

- •As in MDPs: S, A, p_{ij}^a , r_i^a , r_i^T
- •Observation space: Z (or Z_a)
- •Observation probabilities: p_{ijz}^a for $z \in Z_a$

Recap: History-based Policies

Information available at time t.

- initial distribution (belief state) $b \in \Delta(S)$
- history of actions, observations: a^1 , z^1 , a^2 , z^2 ,..., a^{t-1} , z^{t-1}

Thus, we can view a policy as a mapping:

$$\pi: \Delta(S) \times H^{t \leq T} \to A$$

- For given belief state b, it is a conditional plan
 e.g., MN;MN;EX;
 if Def:IN;MN;MN:... else:MN;MN;EX if Def:RP;MN... else:MN:MN;EX
 - notice distinction with MDPs: can't map from state to actions

Recap: Belief States

History-based policy grows exponentially with horizon

- infinite horizon POMDPs problematic
- Belief state $b \in \Delta(S)$ summarizes history sufficiently [Aoki (1965), Astrom (1965)]
- Let *b* be belief state; suppose we take action *a*, get obs *z*
- Let T(b,a,z) be updated belief state (transition to new b)
- If we let b_i denote Pr(S = i), we update:

Recap: Belief State MDP

POMDP now an MDP with state space $\Delta(S)$

•Reward:
$$r_b^a = b \cdot r^a = \sum_i b_i r_i^a$$

Transitions: $p_{b,b'}^a = \Pr(z \mid b, a)$ if b' = T(b,a,z); 0 o.w.

Optimality Equations:

$$Q_{a}^{k}(b) = b \cdot r^{a} + \sum_{b'} p_{b,b'}^{a} V^{k-1}(b)$$

= $\sum_{i} b_{i} [r_{i}^{a} + \sum_{j} p_{ij}^{a} \sum_{z} p_{ijz}^{a} V^{k-1}(T(b,a,z))]$

$$V^{k}(b) = \max_{a} Q_{a}^{k}(b) \qquad \pi^{k}(b) = \arg_{a} \max Q_{a}^{k}(b)$$

Recap: Belief State MDP Graphically

Belief State Transitions for Action a, Belief State b

Recap: PWLC Value Function

Recap: Representation of Q-function

PWLC Representation of Qa

σ₁ corresponds to "Do(a); if z1, do(red); if z2, do(green)"

Recap: Linear Support Graphically

Sources of Intractability

Size of α -vectors

- each is size of state space (exponential in number of variables)
- •Number of α -vectors
 - potentially grows exponentially with horizon
- Belief state monitoring
 - must maintain belief state online in order to implement policy using value function
 - belief state representation: size of state space

Approximation Strategies

Sizes of problems solved exactly are quite small

- various approximation methods developed
- often deal with 1000 or so states, not much more

Grid-Based Approximations

- compute value at small set of belief states
- require method to "interpolate" value function
- require grid-selection method (uniform, variable, etc.)
- we'll discuss one method (Perseus/PBVI) today

Finite Memory Approximations

- e.g., policy as function of most recent actions, observations
- can sometimes convert VF into finite-state controller

Approximation Strategies

Learning Methods

- assume specific value function representation
- e.g., linear value function, smooth approximation, neural net
- train representation through simulation

Heuristic Search Methods

- search through belief space from initial state
- requires good heuristic for leverage
- heuristics could be generated by other methods

Structure-based Approximations

• E.g., based on decomposability of problem

Grid-based Approximations

High level motivation:

- number of a vectors grows exponentially (even in practice) with horizon (one of biggest impediments to solving POMDPs)
- intuitively, need optimal policies for every belief point
- instead, we could select a finite sample (or grid) of belief points on the *n*-dimensional simplex and compute optimal value function (or policy) for those points
- for any other belief points not on grid, use some interpolation scheme
- can define a simple value iteration scheme based on this idea

Belief Grid (2-D, 3-D), with VF (2-D)

Grid-based Value Iteration

Given value function V(k-1) on grid B

Compute value V(k) at grid points in usual way

$$Q_{a}^{k}(b) = \sum_{i} b_{i} [r_{i}^{a} + \sum_{j} p_{ij}^{a} \sum_{z} p_{ijz}^{a} V^{k-1}(T(b,a,z))]$$

Problem: T(b,a,z) not usually on grid even if b is

Solution: use some form of interpolation over V(k-1)

Point-based Value Iteration

Grid-based methods expensive, performance debatable

- Selecting suitable grid, interpolation can be expensive
- But recall approximation based on Cheng's linear support
 - just use a subset of α -vectors
- PBVI methods combine the two insights
 - select a small subset of belief points
 - but compute/backup α -vectors instead of just values
 - no interpolation, use collection of α -vectors as VF representation
- Briefly, let's look at:
 - Pineau's original PBVI
 - Spaan and Vlassis Perseus

Point-based Value Iteration

Main idea (roughly)

- fix a small set of belief points B
- assume approximate set of α -vectors V(k-1)
- do backups for each b in B, using V(k-1), to construct V(k)
- can prune (remove dominated vectors)
- can expand set of belief points in an anytime fashion (add new belief points if you want, as time permits)

PBVI: Which Belief States (Grid)?

Initial belief states B

- starting at b₀, consider updated T(b,z,a) reached by taking action a and sampling a random observation z (sample z with Pr(z|b,a))
- take belief state from one of these actions, the one that is greatest distance (L1 or L2) from any belief point in the set
 - aim: trying to get maximum coverage of belief space (diversity, but informed by reachability considerations)
- Repeat as time permits, consider expanding belief set B by
 - using same process as above, for each b in B
 - double size of belief set at each iteration until you are "satisfied" with coverage (or number of belief states reaches some threshold)
- Paper discusses other methods for generating belief points
 - experiments don't show large differences except for one (large) domain

PBVI: Observations

• Time complexity: each backup takes $O(SAOVB) \approx O(SAOB^2)$

- each backup requires AO belief projections
- each projection required V value evaluations (to determine which vector has max value)
- each projection/evaluation takes O(S) time
- *B* points to backup (and *V* is bounded by *B*)
- Error can be bounded based on density of belief grid
 - result is straightforward, bound is a bit too loose to be useful

Theorem 1 For any belief set B and any horizon n, the error of the PBVI algorithm $\eta_n = \|V_n^B - V_n^*\|_{\infty}$ is bounded by

$$\eta_n \leq \frac{(R_{max} - R_{min})\epsilon_B}{(1 - \gamma)^2}$$

Introduce an error by pruning away alpha vectors at each stage of: Rmax-Rmin*eps / (1-gamma)

	Method	Goal%	Reward	Time(s)	B
	Maze33 / Tiger-Grid				
	QMDP[*]	n.a.	0.198	0.19	n.a.
·	Grid [Brafman, 1997]	n.a.	0.94	n.v.	174
	PBUA [Poon, 2001]	n.a.	2.30	12116	660
PBVI:	PBVI[*]	n.a.	2.25	3448	470
Performance	Hallway				
(works pretty	QMDP[*]	47	0.261	0.51	n.a.
woll)	QMDP [Littman et al., 1995]	47.4	n.v.	n.v.	n.a.
wenj	PBUA [Poon, 2001]	100	0.53	450	300
	PBVI[*]	96	0.53	288	86
	Hallway2				
	QMDP[*]	22	0.109	1.44	n.a.
	QMDP [Littman et al., 1995]	25.9	n.v.	n.v.	n.a.
	Grid [Brafman, 1997]	98	n.v.	n.v.	337
PBUA [Poon, 2001]		100	0.35	27898	1840
	PBVI[*]	98	0.34	360	95
	Tag				
	QMDP[*]	17	-16.769	13.55	n.a.
	PBVI[*]	59	-9.180	180880	1334
	n.a.=not applicable	n.v.=not	available		
Name	S $ O $ $ A $				
Tiger-grid	33 17 5				
Hallway	$57 \ 21 \ 5$				
Hallway2	89 17 5				
Tag	870 30 5				

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

PERSEUS

Perseus makes a small but useful tweak on PBVI

- fixes a set of belief states B
- given V(k-1), does not update all belief states to get V(k), instead:
 select a random b from B
 - do a point-based backup to get a new α -vector $\alpha(b)$ for b
 - if new α -vector not improving, use best old one from V(k-1)
 - if $\alpha(b)$ improves any other b' in B, then do not backup b'
 - continue until all belief states b' in B have "improved", either through their own backup or by that of some other b
- Simple idea: don't waste backups on b in B if other backups have improved its value anyway
 - little you can prove about this, but it keeps the size of the sets V(k) of α-vectors much smaller in practice

Perseus Performance (TAG domain)

Figure 2: Tag: (a) state space with chasing and opponent robot; (b)–(e) performance of PERSEUS.

Perseus Performance (Comparative)

Tiger-grid	R	$ \pi $	Т	
HSVI	2.35	4860	10341	
Perseus	2.34	134	104	
PBUA	2.30	660	12116	
PBVI	2.25	470	3448	
$\rm BPI \ w/b$	2.22	120	1000	
Grid	0.94	174	n.a.	
$Q_{\rm MDP}$	0.23	n.a.	2.76	

(a) Results for Tiger-grid.

Hallway	R	$ \pi $	Т
PBVI	0.53	86	288
PBUA	0.53	300	450
HSVI	0.52	1341	10836
Perseus	0.51	55	35
$\rm BPI~w/b$	0.51	43	185
$Q_{\rm MDP}$	0.27	n.a.	1.34

(b) Results for Hallway.

Hallway2	R	$ \pi $	Т
Perseus	0.35	56	10
HSVI	0.35	1571	10010
PBUA	0.35	1840	27898
PBVI	0.34	95	360
$\rm BPI \; w/b$	0.32	60	790
$Q_{\rm MDP}$	0.09	n.a.	2.23

(c) Results for Hallway2.

Tag	\mathbf{R}	$ \pi $	Т
Perseus	-6.17	280	1670
HSVI	-6.37	1657	10113
$\rm BPI \; w/b$	-6.65	17	250
BBSLS	≈ -8.3	30	10^{5}
$\rm BPI~n/b$	-9.18	940	59772
PBVI	-9.18	1334	180880
$Q_{\rm MDP}$	-16.9	n.a.	16.1

(d) Results for Tag.

State Space Explosion

For MDPs/POMDPs, state space explosion is a key issue

- MDPs, POMDPs: transition, reward, obs rep'n are $O(S^2)$, O(S)
- MDPs: value functions and policies: O(S)
- POMDPs: each α -vector (just a VF): O(S)
- Most problems (in AI especially) are feature-based
 - S is exponential in number of variables
 - Specification/representation of problem in state form impractical
 - Explicit state-based dynamic programming impractical
- Require structured representations
 - exploit regularities in probabilities, rewards
- Require structured computation
 - exploit regularities in policies, value functions
 - can aid in approximation (anytime computation)

Structured Representation

States decomposable into state variables

$$S = X_1 \times X_2 \times \dots X_n$$

Structured representations the norm in AI

- STRIPS, Sit-Calc., Bayesian networks, etc.
- Describe how actions affect/depend on features
- Natural, concise, can be exploited computationally
- Same ideas can be used for MDPs
 - actions, rewards, policies, value functions, etc.
 - dynamic Bayes nets [DeanKanazawa89,BouDeaGol95]
 - decision trees and diagrams [BouDeaGol95,Hoeyetal99]

Action Representation – DBN/ADD

Pickup Printout

J - Joe needs coffee

- L robot in printer room P robot has printout
- E robot gripper empty

 $T = T_{1}$ $A = T_{2}$

Action Representation – DBN/ADD

	51	S2 .	S256
S1	0.9	0.05	0.0
S2	0.0	0.20	0.1
:			
S6	0.1	0.0	0.0

-Removes global exponential dependence

Action Representation – DBN/ADD

Pickup Printout

- ADDs, decision trees, Horn rules,
- both compact and natural

DBN Remarks

Dynamic Bayes net action representation

- each state variable occurs at time t and t+1
- dependence of time *t*+1 variables on time *t* variables
 - can also depend on other time *t*+1 variables (provided the DBN remains acyclic) to capture correlations in action effects
- no quantification of time t variables is specified (since we don't care about prior)
 - so DBN represents a family of conditional distributions over the time t+1 variables given the time t variables
- compact representation of CPTs using trees, ADDs, Horn rules exploits context-specific independence [BFGK96]

Reward Representation

Rewards represented similarly

save on 2ⁿ size of vector rep'n

JC - Joe has coffee JP - Joe has printout CC - Craig has coffee CP - Craig has printout BC- Battery charged

Reward Representation

Rewards represented similarly

- save on 2ⁿ size of vector representation
- Additive independent (or GAI) reward also very common
 - as in multi-attribute utility theory
 - offers more natural and concise representation for many types of problems

Structured Computation

- Given compact representation, can we solve MDP without explicit state space enumeration?
- Can we avoid O(|S|)-computations by exploiting regularities made explicit by DBNs/ADDs?

State Space Abstraction

General method: state aggregation

- group states, treat aggregate as single state
- commonly used in OR [SchPutKin85, BertCast89]
- viewed as automata minimization [DeanGivan96]

Abstraction is a specific aggregation technique

- aggregate by ignoring details (features)
- ideally, focus on *relevant* features

Graphical View of Abstraction

Value function (or policy choice) depends only on a small subset of variables (A,B,C) and not others (D,E,F,...); and may do so in a "structured" fashion.

Decision-Theoretic Regression

Goal regression a classical abstraction method

- Regr(G,a) is a logical condition C under which a leads to G (aggregates C states and ~C states)
- Decision-theoretic analog: given "logical description" of V^{t+1}, produce such a description of V^t or optimal policy (e.g., using ADDs)
- Cluster together states at any point in calculation with same best action (policy), or with same value (VF)

A Graphical View of DTR

- Generally, V^{t+1} depends on only a subset of variables (usually in a structured way)
- What is value of action a at time t (at any s)?

- Assume VF V^{t+1} is structured: what is value of doing action *a* at time *t*?
- Use variable elimination!

Assume VF V^{t+1} is structured: what is value of doing action *a* at time *t*? (Use variable elimination!)

 $Q^{a}_{t}(J_{t},L_{t},P_{t},E_{t})$

Assume VF V^{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

 $Q^{a}_{t}(J_{t},L_{t},P_{t},E_{t})$

 $= R + \sum_{J,L,P,E(t+1)} Pr^{a}(J_{t+1},L_{t+1},P_{t+1},E_{t+1} | J_{t},L_{t},P_{t},E_{t}) V_{t+1}(J_{t+1},L_{t+1},P_{t+1},E_{t+1})$

Assume VF V^{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

 $Q^{a}_{t}(J_{t},L_{t},P_{t},E_{t})$

- $= R + \sum_{J,L,P,E(t+1)} Pr^{a}(J_{t+1},L_{t+1},P_{t+1},E_{t+1} | J_{t},L_{t},P_{t},E_{t}) V_{t+1}(J_{t+1},L_{t+1},P_{t+1},E_{t+1})$
- $= R + \sum_{J,L,P,E(t+1)} f_J(J_{t,J_{t+1}}) f_P(L_{t,P_t,E_t,P_{t+1}}) f_L(L_{t,L_{t+1}}) f_E(E_{t,E_{t+1}}) V_{t+1}(P_{t+1,E_{t+1}})$

Assume VF V^{t+1} is structured: what is value of doing action a at time t? (Use variable elimination!)

 $Q^{a}_{t}(J_{t},L_{t},P_{t},E_{t})$

- $= R + \sum_{J,L,P,E(t+1)} Pr^{a}(J_{t+1},L_{t+1},P_{t+1},E_{t+1} | J_{t},L_{t},P_{t},E_{t}) V_{t+1}(J_{t+1},L_{t+1},P_{t+1},E_{t+1})$
- $= R + \sum_{J,L,P,E(t+1)} f_J(J_{t,}J_{t+1}) f_P(L_{t,}P_{t,}E_{t,}P_{t+1}) f_L(L_{t,}L_{t+1}) f_E(E_{t,}E_{t+1}) V_{t+1}(P_{t+1,}E_{t+1})$
- $= R + \sum_{L,P,E(t+1)} f_P(L_{t,P_t,E_t,P_{t+1}}) f_L(L_{t,L_{t+1}}) f_E(E_{t,E_{t+1}}) V_{t+1}(P_{t+1,E_{t+1}})$

 $Q^{a}_{t}(J_{t},L_{t},P_{t},E_{t})$

- $= R + \Sigma_{J,L,P,E(t+1)} Pr^{a}(J_{t+1},L_{t+1},P_{t+1},E_{t+1} | J_{t},L_{t},P_{t},E_{t}) V_{t+1}(J_{t+1},L_{t+1},P_{t+1},E_{t+1})$
- $= R + \sum_{J,L,P,E(t+1)} f_J(J_{t,J_{t+1}}) f_P(L_{t,P_t,E_t,P_{t+1}}) f_L(L_{t,L_{t+1}}) f_E(E_{t,E_{t+1}}) V_{t+1}(P_{t+1,E_{t+1}})$
- $= R + \sum_{L,P,E(t+1)} f_P(L_{t,P_t,E_t,P_{t+1}}) f_L(L_{t,L_{t+1}}) f_E(E_{t,E_{t+1}}) V_{t+1}(P_{t+1,E_{t+1}})$

•When V^{t+1} depends on subset of variables:

- $Q^{t}(a)$ usually depends on subset of variables as well
- Computation can be structured without exponential blowup (VE)
- Further enhancements: Each function represented as ADD
- ... and ADD operations allow structure to be preserved

Structured Value Iteration

Assume compact representation of V^k

- start with R at stage-to-go 0 (say)
- For each action a, compute Q^{k+1} using variable elimination on the two-slice DBN
 - eliminate all k-stage-to-go variables, leaving only k+1 variables
 - use ADD operations when initial representation (*Pr, R*) are ADDs
- Compute $V^{k+1} = max_a Q^{k+1}$
 - use ADD operations again to preserve structure, efficiency
- Policy iteration can be approached similarly

Structured Policy and Value Function

Example Action Reward/Representation

ADD: Example Value Function

SPUDD Results

Example Name	S varial ternary	tate spa bles total	ce size states	time (s)	SPUDD internal nodes	- Value leaves	equiv. tree leaves	time (s)	SPI - Value internal nodes	leaves	ratio of tree nodes: ADD nodes
factory	3 0	14 17	55296 131072	78.0	828	147	8937	2210.6 2188.23	6721 9513	7879 9514	8.12 11.48
factory0	3 0	16 19	221184 524288	- 111.4	1137	- 147	14888	5763.1 6238.4	15794 22611	18451 22612	13.89 19.89
factoryl	3 0	18 21	884736 2097132	279.0	2169	178	49558	14731.9 15430.6	31676 44304	37315 44305	14.60 20.43
factory2	3 0	19 22	1769472 4194304	462.1	2169	178	49558	14742.4 15465.0	31676 44304	37315 44305	14.60 20.43
factory3	4 0	21 25	10616832 33554432	- 3609.4	4711	208	242840	98340.0 112760.1	138056 193318	168207 193319	29.31 41.04
factory4	4 0	24 28	63700992 268435456	- 14651.5	7431	238	707890	-	-	-	-

Decision-theoretic Regression: Relative Merits

Adaptive, nonuniform, exact abstraction method

- provides exact solution to MDP
- much more efficient on certain problems (time/space)
- see SPUDD package

Some drawbacks

- produces piecewise constant VF
- some problems admit no compact solution representation (though ADD overhead "minimal")
- approximation may be desirable or necessary

Approximate Decision-theoretic Regression

- Straightforward to approximate solution using DTR
- Simple pruning of value function
 - Can prune trees [BouDearden96] Or ADDs [StAubinHoeyBou00]

A Pruned Value ADD

Approximate Decision-theoretic Regression

- Straightforward to approximate solution using DTR
- Simple pruning of value function
 - Can prune trees [BouDearden96] Or ADDs [StAubinHoeyBou00]
- Gives regions of approximately same value
- Can derive simple error bounds as well
 - e.g., for pruned versions of value iteration (with discount factor β , stopping criterion ε and maximum approximation span δ :

$$\left\|V^* - V_{\pi}\right\| \leq \frac{2\beta(2\delta + \varepsilon)}{1 - \beta}$$

Approximate DTR: Relative Merits

- Relative merits of ADTR
 - fewer regions implies faster computation
 - can provide leverage for **optimal** computation
 - e.g., start with aggressive pruning, then relax (exploit contraction)
 - allows fine-grained control of time vs. solution quality with dynamic (a posteriori) error bounds
 - technical challenges: variable ordering, convergence, fixed vs. adaptive tolerance, etc.
- Some drawbacks
 - (still) produces piecewise constant VF
 - doesn't exploit additive structure of VF at all
- Many other ways of exploiting structure, DBNs, etc.
 - function approximation (especially linear approximations)
 - decompositions (sub-problem structure, etc.)
 - ...

State-based Decomposition

MDP may have weakly or non-interacting subcomponents

- E.g., policy for running several assembly lines, robots, ...
 - Actions taken for one may have no (or little) impact on others
 - Can solve for policies independently if no interaction
 - If some interaction, use "independent" policies and values to guide the coordination (e.g., interaction limited to occasional assignment of resources to each assembly line)

Temporal Abstraction

Solve local MDPs over specific "regions" of state space

- Macro-actions, "local policies," temporally-extended actions
- Use the local policies as actions in an smaller abstract MDP
- Fast value propagation, small abstract MDP, prior knowledge, ...
- Issues: which macros, computing macro-models (state space), transferability/reuse for new domains/objectives, ...

From Sutton, Precup, Singh, AIJ-99

Linear Value Function Approximation

•Set of *basis functions*: $B = \{b_1, b_2, \dots, b_k\}$

- Each b_i: S → ℝ assigns value to states, compact (e.g., depends only on a few state features)
- •Approx. *V* with linear combination: $\tilde{V}(s) = \sum_{i} w_i b_i(s)$
 - Compact representation: weight vector w and small basis f'ns
 - Limits VF to fall within space spanned by B
- Approx. value iteration: sequence $w^{(k)}$ of *k*-stage-to-go VFs
 - Run Bellman back up on $w^{(k)}$ to produce $w^{(k+1)} = L(w^{(k)})$
 - Trick: $w^{(k+1)}$ usually falls out of *B*-space, but still compact; project back into *B*-space before moving to next iteration
 - Issues: good set of basis functions? Keeping computation tractable (Bellman backup, projection), e.g., exploiting DBNs? etc.

Policy iteration, etc. can also be used