
1

2534 Lecture 4: Sequential Decisions
and Markov Decision Processes
Briefly: preference elicitation (last week’s readings)

• Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J.
Norman,Y. Shahar. In Uncertainty in AI 14 (UAI '98), pp. 79-88, 1998.

• Constraint-based Optimization and Utility Elicitation using the Minimax Decision
Criterion. C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Artificial
Intelligence 170:686-713, 2006.

Sequences of Decisions
• Basic considerations
• Quick discussion of decision trees

Basics of Markov Decision Processes (MDPs)
Announcements

• Asst.1 posted yesterday, due in two weeks (Oct.13)
• See web page for handout on course projects

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Sequential Decision Problems
Few decisions in life can be treated in isolation
Sequences of decision are much more common

• think of Robbie’s plans for maintaining the lab, etc.
We take actions not just for their immediate benefit, but:

• because they lead to opportunities to take other actions
Robbie risks getting crushed in the street to buy coffee

• because they provide information that can inform future decisions
Doctor takes MRI before deciding on course of treatment

• and a combination of all three (benefits, opportunities, info)

• We’ll set aside information gathering until next time…

2CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

A Simple Perspective
 To compute best action

sequence

1. Assign utility to each
trajectory

• e.g., u(s1 → s2 → s6)

2. For each sequence of
actions compute prob of
any trajectory

• e.g., Pr(s1 → s2 → s6|
[a1,a1]) = 0.9*0.7 = 0.63

3. Compute EU of each
action sequence:

• EU of [a1,a1], [a1,a2], [a2,
a1], [a2,a2]

• Choose the best

3CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

s1

a1

a2

0.9
s2

s3

s4

s5

s6

s7

a1

a2

0.1

0.6

0.4

0.7

0.3

Action (1) Outcome (1) Action (2) Outcome (2)

What’s wrong with this perspective?

Practical: easier to think of utility of individual states (and
action costs) then utility of entire trajectories

Computational: k actions, t stages: kt action sequences
to evaluate; and if n outcomes per action, ktnt trajectories!

 Conceptual: sequences of actions are often not the right
form of behavior:

• After doing a1, I go to s2 or s3. It may be better to do a1 again if I
end up to s2, but best to do a2 if I end up at s3.

4CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Policies
Can only be captured with policies

• assume observable outcomes
• Takes form: Do a1; if s2, do a1, if s3, do a2; …

Policies make more state trajectories possible
• Hence they (weakly) increase EU of best behavior, since they

includes sequences as a special case
Difficulty: far more policies than sequences

• computation problem seemingly harder
• dynamic programming comes to the rescue

First decision trees (briefly)
Then (our focus): Markov decision processes (MDPs)

5CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Decision Trees

Simple way to structure sequences of decisions
Consists of:

• decision nodes: representing actions available to decision maker
• chance nodes: representing uncertain outcomes of decisions;

must be labeled with observable events
• sequencing of decisions based on observed

A simple form of dynamic programming allows one to
compute optimal course of action, or policy
 choices at each stage can depend on observed outcomes at any

previous stages
 same principle as backward induction in extensive form games

6CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Simple Example

ABC Computer needs to decide if (and how) to bid on a government
contract for 10,000 special purpose computers
One other potential bidder (Complex Inc.), low bidder wins
New manufacturing process being developed, uncertain of true costs!

• under current process: cost is $8000/unit
• under new process? 0.25 $5000; 0.50 $7500; $0.25 $8500

Three bids for ABC to consider: $9500 per unit, $8500, or $7500
Prepping bid will cost $1M
Complex will bid $10,000 per unit, $9000 or $8000 (Pr = 1/3 each)

Should ABC bid? If so, should it bid $7500, $8500, or $9500?

7CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Decision Sequencing

First decision:
• whether to bid (and what)

Second decision:
• if it wins: attempt new process or use old process
• predicting outcome of this impacts bidding decision

Structure decisions in decision tree
• Decision nodes (square): emerging edges labeled with actions,

point to (i) next decision nodes or (ii) chance nodes if stochastic
• Chance nodes (circles): emerging edges indicate possible

outcomes and their probabilities; must be observable
• Terminal nodes: final outcome of trajectory (labeled with utilities)

8CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Decision
Tree for
Contract
Bidding

9CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

From Craig
Kirkword:
A Primer on
Decision Trees

$M

Ignore crosshatch
marks (//) for now

Backward Induction (Rollback, DP)

Value of a terminal node T:

Value of chance node C:

Value of decision node D:

Policy 𝜋𝜋: maximize decision d at each decision node D
• Recall edge to each child labeled with a decision d

10CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

∑
∈

=
)(

)()Pr()(
CChildn

nEUDCEU

)()(max
)(

nEUDEU
DChildn∈

=

)()(maxarg
)(

CEUD
DChildC∈

=π

i.e., utility given
in problem spec.)()(TUTEU =

Decision
Tree for
Contract
Bidding

11CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

$M

From Craig
Kirkword:
A Primer on
Decision Trees

Decision Trees: Wrap

A lot more worth looking at, but we’ll move into a more
general (less structured) formalism: MDPs
An important aspect of decision trees is the fact that

information-gathering actions are important (and easily
modeled)

• hence they are important decision-analytic tools for
understanding value of information (e.g., pay for tests, studies,
trials, consultants to determine more precise likelihood of the
outcomes of certain actions)

• require direct use of Bayes rule in evaluating trees
• will discuss this briefly when we get to POMDPs

12CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Markov Decision Processes

An MDP has four components, S, A, R, Pr:
• (finite) state set S (|S| = n)
• (finite) action set A (|A| = m)
• transition function Pr(s,a,t)

 each Pr(s,a,●) is a distribution over S
 represented by set of n x n stochastic matrices

• bounded, real-valued reward function R(s)
 represented by an n-vector
 can be generalized to include action costs: R(s,a)
 can be stochastic (but replaceable by expectation)

Model easily generalizable to countable or continuous
state and action spaces

13CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

System Dynamics

14CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Finite State Space S
State s1013:

Loc = 236
Joe needs printout
Craig needs coffee
...

System Dynamics

15CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Finite Action Space A
Pick up Printouts?
Go to Coffee Room?
Go to charger?

System Dynamics

16CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Transition Probabilities: Pr(si, a, sj)

Prob. = 0.95

System Dynamics

17CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Prob. = 0.05

s1 s2 ... sn
s1 0.9 0.05 ... 0.0
s2 0.0 0.20 ... 0.1

sn 0.1 0.0 ... 0.0

...

Transition Probabilities: Pr(si, a, sj)

Reward Process

18CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Reward Function: R(si)
- action costs possible

Reward = -10

R
s1 12
s2 0.5

sn 10

...
...

Assumptions

Markovian dynamics (history independence)
• Pr(St+1 | At,St,At-1,St-1,..., S0) = Pr(St+1 | At,St)

Markovian reward process
• Pr(Rt | At,St,At-1,St-1,..., S0) = Pr(Rt | At,St)

Stationary dynamics and reward
• Pr(St+1 | At,St) = Pr(St’+1 | At’,St’) for all t, t’

Full observability
• though we can’t predict what state we will reach when we

execute an action, once it is realized, we know what it is

19CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Graphical View of MDP

20CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

St

Rt

St+1

Rt+1

St+2

Rt+2

At At+1

Markov Decision Processes

Recall components of a fully
observable MDP

• states S (|S| = n)
• actions A
• transition function Pr(s,a,t)

 represented by set of n x n
stochastic matrices

• reward function R(s)
 represented by n-vector

21CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

s1 s2 ... sn
s1 0.9 0.05 ... 0.0
s2 0.0 0.20 ... 0.1

sn 0.1 0.0 ... 0.0

...

R
s1 12
s2 0.5

sn 10

...
...

Policies

Nonstationary policy
• 𝜋𝜋:S x T → A
• 𝜋𝜋(𝑠𝑠, 𝑡𝑡) is action to do at state s with t-stages-to-go

Stationary policy
• 𝜋𝜋: 𝑆𝑆 → 𝐴𝐴
• 𝜋𝜋(𝑠𝑠) is action to do at state s (regardless of time)
• analogous to reactive or universal plan

These assume or have these properties:
• full observability
• history-independent
• deterministic action choice

22CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Value of a Policy

How good is a policy 𝜋𝜋? How do we measure
“accumulated” reward?
Value function 𝑉𝑉: 𝑆𝑆 → ℝ

• associates value with each state (sometimes S x T)
𝑉𝑉𝜋𝜋(𝑠𝑠) denotes value of policy at state s

• expected accumulated reward over horizon of interest
• note 𝑉𝑉𝜋𝜋(𝑠𝑠) ≠ 𝑅𝑅(𝑠𝑠); it measures utility

Common formulations of value:
• Finite horizon n: total expected reward given 𝜋𝜋
• Infinite horizon discounted: discounting keeps total bounded
• Infinite horizon, average reward per time step

23CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Finite Horizon Problems

Utility (value) depends on stage-to-go
• hence so should policy: nonstationary 𝜋𝜋(𝑠𝑠, 𝑘𝑘)

24CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Tiger trap with juicy piece of meat:
• How to act if world about to end?
• How to act otherwise?

Finite Horizon Problems

Utility (value) depends on stage-to-go
• hence so should policy: nonstationary 𝜋𝜋(𝑠𝑠, 𝑘𝑘)

 is k-stage-to-go value function for 𝜋𝜋

Here Rt is a random variable denoting reward received at
stage t

25CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)(sV k
π

],|[)(
0

sREsV
k

t

tk ππ ∑
=

=

Successive Approximation

Successive approximation algorithm used to compute
(akin to dynamic programming)

(a)

(b)

26CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(')'),,(,Pr()()(1 ss VsksssRsV kk ∑ −⋅+= ππ π

)(sV k
π

ssRsV ∀=),()(0
π

Vk-1Vk

0.7

0.3

π(s,k)

Successive Approximation

Let 𝑃𝑃𝜋𝜋,𝑘𝑘 be matrix constructed from rows of action
chosen by policy

In matrix form: 𝑉𝑉𝜋𝜋𝑘𝑘 = 𝑅𝑅 + 𝑃𝑃𝜋𝜋,𝑘𝑘𝑉𝑉𝜋𝜋𝑘𝑘−1

Notes:
• 𝜋𝜋 requires T n-vectors for policy representation

• 𝑉𝑉𝜋𝜋𝑘𝑘 requires an n-vector for representation
• Markov property is critical in this formulation since value at s is

defined independent of how s was reached

27CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Value Iteration

Markov property allows exploitation of dynamic
programming (DP) principle for optimal policy construction

• no need to enumerate |A|Tn possible policies
Value Iteration

28CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(')',,Pr(max)()(1 ss VsassRsV kk

a
∑ −⋅+=

ssRsV ∀=),()(0

)'(')',,Pr(maxarg),(* 1 ss Vsasks k

a
∑ −⋅=π

Vk is optimal k-stage-to-go value function

Bellman backup

Value Iteration

29CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

0.3

0.7
0.4

0.6

s4

s1

s3

s2

Vk-1Vk

0.4

0.3

0.7

0.6

0.3

0.7
0.4

0.6

Vk+1Vk+2

0.7 Vk-1 (s1) + 0.3 Vk-1 (s4)
0.4 Vk-1 (s2) + 0.6 Vk-1 (s3)

Vk(s4) = R(s4)+max {
}

Value Iteration

30CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

s4

s1

s3

s2

0.3

0.7
0.4

0.6
0.3

0.7

0.4

0.6

0.3

0.7
0.4

0.6

Vk-1VkVk+1Vk+2

Πk(s4) = max { }

Value Iteration

Note how DP is used
• optimal solution to k-1 stage problem can be used without

modification as part of optimal solution to k-stage problem
Because of finite horizon, policy is nonstationary
In practice, Bellman backup computed using:

31CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

ass VsassRsaQ kk ∀⋅+= ∑ −),'(')',,Pr()(),(1

),(max)(saQsV k
a

k =

Complexity of Value Iteration

T iterations
At each iteration |A| computations of n x n matrix times

n-vector: O(|A|n2)
Total O(T |A|n2)
Can exploit sparsity of matrix: O(T |A|n)

32CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Summary

Resulting policy is optimal

• convince yourself of this
• convince yourself that non-Markovian, randomized policies are

not necessary
Notes:

• optimal value function is unique…
• but optimal policy need not be unique

33CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

kssVsV kk ,,),()(* πππ ∀≥

Discounted Infinite Horizon MDPs

Total reward problematic (usually)
• many or all policies have infinite expected reward
• some MDPs (e.g., zero-cost absorbing states) OK

“Trick”: introduce discount factor 0 ≤ β < 1
• future rewards discounted by β per time step

Note:

Motivation: economic? failure prob? convenience?

34CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

],|[)(
0

sREsV
t

ttk πβπ ∑
∞

=

=

max

0

max

1
1][)(RREsV

t

t

β
βπ −

=≤ ∑
∞

=

Some Notes

Optimal policy maximizes value at each state
Optimal policies guaranteed to exist (Howard 1960)

Can restrict attention to stationary policies
• why change action at state s at new time t?

We define for some optimal 𝜋𝜋

35CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)()(* sVsV π=

Value Equations

Value equation for fixed policy value

Bellman equation for optimal value function

36CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(')'),(,Pr()()(ss VssssRsV ∑ ⋅+= ππ πβ

)'(' *)',,Pr(max)()(* ss VsassRsV
a
∑ ⋅+= β

Backup Operators

We can think of the fixed policy equation and the Bellman
equation as operators in a vector space

• e.g., 𝐿𝐿𝜋𝜋(𝑉𝑉) = 𝑉𝑉’ = 𝑅𝑅 + 𝛽𝛽𝑃𝑃𝜋𝜋𝑉𝑉
• 𝑉𝑉𝜋𝜋 is unique fixed point of policy backup operator 𝐿𝐿𝜋𝜋
• V* is unique fixed point of Bellman backup 𝐿𝐿

We can compute 𝑉𝑉𝜋𝜋 easily: policy evaluation
• simple linear system with n variables, n equalities
• solve 𝑉𝑉 = 𝑅𝑅 + 𝛽𝛽𝑃𝑃𝜋𝜋𝑉𝑉

Cannot do this for optimal policy
• max operator makes things nonlinear

37CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Value Iteration

Can compute optimal policy using value iteration, just like
FH problems (just include discount term)

• no need to store argmax at each stage (stationary)

38CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(')',,Pr(max)()(1 ss VsassRsV kk

a
∑ −⋅+= β

Convergence

𝐿𝐿(𝑉𝑉) is a contraction mapping in 𝑅𝑅𝑛𝑛 (so is 𝐿𝐿𝜋𝜋)
• ||𝐿𝐿𝑉𝑉 – 𝐿𝐿𝑉𝑉𝐿|| ≤ 𝛽𝛽 ||𝑉𝑉 – 𝑉𝑉𝐿|| (we’re using max-norm)

When to stop value iteration? when ||𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑘𝑘−1|| ≤ 𝜀𝜀

• ||𝑉𝑉𝑘𝑘+1 − 𝑉𝑉𝑘𝑘|| ≤ 𝛽𝛽 ||𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑘𝑘−1||
• this ensures ||𝑉𝑉𝑘𝑘 − 𝑉𝑉∗|| ≤ 𝜀𝜀𝛽𝛽/(1 − 𝛽𝛽)

Convergence is assured
• any guess V: ||𝑉𝑉∗ − 𝐿𝐿𝑉𝑉|| = ||𝐿𝐿𝑉𝑉∗ − 𝐿𝐿𝑉𝑉|| ≤ 𝛽𝛽 ||𝑉𝑉∗ − 𝑉𝑉||
• so fixed point theorems ensure eventual convergence

39CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

How to Act

Given V* (or approximation), use greedy policy:

• if V within 𝜀𝜀 of V*, then 𝑉𝑉(𝜋𝜋) within 2𝜀𝜀 of V*

There exists an 𝜀𝜀 s.t. optimal policy is returned
• even if value estimate is off, greedy policy is optimal
• proving a policy is optimal can be difficult (methods like action

elimination can be used)

40CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(' *)',,Pr(maxarg)(* ss Vsass
a

∑ ⋅=π

Complexity of VI

Unknown number of iterations: assume stopping at time T
• Convergence rate: linear
• Expected number of iterations grows as 1/(1 − 𝛽𝛽)

At each iteration,we have |A| matrix-vector
multiplications: n x n matrix, n-vector so: O(|A|n2)
Total O(T|A|n2)

Can exploit sparsity of matrix: O(T |A|n)

41CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Policy Iteration
Given fixed policy, can compute its value exactly:

Policy iteration exploits this

42CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(')'),(,Pr()()(ss VssssRsV ∑ ⋅+= ππ πβ

1. Choose a random policy π
2. Loop:

(a) Evaluate Vπ
(b) For each s in S, set
(c) Replace π with π’

Until no improving action possible at any state

)'(')',,Pr(maxarg)(' ss Vsass
a

∑ ⋅= ππ

* This is a linear
system with n vars
(𝑉𝑉𝜋𝜋(𝑠𝑠) for each s)

Policy Iteration Notes

Convergence assured (Howard 1960)
• intuitively: no local maxima in value space, and each policy must

improve value; since finite number of policies, will converge to
optimal policy

Very flexible algorithm
• need only improve policy at one state (not each state)

Gives exact value of optimal policy
Generally converges much faster than VI

• each iteration more complex O(n3), but fewer iterations
• quadratic rather than linear rate of convergence (sometimes)
• known to be pseudo-polynomial for fixed β

43CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Modified Policy Iteration

Modified policy iteration (MPI):flexible alternative to VI, PI
Run PI, but don’t solve linear system to evaluate policy:

• instead do several iterations of successive approximation (SA)
to evaluate policy

You can run SA until near convergence
• but in practice, you often only need a few backups to get an

estimate of V(π) that allows improvement in π
• quite efficient in practice
• choosing number of SA steps an important practical issue

44CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Asynchronous Value Iteration (AVI)

Needn’t do full backups of VF when running VI
Gauss-Siedel: Start with Vk .Once you compute Vk+1(s),

you replace Vk(s) before proceeding to the next state
(assume some ordering of states)

• tends to converge much more quickly
• note: Vk no longer k-stage-to-go VF

Asynchronous VI: set some V0; Choose random state s
and do a Bellman backup at that state alone to produce
V1; Choose random state s…

• if each state backed up frequently enough, convergence assured
• useful for online algorithms (reinforcement learning)

45CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Some Remarks on Search Trees

Analogy of Value Iteration to decision trees
• decision tree (expecti-max search) is really value iteration with

computation focused on reachable states
Real-time Dynamic Programming (RTDP)

• simply real-time search applied to MDPs
• can exploit heuristic estimates of value function
• can bound search depth using discount factor
• can cache/learn values
• can use pruning techniques

46CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

	2534 Lecture 4: Sequential Decisions and Markov Decision Processes
	Sequential Decision Problems
	A Simple Perspective
	What’s wrong with this perspective?
	Policies
	Decision Trees
	Simple Example
	Decision Sequencing
	Decision Tree for Contract Bidding
	Backward Induction (Rollback, DP)
	Decision Tree for Contract Bidding
	Decision Trees: Wrap
	Markov Decision Processes
	System Dynamics
	System Dynamics
	System Dynamics
	System Dynamics
	Reward Process
	Assumptions
	Graphical View of MDP
	Markov Decision Processes
	Policies
	Value of a Policy
	Finite Horizon Problems
	Finite Horizon Problems
	Successive Approximation
	Successive Approximation
	Value Iteration
	Value Iteration
	Value Iteration
	Value Iteration
	Complexity of Value Iteration
	Summary
	Discounted Infinite Horizon MDPs
	Some Notes
	Value Equations
	Backup Operators
	Value Iteration
	Convergence
	How to Act
	Complexity of VI
	Policy Iteration
	Policy Iteration Notes
	Modified Policy Iteration
	Asynchronous Value Iteration (AVI)
	Some Remarks on Search Trees

