2534 Lecture 4: Sequential Decisions and Markov Decision Processes

Briefly: preference elicitation (last week's readings)

- <u>Utility Elicitation as a Classification Problem.</u> Chajewska, U., L. Getoor, J. Norman, Y. Shahar. In Uncertainty in AI 14 (UAI '98), pp. 79-88, 1998.
- <u>Constraint-based Optimization and Utility Elicitation using the Minimax Decision</u> <u>Criterion.</u> C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Artificial Intelligence 170:686-713, 2006.
- Sequences of Decisions
 - Basic considerations
 - Quick discussion of decision trees
- Basics of Markov Decision Processes (MDPs)
- Announcements
 - Asst.1 posted yesterday, due in two weeks (Oct.13)
 - See web page for handout on course projects

Sequential Decision Problems

- Few decisions in life can be treated in isolation
- Sequences of decision are much more common
 - think of Robbie's plans for maintaining the lab, etc.
- We take actions not just for their *immediate benefit*, but:
 - because they *lead to opportunities* to take other actions
 Robbie risks getting crushed in the street to buy coffee
 - because they provide information that can inform future decisions
 - Doctor takes MRI before deciding on course of treatment
 - and a *combination* of all three (benefits, opportunities, info)
 - We'll set aside information gathering until next time...

A Simple Perspective

- To compute best action sequence
- 1. Assign utility to each trajectory
 - e.g., $u(s1 \rightarrow s2 \rightarrow s6)$
- 2. For each sequence of actions compute prob of any trajectory
 - e.g., $Pr(s1 \rightarrow s2 \rightarrow s6|$ [a1,a1]) = 0.9*0.7 = 0.63
- 3. Compute EU of each action sequence:
 - EU of [a1,a1], [a1,a2], [a2, a1], [a2,a2]
 - Choose the best

Action (1) Outcome (1)

ne (1) Action (2)

) Outcome (2)

What's wrong with this perspective?

Practical: easier to think of utility of individual states (and action costs) then utility of entire trajectories

- Computational: k actions, t stages: k^t action sequences to evaluate; and if n outcomes per action, k^tn^t trajectories!
- Conceptual: sequences of actions are often not the right form of behavior:
 - After doing a₁, I go to s₂ or s₃. It may be better to do a₁ again if I end up to s₂, but best to do a₂ if I end up at s₃.

Policies

Can only be captured with policies

- assume observable outcomes
- Takes form: Do a_1 ; if s_2 , do a_1 , if s_3 , do a_2 ; ...
- Policies make more state trajectories possible
 - Hence they (weakly) increase EU of best behavior, since they includes sequences as a special case
- Difficulty: far more policies than sequences
 - computation problem seemingly harder
 - dynamic programming comes to the rescue
- First decision trees (briefly)

Then (our focus): Markov decision processes (MDPs)

Decision Trees

Simple way to structure sequences of decisions

Consists of:

- *decision nodes:* representing actions available to decision maker
- chance nodes: representing uncertain outcomes of decisions; must be labeled with observable events
- sequencing of decisions based on observed
- A simple form of dynamic programming allows one to compute optimal course of action, or policy
 - choices at each stage can depend on observed outcomes at any previous stages
 - same principle as backward induction in extensive form games

Simple Example

- ABC Computer needs to decide if (and how) to bid on a government contract for 10,000 special purpose computers
- One other potential bidder (Complex Inc.), low bidder wins
- New manufacturing process being developed, uncertain of true costs!
 - under current process: cost is \$8000/unit
 - under new process? 0.25 \$5000; 0.50 \$7500; \$0.25 \$8500
- Three bids for ABC to consider: \$9500 per unit, \$8500, or \$7500
- Prepping bid will cost \$1M
- Complex will bid \$10,000 per unit, \$9000 or \$8000 (Pr = 1/3 each)
- Should ABC bid? If so, should it bid \$7500, \$8500, or \$9500?

Decision Sequencing

First decision:

- whether to bid (and what)
- Second decision:
 - if it wins: attempt new process or use old process
 - predicting outcome of this impacts bidding decision
- Structure decisions in *decision tree*
 - *Decision nodes* (square): emerging edges labeled with actions, point to (i) next decision nodes or (ii) chance nodes if stochastic
 - Chance nodes (circles): emerging edges indicate possible outcomes and their probabilities; must be observable
 - Terminal nodes: final outcome of trajectory (labeled with utilities)

Decision Tree for Contract Bidding

From Craig Kirkword: A Primer on Decision Trees

Backward Induction (Rollback, DP)

■Value of a terminal node T: EU(T) = U(T) i.e., utility given in problem spec.

- ■Value of chance node *C*: $EU(C) = \sum_{n \in Child(C)} Pr(D)EU(n)$
- ■Value of decision node *D*: $EU(D) = \max_{n \in Child(D)} EU(n)$

Policy π : maximize decision *d* at each decision node D

• Recall edge to each child labeled with a decision d

$$\pi(D) = \arg\max EU(C)$$

C \in Child(D)

Decision Tree for Contract Bidding

From Craig Kirkword: A Primer on Decision Trees

Decision Trees: Wrap

- A lot more worth looking at, but we'll move into a more general (less structured) formalism: MDPs
- An important aspect of decision trees is the fact that information-gathering actions are important (and easily modeled)
 - hence they are important decision-analytic tools for understanding value of information (e.g., pay for tests, studies, trials, consultants to determine more precise likelihood of the outcomes of certain actions)
 - require direct use of Bayes rule in evaluating trees
 - will discuss this briefly when we get to POMDPs

Markov Decision Processes

An MDP has four components, *S*, *A*, *R*, *Pr*.

- (finite) state set S (|S| = n)
- (finite) action set A (|A| = m)
- transition function *Pr(s,a,t)*
 - each Pr(s,a,•) is a distribution over S
 - represented by set of n x n stochastic matrices
- bounded, real-valued reward function R(s)
 - represented by an *n*-vector
 - can be generalized to include action costs: R(s,a)
 - can be stochastic (but replaceable by expectation)
- Model easily generalizable to countable or continuous state and action spaces

Finite State Space S

Transition Probabilities: *Pr(s_i, a, s_j)*

System Dynamics

Transition Probabilities: *Pr(s_i, a, s_j)*

Assumptions

Markovian dynamics (history independence)

- $Pr(S^{t+1} | A^{t}, S^{t}, A^{t-1}, S^{t-1}, ..., S^{0}) = Pr(S^{t+1} | A^{t}, S^{t})$
- Markovian reward process
 - $Pr(R^t | A^t, S^t, A^{t-1}, S^{t-1}, ..., S^0) = Pr(R^t | A^t, S^t)$
- Stationary dynamics and reward
 - $Pr(S^{t+1} | A^t, S^t) = Pr(S^{t'+1} | A^{t'}, S^{t'})$ for all t, t'
- Full observability
 - though we can't predict what state we will reach when we execute an action, once it is realized, we know what it is

Graphical View of MDP

Markov Decision Processes

- Recall components of a fully observable MDP
 - states *S* (|*S*| = *n*)
 - actions A
 - transition function Pr(s,a,t)
 - represented by set of n x n stochastic matrices
 - reward function R(s)
 - represented by n-vector

	S1 S2 .	Sn
51	0.9 0.05	0.0
52	0.0 0.20	0.1
•		
Sn	0.1 0.0	0.0

Policies

- Nonstationary policy
 - $\pi: S \times T \to A$
 - $\pi(s, t)$ is action to do at state s with t-stages-to-go
- Stationary policy
 - $\pi: S \rightarrow A$
 - $\pi(s)$ is action to do at state *s* (regardless of time)
 - analogous to reactive or universal plan
- These assume or have these properties:
 - full observability
 - history-independent
 - deterministic action choice

Value of a Policy

How good is a policy π? How do we measure "accumulated" reward?

- Value function $V: S \rightarrow \mathbb{R}$
 - associates value with each state (sometimes S x T)
- • $V_{\pi}(s)$ denotes *value* of policy at state *s*
 - expected accumulated reward over horizon of interest
 - note $V_{\pi}(s) \neq R(s)$; it measures utility

Common formulations of value:

- Finite horizon n: total expected reward given π
- Infinite horizon discounted: discounting keeps total bounded
- Infinite horizon, average reward per time step

Finite Horizon Problems

Utility (value) depends on stage-to-go

• hence so should policy: nonstationary $\pi(s, k)$

Tiger trap with juicy piece of meat:

- How to act if world about to end?
- How to act otherwise?

Finite Horizon Problems

Utility (value) depends on stage-to-go

- hence so should policy: nonstationary $\pi(s, k)$
- $V_{\pi}^{k}(s)$ is k-stage-to-go value function for π

$$V_{\pi}^{k}(s) = E\left[\sum_{t=0}^{k} R^{t} \mid \pi, s\right]$$

Here R^t is a random variable denoting reward received at stage t

Successive Approximation

Successive approximation algorithm used to compute $V_{\pi}^{k}(s)$ (akin to dynamic programming)

(a)
$$V^0_{\pi}(s) = R(s), \quad \forall s$$

(b)
$$V_{\pi}^{k}(s) = R(s) + \sum_{s'} \Pr(s, \pi(s, k), s') \cdot V_{\pi}^{k-1}(s')$$

Successive Approximation

•Let $P^{\pi,k}$ be matrix constructed from rows of action chosen by policy

In matrix form:
$$V_{\pi}^{k} = R + P^{\pi,k}V_{\pi}^{k-1}$$

Notes:

- π requires *T n*-vectors for policy representation
- V_{π}^{k} requires an *n*-vector for representation
- Markov property is critical in this formulation since value at s is defined independent of how s was reached

Markov property allows exploitation of dynamic programming (DP) principle for optimal policy construction

• no need to enumerate $|A|^{Tn}$ possible policies

Value Iteration

Bellman backup

$$V^{0}(s) = R(s), \quad \forall s$$

 $V^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$
 $\pi^{*}(s, k) = \arg \max_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$
 V^{k} is optimal k-stage-to-go value function

Note how DP is used

- optimal solution to *k-1* stage problem can be used without modification as part of optimal solution to *k*-stage problem
- Because of finite horizon, policy is nonstationary

In practice, Bellman backup computed using:

$$Q^{k}(a,s) = R(s) + \sum_{s'} \Pr(s,a,s') \cdot V^{k-1}(s'), \quad \forall a$$
$$V^{k}(s) = \max_{a} Q^{k}(a,s)$$

Complexity of Value Iteration

Titerations

- At each iteration |A| computations of n x n matrix times n-vector: O(|A|n²)
- •Total *O*(*T* |*A*|*n*²)
- •Can exploit sparsity of matrix: O(T |A|n)

Summary

Resulting policy is optimal

$$V_{\pi^*}^k(s) \ge V_{\pi}^k(s), \quad \forall \pi, s, k$$

- convince yourself of this
- convince yourself that non-Markovian, randomized policies are not necessary
- Notes:
 - optimal value function is unique...
 - but optimal policy need not be unique

Discounted Infinite Horizon MDPs

Total reward problematic (usually)

- many or all policies have infinite expected reward
- some MDPs (e.g., zero-cost absorbing states) OK
- "Trick": introduce discount factor $0 \le \beta < 1$
 - future rewards discounted by β per time step

$$V_{\pi}^{k}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} R^{t} \mid \pi, s\right]$$

- •Note: $V_{\pi}(s) \leq E\left[\sum_{t=0}^{\infty} \beta^{t} R^{\max}\right] = \frac{1}{1-\beta} R^{\max}$
- Motivation: economic? failure prob? convenience?

Some Notes

- Optimal policy maximizes value at each state
- Optimal policies guaranteed to exist (Howard 1960)
- Can restrict attention to stationary policies
 - why change action at state s at new time t?
- •We define $V^*(s) = V_{\pi}(s)$ for some optimal π

Value Equations

Value equation for fixed policy value

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} \Pr(s, \pi(s), s') \cdot V_{\pi}(s')$$

Bellman equation for optimal value function

$$V^*(s) = R(s) + \beta \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^*(s')$$

Backup Operators

We can think of the fixed policy equation and the Bellman equation as operators in a vector space

- e.g., $L_{\pi}(V) = V' = R + \beta P_{\pi}V$
- V_{π} is unique fixed point of policy backup operator L_{π}
- V^* is unique fixed point of Bellman backup L
- •We can compute V_{π} easily: *policy evaluation*
 - simple linear system with n variables, n equalities
 - solve $V = R + \beta P_{\pi} V$
- Cannot do this for optimal policy
 - max operator makes things nonlinear

Can compute optimal policy using value iteration, just like FH problems (just include discount term)

$$V^{k}(s) = R(s) + \beta \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

no need to store argmax at each stage (stationary)

Convergence

• L(V) is a contraction mapping in \mathbb{R}^n (so is L_{π})

• $||LV - LV'|| \le \beta ||V - V'||$ (we're using max-norm)

•When to stop value iteration? when $||V^k - V^{k-1}|| \le \varepsilon$

- $||V^{k+1} V^k|| \leq \beta ||V^k V^{k-1}||$
- this ensures $||V^k V^*|| \le \varepsilon \beta / (1 \beta)$
- Convergence is assured
 - any guess V: $||V^* LV|| = ||LV^* LV|| \le \beta ||V^* V||$
 - so fixed point theorems ensure eventual convergence

How to Act

Given V* (or approximation), use *greedy* policy:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^*(s')$$

• if *V* within ε of *V*^{*}, then $V(\pi)$ within 2ε of *V*^{*}

There exists an ε s.t. optimal policy is returned

- even if value estimate is off, greedy policy is optimal
- proving a policy is optimal can be difficult (methods like action elimination can be used)

Complexity of VI

Unknown number of iterations: assume stopping at time T

- Convergence rate: linear
- Expected number of iterations grows as $1/(1 \beta)$
- At each iteration, we have |A| matrix-vector multiplications: n x n matrix, n-vector so: O(|A|n²)
 Total O(T|A|n²)

•Can exploit sparsity of matrix: O(T |A|n)

Policy Iteration

Given fixed policy, can compute its value exactly:

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} \Pr(s, \pi(s), s') \cdot V_{\pi}(s')$$

* This is a linear system with *n* vars $(V_{\pi}(s) \text{ for each } s)$

Policy iteration exploits this

1. Choose a random policy π 2. Loop: (a) Evaluate V_{π} (b) For each s in S, set $\pi'(s) = \arg \max \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}(s')$ (c) Replace π with π' Until no improving action possible at any state

Policy Iteration Notes

Convergence assured (Howard 1960)

- intuitively: no local maxima in value space, and each policy must improve value; since finite number of policies, will converge to optimal policy
- Very flexible algorithm
 - need only improve policy at one state (not each state)
- Gives exact value of optimal policy
- Generally converges much faster than VI
 - each iteration more complex O(n³), but fewer iterations
 - quadratic rather than linear rate of convergence (sometimes)
 - known to be pseudo-polynomial for fixed β

Modified Policy Iteration

- Modified policy iteration (MPI):flexible alternative to VI, PI
- Run PI, but don't solve linear system to evaluate policy:
 - instead do several iterations of successive approximation (SA) to evaluate policy
- You can run SA until near convergence
 - but in practice, you often only need *a few backups* to get an estimate of $V(\pi)$ that allows improvement in π
 - quite efficient in practice
 - choosing number of SA steps an important practical issue

Asynchronous Value Iteration (AVI)

- Needn't do full backups of VF when running VI
- Gauss-Siedel: Start with V^k.Once you compute V^{k+1}(s), you replace V^k(s) before proceeding to the next state (assume some ordering of states)
 - tends to converge much more quickly
 - note: V^k no longer k-stage-to-go VF
- Asynchronous VI: set some V⁰; Choose random state s and do a Bellman backup at that state alone to produce V¹; Choose random state s...
 - if each state backed up frequently enough, convergence assured
 - useful for online algorithms (reinforcement learning)

Some Remarks on Search Trees

Analogy of Value Iteration to decision trees

- decision tree *(expecti-max search)* is really value iteration with computation focused on reachable states
- Real-time Dynamic Programming (RTDP)
 - simply real-time search applied to MDPs
 - can exploit heuristic estimates of value function
 - can bound search depth using discount factor
 - can cache/learn values
 - can use pruning techniques