2534 Lecture 6: Tractable Solutions of MDPs and POMDPs

-Discuss basic algorithms for POMDPs (from last time)
-POMDPs: Point-based Value Iteration

- Structured Models of MDPs
-Announcements
- Asst. 1 due today
- Project discussions slots on Tues, Thurs, Friday this week
- 20 minute time slots (come prepared)

Recap: POMDPs

-POMDPs offer a very general model for sequential decision making allowing:

- uncertainty in action effects
- uncertainty in knowledge of system state, noisy observations
- multiple (possibly conflicting) objectives
- nonterminating, process-oriented problems
- It is the uncertainty in system state that distinguishes them from MDPs

Recap: POMDPs: Basic Model

-As in MDPs: $S, A, p_{i j}^{a}, r_{i}^{a}, r_{i}^{T}$

- Observation space: Z (or Z_{a})
-Observation probabilities: $p_{i j z}^{a}$ for $z \in Z_{a}$

Recap: History-based Policies

- Information available at time t :
- initial distribution (belief state) $b \in \Delta(S)$
- history of actions, observations: $a^{1}, z^{1}, a^{2}, z^{2}, \ldots, a^{t-1}, z^{t-1}$
-Thus, we can view a policy as a mapping:

$$
\pi: \Delta(S) \times H^{t \leq T} \rightarrow A
$$

-For given belief state b, it is a conditional plan
e.g., $M N ; M N ; E X ;\left\{\begin{array}{l}\text { if Def:IN;MN;MN... } \\ \text { else:MN;MN;EX }\left\{\begin{array}{l}\text { if Def:RP;MN... } \\ \text { else:MN... }\end{array}\right.\end{array}\right.$

- notice distinction with MDPs: can't map from state to actions

Recap: Belief States

-History-based policy grows exponentially with horizon

- infinite horizon POMDPs problematic
- Belief state $b \in \Delta(S)$ summarizes history sufficiently [Aoki (1965), Astrom (1965)]
- Let b be belief state; suppose we take action a, get obs z
- Let $T(b, a, z)$ be updated belief state (transition to new b)
- If we let b_{i} denote $\operatorname{Pr}(S=i)$, we update:

$$
\begin{aligned}
T(b, a, z)_{i} & =\operatorname{Pr}(i \mid a, z, b) \\
& =\alpha \operatorname{Pr}(z \mid i, a, b) \operatorname{Pr}(i \mid a, b) \\
& =\frac{\sum_{j} b_{j} p_{j i}^{a} p_{j i z}^{a}}{\sum_{j k} b_{k} p_{j k}^{a} p_{j k z}^{a}}
\end{aligned}
$$

Recap: Belief State MDP

-POMDP now an MDP with state space $\Delta(S)$
-Reward: $r_{b}^{a}=b \cdot r^{a}=\sum_{i} b_{i} r_{i}^{a}$
-Transitions: $p_{b, b^{\prime}}^{a}=\operatorname{Pr}(z \mid b, a)$ if $b^{\prime}=T(b, a, z) ; 0$ o.w.

- Optimality Equations:

$$
\begin{aligned}
Q_{a}^{k}(b) & =b \cdot r^{a}+\sum_{b^{\prime}} p_{b, b^{\prime}}^{a} V^{k-1}(b) \\
& =\sum_{i} b_{i}\left[r_{i}^{a}+\sum_{j} p_{i j}^{a} \sum_{z} p_{i j z}^{a} V^{k-1}(T(b, a, z))\right]
\end{aligned}
$$

$V^{k}(b)=\max _{a} Q_{a}^{k}(b)$

$$
\pi^{k}(b)=\underset{a}{\arg \max } Q_{a}^{k}(b)
$$

Recap: Belief State MDP Graphically

Belief State Transitions for Action a, Belief State b

Recap: PWLC Value Function

Recap: Representation of Q-function

PWLC Representation of Q_{a}

σ_{1} corresponds to "Do(a):
if $\mathrm{z1}$, do(red):
if $\mathbf{z 2}$, do(green)"

Recap: Linear Support Graphically

Belief State

Sources of Intractability

- Size of α-vectors
- each is size of state space (exponential in number of variables)
- Number of α-vectors
- potentially grows exponentially with horizon
-Belief state monitoring
- must maintain belief state online in order to implement policy using value function
- belief state representation: size of state space

Approximation Strategies

- Sizes of problems solved exactly are quite small
- various approximation methods developed
- often deal with 1000 or so states, not much more
-Grid-Based Approximations
- compute value at small set of belief states
- require method to "interpolate" value function
- require grid-selection method (uniform, variable, etc.)
- we'll discuss one method (Perseus/PBVI) today
- Finite Memory Approximations
- e.g., policy as function of most recent actions, observations
- can sometimes convert VF into finite-state controller

Approximation Strategies

- Learning Methods

- assume specific value function representation
- e.g., linear value function, smooth approximation, neural net
- train representation through simulation

- Heuristic Search Methods

- search through belief space from initial state
- requires good heuristic for leverage
- heuristics could be generated by other methods
- Structure-based Approximations
- E.g., based on decomposability of problem

Grid-based Approximations

-High level motivation:

- number of a vectors grows exponentially (even in practice) with horizon (one of biggest impediments to solving POMDPs)
- intuitively, need optimal policies for every belief point
- instead, we could select a finite sample (or grid) of belief points on the n-dimensional simplex and compute optimal value function (or policy) for those points
- for any other belief points not on grid, use some interpolation scheme
- can define a simple value iteration scheme based on this idea

Belief Grid (2-D, 3-D), with VF (2-D)

Grid-based Value Iteration

- Given value function $V(k-1)$ on grid B
- Compute value $V(k)$ at grid points in usual way

$$
Q_{a}^{k}(b)=\sum_{i} b_{i}\left[r_{i}^{a}+\sum_{j} p_{i j}^{a} \sum_{z} p_{i j z}^{a} V^{k-1}(T(b, a, z))\right]
$$

- Problem: $T(b, a, z)$ not usually on grid even if b is
- Solution: use some form of interpolation over $V(k-1)$

Point-based Value Iteration

-Grid-based methods expensive, performance debatable

- Selecting suitable grid, interpolation can be expensive
-But recall approximation based on Cheng's linear support
- just use a subset of α-vectors
-PBVI methods combine the two insights
- select a small subset of belief points
- but compute/backup α-vectors instead of just values
- no interpolation, use collection of α-vectors as VF representation
-Briefly, let's look at:
- Pineau's original PBVI
- Spaan and Vlassis Perseus

Point-based Value Iteration

- Main idea (roughly)
- fix a small set of belief points B
- assume approximate set of α-vectors $V(k-1)$
- do backups for each b in B, using $V(k-1)$, to construct $V(k)$
- can prune (remove dominated vectors)
- can expand set of belief points in an anytime fashion (add new belief points if you want, as time permits)

PBVI: Which Belief States (Grid)?

- Initial belief states B
- starting at b_{0}, consider updated $T(b, z, a)$ reached by taking action a and sampling a random observation z (sample z with $\operatorname{Pr}(z \mid b, a)$)
- take belief state from one of these actions, the one that is greatest distance (L1 or L2) from any belief point in the set
- aim: trying to get maximum coverage of belief space (diversity, but informed by reachability considerations)
- Repeat as time permits, consider expanding belief set B by
- using same process as above, for each b in B
- double size of belief set at each iteration until you are "satisfied" with coverage (or number of belief states reaches some threshold)
- Paper discusses other methods for generating belief points
- experiments don't show large differences except for one (large) domain

PBVI: Observations

- Time complexity: each backup takes $O(S A O V B) \approx O\left(S A O B^{2}\right)$
- each backup requires $A O$ belief projections
- each projection required V value evaluations (to determine which vector has max value)
- each projection/evaluation takes $O(S)$ time
- B points to backup (and V is bounded by B)
- Error can be bounded based on density of belief grid
- result is straightforward, bound is a bit too loose to be useful

Theorem 1 For any belief set B and any horizon n, the error of the PBVI algorithm $\eta_{n}=\left\|V_{n}^{B}-V_{n}^{*}\right\|_{\infty}$ is bounded by

$$
\eta_{n} \leq \frac{\left(R_{\max }-R_{\min }\right) \epsilon_{B}}{(1-\gamma)^{2}}
$$

Introduce an error by pruning away alpha vectors at each stage of:
Rmax-Rmin*eps / (1-gamma)

	Method	Goal\%	Reward	Time(s)	B
	Maze33 / Tiger-Grid				
	QMDP[*]	n.a.	0.198	0.19	n.a.
	Grid [Brafman, 1997]	n.a.	0.94	n.v.	174
	PBUA [Poon, 2001]	n.a.	2.30	12116	660
PBVI:	PBVI[*]	n.a.	2.25	3448	470
Performance	Hallway				
(works pretty	QMDP[*]	47	0.261	0.51	n.a.
(works pretty	QMDP [Littman et al., 1995]	47.4	n.v.	n.v.	n.a.
weli)	PBUA [Poon, 2001]	100	0.53	450	300
	PBVI[*]	96	0.53	288	86
	Hallway2				
	QMDP[*]	22	0.109	1.44	n.a.
	QMDP [Littman et al., 1995]	25.9	n.v.	n.v.	n.a.
	Grid [Brafman, 1997]	98	n.v.	n.v.	337
	PBUA [Poon, 2001]	100	0.35	27898	1840
	PBVI[*]	98	0.34	360	95
	Tag				
	QMDP[*]	17	-16.769	13.55	n.a.
	PBVI[*]	59	-9.180	180880	1334
	n.a. $=$ not applicable	n.v. $=$ no	available		

Name	$\|S\|$	$\|O\|$	$\|A\|$
Tiger-grid	33	17	5
Hallway	57	21	5
Hallway2	89	17	5
Tag	870	30	5
	Csc 2534 Lecture Slides (c) 2011-14, c. Boutilier		

PERSEUS

-Perseus makes a small but useful tweak on PBVI

- fixes a set of belief states B
- given $V(k-1)$, does not update all belief states to get $V(k)$, instead:
- select a random b from B
- do a point-based backup to get a new α-vector $\alpha(b)$ for b
- if new α-vector not improving, use best old one from $V(k-1)$
- if $\alpha(b)$ improves any other b^{\prime} in B, then do not backup b^{\prime}
- continue until all belief states b ' in B have "improved", either through their own backup or by that of some other b
-Simple idea: don't waste backups on b in B if other backups have improved its value anyway
- little you can prove about this, but it keeps the size of the sets $V(k)$ of α-vectors much smaller in practice

Perseus Performance (TAG domain)

Figure 2: Tag: (a) state space with chasing and opponent robot; (b)-(e) performance of Perseus.

Perseus Performance (Comparative)

Tiger-grid	R	$\|\pi\|$	T
HSVI	2.35	4860	10341
Perseus	2.34	134	104
PBUA	2.30	660	12116
PBVI	2.25	470	3448
BPI w/b	2.22	120	1000
Grid	0.94	174	n.a.
$Q_{\text {MDP }}$	0.23	n.a.	2.76

(a) Results for Tiger-grid.

Hallway	R	$\|\pi\|$	T
PBVI	0.53	86	288
PBUA	0.53	300	450
HSVI	0.52	1341	10836
PERSEUS	0.51	55	35
BPI w/b	0.51	43	185
$Q_{\text {MdP }}$	0.27	n.a.	1.34

(b) Results for Hallway.

Hallway2	R	$\|\pi\|$	T
Perseus	0.35	56	10
HSVI	0.35	1571	10010
PBUA	0.35	1840	27898
PBVI	0.34	95	360
BPI w/b	0.32	60	790
$Q_{\text {MDP }}$	0.09	n.a.	2.23

(c) Results for Hallway2.

Tag	R	$\|\pi\|$	T
Perseus	-6.17	280	1670
HSVI	-6.37	1657	10113
BPI w/b	-6.65	17	250
BBSLS	≈-8.3	30	10^{5}
BPI n/b	-9.18	940	59772
PBVI	-9.18	1334	180880
$Q_{\text {MDP }}$	-16.9	n.a.	16.1

(d) Results for Tag.

State Space Explosion

-For MDPs/POMDPs, state space explosion is a key issue

- MDPs, POMDPs: transition, reward, obs rep'n are O(S²), O(S)
- MDPs: value functions and policies: $O(S)$
- POMDPs: each α-vector (just a VF): O(S)
- Most problems (in AI especially) are feature-based
- S is exponential in number of variables
- Specification/representation of problem in state form impractical
- Explicit state-based dynamic programming impractical
-Require structured representations
- exploit regularities in probabilities, rewards
-Require structured computation
- exploit regularities in policies, value functions
- can aid in approximation (anytime computation)

Structured Representation

- States decomposable into state variables

$$
S=X_{1} \times X_{2} \times \ldots X_{n}
$$

- Structured representations the norm in Al
- STRIPS, Sit-Calc., Bayesian networks, etc.
- Describe how actions affect/depend on features
- Natural, concise, can be exploited computationally
- Same ideas can be used for MDPs
- actions, rewards, policies, value functions, etc.
- dynamic Bayes nets [DeanKanazawa89,BouDeaGol95]
- decision trees and diagrams [BouDeaGol95,Hoeyetal99]

Action Representation - DBN/ADD

Pickup Printout

J - Joe needs coffee
L - robot in printer room
P - robot has printout
E-robot gripper empty

Action Representation - DBNIADD

Action Representation - DBNIADD

Pickup Printout

- ADDs, decision trees, Horn rules,
- both compact and natural

DBN Remarks

-Dynamic Bayes net action representation

- each state variable occurs at time t and $t+1$
- dependence of time $t+1$ variables on time t variables
- can also depend on other time $t+1$ variables (provided the DBN remains acyclic) to capture correlations in action effects
- no quantification of time t variables is specified (since we don't care about prior)
- so DBN represents a family of conditional distributions over the time $t+1$ variables given the time t variables
- compact representation of CPTs using trees, ADDs, Horn rules exploits context-specific independence [BFGK96]

Reward Representation

-Rewards represented similarly

- save on 2^{n} size of vector rep'n

Reward Representation

-Rewards represented similarly

- save on 2^{n} size of vector representation
-Additive independent (or GAI) reward also very common
- as in multi-attribute utility theory
- offers more natural and concise representation for many types of problems

Structured Computation

- Given compact representation, can we solve MDP without explicit state space enumeration?
- Can we avoid $O(|S|)$-computations by exploiting regularities made explicit by DBNs/ADDs?

State Space Abstraction

- General method: state aggregation
- group states, treat aggregate as single state
- commonly used in OR [SchPutKin85, BertCast89]
- viewed as automata minimization [DeanGivan96]
- Abstraction is a specific aggregation technique
- aggregate by ignoring details (features)
- ideally, focus on relevant features

Graphical View of Abstraction

Value function (or policy choice) depends only on a small subset of variables (A, B, C) and not others (D, E, F, \ldots); and may do so in a "structured" fashion.

Decision-Theoretic Regression

- Goal regression a classical abstraction method
- $\operatorname{Regr}(G, a)$ is a logical condition C under which a leads to G (aggregates C states and $\sim C$ states)
"Decision-theoretic analog: given "logical description" of V^{t+1}, produce such a description of V^{t} or optimal policy (e.g., using ADDs)
- Cluster together states at any point in calculation with same best action (policy), or with same value (VF)

A Graphical View of DTR

$Q^{\dagger}(a)$
$V^{\dagger+1}$

Functional View of DTR

- Generally, V^{t+1} depends on only a subset of variables (usually in a structured way)
-What is value of action a at time t (at any s)?

Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t ?
-Use variable elimination!

Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t ? (Use variable elimination!)

```
\(\left.\mathrm{Q}_{\mathrm{t}}^{\mathrm{a}} \mathrm{J}_{\mathrm{t},}, \mathrm{L}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t},}, \mathrm{E}_{\mathrm{t}}\right)\)
```


Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t ? (Use variable elimination!)

$$
\begin{aligned}
& Q^{\mathrm{a}} \mathrm{t}\left(\mathrm{~J}_{\left.\mathrm{t}, \mathrm{~L}, \mathrm{~L}_{1}, \mathrm{P}_{t}, \mathrm{E}_{\mathrm{t}}\right)}\right. \\
& =\mathrm{R}+\sum_{\mathrm{J}, \mathrm{~L}, \mathrm{P}, \mathrm{P}(\mathrm{t}+1)} \mathrm{Pr}^{\mathrm{a}}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{\mathrm{t}+1}, \mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1} \mid \mathrm{J}_{\mathrm{t}}, \mathrm{~L}_{t}, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}\right) \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{\mathrm{t}+1}, \mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)
\end{aligned}
$$

Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t ? (Use variable elimination!)

$$
\begin{aligned}
& \mathrm{Q}^{\mathrm{a}}{ }_{\mathrm{t}}\left(\mathrm{~J}_{\mathrm{t}}, \mathrm{~L}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}\right) \\
& =R+\Sigma_{J, L, \mathrm{P}, \mathrm{E}[(t+1)} \operatorname{Pr}^{\mathrm{a}}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{\mathrm{t}+1}, \mathrm{P}_{\mathrm{P}+1,} \mathrm{E}_{\mathrm{t}+1} \mid \mathrm{J}_{\left.\mathrm{t}, \mathrm{~L} t, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}\right)} \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{t+1}, \mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)\right. \\
& =R+\sum_{J, L, P, E(t+1)} f_{j}\left(\mathrm{~J}_{t}, \mathrm{~J}_{t+1}\right) f_{P}\left(L_{t}, \mathrm{P}_{\mathrm{t},}, \mathrm{E}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}+1}\right) \mathrm{f}_{\mathrm{L}}\left(\mathrm{~L}_{\mathrm{t}, \mathrm{~L}+1+1}\right) \mathrm{f}_{\mathrm{E}}\left(\mathrm{E}_{\left.\mathrm{t}, \mathrm{E}_{\mathrm{t}+1}\right)} \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)\right.
\end{aligned}
$$

Functional View of DTR

- Assume VF V^{t+1} is structured: what is value of doing action a at time t ? (Use variable elimination!)

$$
\begin{aligned}
& \left.\mathrm{Q}_{\mathrm{t}}^{\mathrm{a}} \mathrm{~J}_{\mathrm{t},}, \mathrm{~L}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t},}, \mathrm{E}_{\mathrm{t}}\right) \\
& =\mathrm{R}+\Sigma_{\mathrm{J}, \mathrm{~L}, \mathrm{P},[(t+1)} \mathrm{Pr}^{\mathrm{a}}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{\mathrm{t}+1}, \mathrm{P}_{\mathrm{P}+1,}, \mathrm{E}_{t+1} \mid \mathrm{J}_{\left.\mathrm{t}, \mathrm{~L}_{t}, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}\right)} \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{t+1}, \mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)\right. \\
& =R+\sum_{J, L, P, E(t+1)} f_{j}\left(\mathrm{~J}_{t}, \mathrm{~J}_{t+1}\right) f_{P}\left(L_{t}, \mathrm{P}_{t,}, \mathrm{E}_{t}, \mathrm{P}_{\mathrm{t}+1}\right) \mathrm{f}_{\mathrm{L}}\left(\mathrm{~L}_{\mathrm{t}, \mathrm{~L}+1+1}\right) \mathrm{f}_{\mathrm{E}}\left(\mathrm{E}_{\left.\mathrm{t}, \mathrm{E}_{\mathrm{t}+1}\right)}\right) \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right) \\
& =R+\sum_{L, P, E(t+1)} f_{P}\left(L_{t}, P_{t}, \mathrm{E}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}+1}\right) \mathrm{f}_{\mathrm{L}}\left(\mathrm{~L}_{\mathrm{t}, \mathrm{~L}+1}\right) \mathrm{f}_{\mathrm{E}}\left(\mathrm{E}_{\left.\mathrm{t}, \mathrm{E}_{\mathrm{t}+1}\right)} \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)\right.
\end{aligned}
$$

Functional View of DTR

$$
\begin{aligned}
& \mathrm{Q}^{\mathrm{a}}{ }_{\mathrm{t}}\left(\mathrm{~J}_{\mathrm{t}}, \mathrm{~L}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}\right) \\
& =\mathrm{R}+\Sigma_{\mathrm{J}, \mathrm{~L}, \mathrm{P}, \mathrm{E}[(+1)} \mathrm{Pr}^{\mathrm{a}}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{\mathrm{t}+1}, \mathrm{P}_{\mathrm{P}+1}, \mathrm{E}_{\mathrm{t}+1} \mid \mathrm{J}_{\mathrm{t}, \mathrm{~L},}, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}\right) \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{~J}_{\mathrm{t}+1}, \mathrm{~L}_{t+1}, \mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{E}+1}\right) \\
& =R+\sum_{J, L, P, E(t+1)} f_{J}\left(\mathrm{~J}_{t}, \mathrm{~J}_{t+1}\right) f_{P}\left(L_{t}, \mathrm{P}_{\mathrm{t}}, \mathrm{E}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}+1}\right) \mathrm{f}_{\mathrm{L}}\left(\mathrm{~L}_{\mathrm{t}, \mathrm{~L}+1+1}\right) \mathrm{f}_{\mathrm{E}}\left(\mathrm{E}_{\mathrm{t}} \mathrm{E}_{\mathrm{t}+1}\right) \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right) \\
& =R+\sum_{L, P, E(t+1)} f_{P}\left(L_{t}, P_{t}, \mathrm{E}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}+1}\right) \mathrm{f}_{\mathrm{L}}\left(\mathrm{~L}_{\mathrm{t}}, \mathrm{~L}_{\mathrm{t}+1}\right) \mathrm{f}_{\mathrm{E}}\left(\mathrm{E}_{\left.\mathrm{t}, \mathrm{E}_{\mathrm{t}+1}\right)} \mathrm{V}_{\mathrm{t}+1}\left(\mathrm{P}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)\right.
\end{aligned}
$$

-When V^{t+1} depends on subset of variables:

- $Q^{t}(a)$ usually depends on subset of variables as well
- Computation can be structured without exponential blowup (VE)
- Further enhancements: Each function represented as ADD
- ... and ADD operations allow structure to be preserved

Structured Value Iteration

-Assume compact representation of $V k$

- start with R at stage-to-go 0 (say)
- For each action a, compute Q^{k+1} using variable elimination on the two-slice DBN
- eliminate all k-stage-to-go variables, leaving only $k+1$ variables
- use ADD operations when initial representation (Pr, R) are ADDs
-Compute $V^{k+1}=\max _{a} Q^{k+1}$
- use ADD operations again to preserve structure, efficiency
-Policy iteration can be approached similarly

Structured Policy and Value Function

Example Action Reward/Representation

ADD: Example Value Function

SPUDD Results

Example Name		ate sp es total	size states	time (s)	SPUDD internal nodes	Value leaves	equiv. tree leaves	time (s)	SPI - Value internal nodes	leaves	ratio of tree nodes: ADD nodes
factory	3	14	55296	-	-	-	-	2210.6	6721	7879	8.12
	0	17	131072	78.0	828	147	8937	2188.23	9513	9514	11.48
factory0	3	16	221184	-	-	-	-	5763.1	15794	18451	13.89
	0	19	524288	111.4	1137	147	14888	6238.4	22611	22612	19.89
factoryl	3	18	884736	-	-	-	-	14731.9	31676	37315	14.60
	0	21	2097132	279.0	2169	178	49558	15430.6	44304	44305	20.43
factory2	3	19	1769472	-	-	-	-	14742.4	31676	37315	14.60
	0	22	4194304	462.1	2169	178	49558	15465.0	44304	44305	20.43
factory 3	4	21	10616832	-	-	-	-	98340.0	138056	168207	29.31
	0	25	33554432	3609.4	4711	208	242840	112760.1	193318	193319	41.04
factory4	4	24	63700992	-	-	-	-	-	-	-	-
	0	28	268435456	14651.5	7431	238	707890	-	-	-	-

Decision-theoretic Regression: Relative Merits

- Adaptive, nonuniform, exact abstraction method
- provides exact solution to MDP
- much more efficient on certain problems (time/space)
- see SPUDD package
- Some drawbacks
- produces piecewise constant VF
- some problems admit no compact solution representation (though ADD overhead "minimal")
- approximation may be desirable or necessary

Approximate Decision-theoretic Regression

-Straightforward to approximate solution using DTR

- Simple pruning of value function
- Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]

A Pruned Value ADD

Approximate Decision-theoretic Regression

- Straightforward to approximate solution using DTR
-Simple pruning of value function
- Can prune trees [BouDearden96] or ADDs [StAubinHoeyBou00]
-Gives regions of approximately same value
- Can derive simple error bounds as well
- e.g., for pruned versions of value iteration (with discount factor β, stopping criterion ε and maximum approximation span δ :

$$
\left\|V^{*}-V_{\pi}\right\| \leq \frac{2 \beta(2 \delta+\varepsilon)}{1-\beta}
$$

Approximate DTR: Relative Merits

- Relative merits of ADTR
- fewer regions implies faster computation
- can provide leverage for optimal computation
- e.g., start with aggressive pruning, then relax (exploit contraction)
- allows fine-grained control of time vs. solution quality with dynamic (a posteriori) error bounds
- technical challenges: variable ordering, convergence, fixed vs. adaptive tolerance, etc.
- Some drawbacks
- (still) produces piecewise constant VF
- doesn't exploit additive structure of VF at all
- Many other ways of exploiting structure, DBNs, etc.
- function approximation (especially linear approximations)
- decompositions (sub-problem structure, etc.)
- ...

State-based Decomposition

-MDP may have weakly or non-interacting subcomponents

- E.g., policy for running several assembly lines, robots, ...
- Actions taken for one may have no (or little) impact on others
- Can solve for policies independently if no interaction
- If some interaction, use "independent" policies and values to guide the coordination (e.g., interaction limited to occasional assignment of resources to each assembly line)

Temporal Abstraction

-Solve local MDPs over specific "regions" of state space

- Macro-actions, "local policies," temporally-extended actions
- Use the local policies as actions in an smaller abstract MDP
- Fast value propagation, small abstract MDP, prior knowledge, ...
- Issues: which macros, computing macro-models (state space), transferability/reuse for new domains/objectives, ...

From Sutton, Precup, Singh, AIJ-99

Initial Values

Iteration \#1

Iteration \#2

Linear Value Function Approximation

-Set of basis functions: $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$

- Each $b_{i}: S \rightarrow \mathbb{R}$ assigns value to states, compact (e.g., depends only on a few state features)
- Approx. V with linear combination: $\tilde{V}(s)=\sum_{i} w_{i} b_{i}(s)$
- Compact representation: weight vector \boldsymbol{w} and small basis f'ns
- Limits VF to fall within space spanned by B
-Approx. value iteration: sequence $\boldsymbol{w}^{(k)}$ of k-stage-to-go VFs
- Run Bellman back up on $\boldsymbol{w}^{(k)}$ to produce $\boldsymbol{w}^{(k+1)}=L\left(\boldsymbol{w}^{(k)}\right)$
- Trick: $\boldsymbol{w}^{(k+1)}$ usually falls out of B-space, but still compact; project back into B-space before moving to next iteration
- Issues: good set of basis functions? Keeping computation tractable (Bellman backup, projection), e.g., exploiting DBNs? etc.
-Policy iteration, etc. can also be used

