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2534 Lecture 4: Sequential Decisions 
and Markov Decision Processes
Briefly: preference elicitation (last week’s readings)

• Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. 
Norman,Y. Shahar. In Uncertainty in AI 14 (UAI '98), pp. 79-88, 1998.

• Constraint-based Optimization and Utility Elicitation using the Minimax Decision 
Criterion. C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Artificial 
Intelligence 170:686-713, 2006.

Sequences of Decisions
• Basic considerations
• Quick discussion of decision trees

Basics of Markov Decision Processes (MDPs)
Announcements

• Asst.1 posted yesterday, due in two weeks (Oct.13)
• See web page for handout on course projects
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Sequential Decision Problems
Few decisions in life can be treated in isolation
Sequences of decision are much more common

• think of Robbie’s plans for maintaining the lab, etc.
We take actions not just for their immediate benefit, but:

• because they lead to opportunities to take other actions
Robbie risks getting crushed in the street to buy coffee

• because they provide information that can inform future decisions
Doctor takes MRI before deciding on course of treatment

• and a combination of all three (benefits, opportunities, info)

• We’ll set aside information gathering until next time…
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A Simple Perspective
 To compute best action 

sequence

1. Assign utility to each 
trajectory

• e.g., u(s1 → s2 → s6)

2. For each sequence of 
actions compute prob of 
any trajectory

• e.g., Pr(s1 → s2 → s6| 
[a1,a1]) = 0.9*0.7 = 0.63

3. Compute EU of each 
action sequence:

• EU of [a1,a1], [a1,a2], [a2, 
a1], [a2,a2]

• Choose the best

3CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

s1

a1

a2

0.9
s2

s3

s4

s5

s6

s7

a1

a2

0.1

0.6

0.4

0.7

0.3

Action (1) Outcome (1) Action (2) Outcome (2)



What’s wrong with this perspective?

Practical: easier to think of utility of individual states (and 
action costs) then utility of entire trajectories

Computational: k actions, t stages: kt action sequences 
to evaluate; and if n outcomes per action, ktnt trajectories!

 Conceptual: sequences of actions are often not the right 
form of behavior:

• After doing a1, I go to s2 or s3. It may be better to do a1 again if I 
end up to s2, but best to do a2 if I end up at s3.
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Policies
Can only be captured with policies

• assume observable outcomes
• Takes form: Do a1; if s2, do a1, if s3, do a2; …

Policies make more state trajectories possible
• Hence they (weakly) increase EU of best behavior, since they 

includes sequences as a special case
Difficulty: far more policies than sequences

• computation problem seemingly harder
• dynamic programming comes to the rescue

First decision trees (briefly)
Then (our focus): Markov decision processes (MDPs)
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Decision Trees

Simple way to structure sequences of decisions
Consists of:

• decision nodes: representing actions available to decision maker
• chance nodes: representing uncertain outcomes of decisions; 

must be labeled with observable events
• sequencing of decisions based on observed

A simple form of dynamic programming allows one to 
compute optimal course of action, or policy
 choices at each stage can depend on observed outcomes at any 

previous stages
 same principle as backward induction in extensive form games
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Simple Example

ABC Computer needs to decide if (and how) to bid on a government 
contract for 10,000 special purpose computers
One other potential bidder (Complex Inc.), low bidder wins
New manufacturing process being developed, uncertain of true costs!

• under current process: cost is $8000/unit
• under new process?    0.25 $5000;    0.50 $7500;    $0.25 $8500

Three bids for ABC to consider: $9500 per unit, $8500, or $7500
Prepping bid will cost $1M
Complex will bid $10,000 per unit, $9000 or $8000 (Pr = 1/3 each)

Should ABC bid? If so, should it bid $7500, $8500, or $9500?
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Decision Sequencing

First decision:
• whether to bid (and what)

Second decision:
• if it wins: attempt new process or use old process
• predicting outcome of this impacts bidding decision

Structure decisions in decision tree
• Decision nodes (square): emerging edges labeled with actions, 

point to (i) next decision nodes or (ii) chance nodes if stochastic
• Chance nodes (circles):  emerging edges indicate possible 

outcomes and their probabilities; must be observable
• Terminal nodes: final outcome of trajectory (labeled with utilities)
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Decision 
Tree for 
Contract 
Bidding
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Backward Induction (Rollback, DP)

Value of a terminal node T:

Value of chance node C:

Value of decision node D:

Policy 𝜋𝜋: maximize decision d at each decision node D
• Recall edge to each child labeled with a decision d
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Decision Trees: Wrap 

A lot more worth looking at, but we’ll move into a more 
general (less structured) formalism: MDPs
An important aspect of decision trees is the fact that 

information-gathering actions are important (and easily 
modeled)

• hence they are important decision-analytic tools for 
understanding value of information (e.g., pay for tests, studies, 
trials, consultants to determine more precise likelihood of the 
outcomes of certain actions)

• require direct use of Bayes rule in evaluating trees
• will discuss this briefly when we get to POMDPs
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Markov Decision Processes

An MDP has four components, S, A, R, Pr:
• (finite) state set S   (|S| = n)
• (finite) action set A   (|A| = m)
• transition function Pr(s,a,t)

 each Pr(s,a,●) is a distribution over S
 represented by set of n x n stochastic matrices

• bounded, real-valued reward function R(s)
 represented by an n-vector
 can be generalized to include action costs: R(s,a)
 can be stochastic (but replaceable by expectation)

Model easily generalizable to countable or continuous 
state and action spaces
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System Dynamics
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System Dynamics
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System Dynamics
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System Dynamics
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Reward Process
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Assumptions

Markovian dynamics (history independence)
• Pr(St+1 | At,St,At-1,St-1,..., S0) = Pr(St+1 | At,St) 

Markovian reward process
• Pr(Rt | At,St,At-1,St-1,..., S0) = Pr(Rt | At,St)

Stationary dynamics and reward
• Pr(St+1 | At,St) = Pr(St’+1 | At’,St’) for all t, t’

Full observability
• though we can’t predict what state we will reach when we 

execute an action, once it is realized, we know what it is
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Graphical View of MDP
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Markov Decision Processes

Recall components of a fully 
observable MDP

• states S (|S| = n)
• actions A
• transition function Pr(s,a,t)

 represented by set of n x n 
stochastic matrices

• reward function R(s)
 represented by n-vector
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Policies

Nonstationary policy 
• 𝜋𝜋:S x T → A
• 𝜋𝜋(𝑠𝑠, 𝑡𝑡) is action to do at state s with t-stages-to-go

Stationary policy 
• 𝜋𝜋: 𝑆𝑆 → 𝐴𝐴
• 𝜋𝜋(𝑠𝑠) is action to do at state s (regardless of time)
• analogous to reactive or universal plan

These assume or have these properties:
• full observability
• history-independent
• deterministic action choice
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Value of a Policy

How good is a policy 𝜋𝜋? How do we measure 
“accumulated” reward?
Value function 𝑉𝑉: 𝑆𝑆 → ℝ

• associates value with each state (sometimes S x T)
𝑉𝑉𝜋𝜋(𝑠𝑠) denotes value of policy at state s

• expected accumulated reward over horizon of interest
• note 𝑉𝑉𝜋𝜋(𝑠𝑠) ≠ 𝑅𝑅(𝑠𝑠); it measures utility

Common formulations of value:
• Finite horizon n: total expected reward given 𝜋𝜋
• Infinite horizon discounted: discounting keeps total bounded
• Infinite horizon, average reward per time step
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Finite Horizon Problems

Utility (value) depends on stage-to-go
• hence so should policy: nonstationary 𝜋𝜋(𝑠𝑠, 𝑘𝑘)
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• How to act if world about to end?
• How to act otherwise?



Finite Horizon Problems

Utility (value) depends on stage-to-go
• hence so should policy: nonstationary 𝜋𝜋(𝑠𝑠, 𝑘𝑘)

 is k-stage-to-go value function for 𝜋𝜋

Here Rt is a random variable denoting reward received at 
stage t
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Successive Approximation

Successive approximation algorithm used to compute             
(akin to dynamic programming)

(a)

(b)
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Successive Approximation

Let  𝑃𝑃𝜋𝜋,𝑘𝑘 be matrix constructed from rows of action 
chosen by policy

In matrix form:     𝑉𝑉𝜋𝜋𝑘𝑘 = 𝑅𝑅 + 𝑃𝑃𝜋𝜋,𝑘𝑘𝑉𝑉𝜋𝜋𝑘𝑘−1

Notes:
• 𝜋𝜋 requires T n-vectors for policy representation

• 𝑉𝑉𝜋𝜋𝑘𝑘 requires an n-vector for representation
• Markov property is critical in this formulation since value at s is 

defined independent of how s was reached
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Value Iteration

Markov property allows exploitation of dynamic 
programming (DP) principle for optimal policy construction

• no need to enumerate |A|Tn possible policies
Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration

Note how DP is used
• optimal solution to k-1 stage problem can be used without 

modification as part of optimal solution to k-stage problem
Because of finite horizon, policy is nonstationary
In practice, Bellman backup computed using:
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Complexity of Value Iteration

T iterations
At each iteration |A| computations of n x n matrix times 

n-vector: O(|A|n2)
Total O(T |A|n2)
Can exploit sparsity of matrix:  O(T |A|n)
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Summary

Resulting policy is optimal

• convince yourself of this
• convince yourself that non-Markovian, randomized policies are 

not necessary
Notes:

• optimal value function is unique…
• but optimal policy need not be unique
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Discounted Infinite Horizon MDPs

Total reward problematic (usually)
• many or all policies have infinite expected reward
• some MDPs (e.g., zero-cost absorbing states) OK

“Trick”: introduce discount factor 0 ≤ β < 1
• future rewards discounted by β per time step

Note:

Motivation: economic? failure prob? convenience?
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Some Notes

Optimal policy maximizes value at each state
Optimal policies guaranteed to exist (Howard 1960)

Can restrict attention to stationary policies
• why change action at state s at new time t?

We define                            for some optimal 𝜋𝜋
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Value Equations

Value equation for fixed policy value

Bellman equation for optimal value function
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Backup Operators

We can think of the fixed policy equation and the Bellman 
equation as operators in a vector space

• e.g., 𝐿𝐿𝜋𝜋(𝑉𝑉) = 𝑉𝑉’ = 𝑅𝑅 + 𝛽𝛽𝑃𝑃𝜋𝜋𝑉𝑉
• 𝑉𝑉𝜋𝜋 is unique fixed point of policy backup operator 𝐿𝐿𝜋𝜋
• V* is unique fixed point of Bellman backup 𝐿𝐿

We can compute 𝑉𝑉𝜋𝜋 easily: policy evaluation
• simple linear system with n variables, n equalities
• solve 𝑉𝑉 = 𝑅𝑅 + 𝛽𝛽𝑃𝑃𝜋𝜋𝑉𝑉

Cannot do this for optimal policy
• max operator makes things nonlinear
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Value Iteration

Can compute optimal policy using value iteration, just like 
FH problems (just include discount term)

• no need to store argmax at each stage (stationary)

38CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

)'(' )',,Pr(max)()( 1 ss VsassRsV kk

a
∑ −⋅+= β



Convergence

𝐿𝐿(𝑉𝑉) is a contraction mapping in 𝑅𝑅𝑛𝑛 (so is 𝐿𝐿𝜋𝜋)
• ||𝐿𝐿𝑉𝑉 – 𝐿𝐿𝑉𝑉𝐿|| ≤ 𝛽𝛽 ||𝑉𝑉 – 𝑉𝑉𝐿|| (we’re using max-norm)

When to stop value iteration?  when ||𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑘𝑘−1|| ≤ 𝜀𝜀

• ||𝑉𝑉𝑘𝑘+1 − 𝑉𝑉𝑘𝑘|| ≤ 𝛽𝛽 ||𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑘𝑘−1||
• this ensures ||𝑉𝑉𝑘𝑘 − 𝑉𝑉∗|| ≤ 𝜀𝜀𝛽𝛽/(1 − 𝛽𝛽)

Convergence is assured
• any guess V:   ||𝑉𝑉∗ − 𝐿𝐿𝑉𝑉|| = ||𝐿𝐿𝑉𝑉∗ − 𝐿𝐿𝑉𝑉|| ≤ 𝛽𝛽 ||𝑉𝑉∗ − 𝑉𝑉||
• so fixed point theorems ensure eventual convergence
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How to Act

Given V* (or approximation), use greedy policy:

• if V within  𝜀𝜀 of V*, then 𝑉𝑉(𝜋𝜋) within  2𝜀𝜀 of V*

There exists an 𝜀𝜀 s.t. optimal policy is returned
• even if value estimate is off, greedy policy is optimal
• proving a policy is optimal can be difficult (methods like action 

elimination can be used)
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Complexity of VI

Unknown number of iterations: assume stopping at time T
• Convergence rate: linear
• Expected number of iterations grows as 1/(1 − 𝛽𝛽)

At each iteration,we have |A| matrix-vector 
multiplications: n x n matrix, n-vector so:  O(|A|n2)
Total O(T|A|n2)

Can exploit sparsity of matrix:  O(T |A|n)
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Policy Iteration
Given fixed policy, can compute its value exactly:

Policy iteration exploits this
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Policy Iteration Notes

Convergence assured (Howard 1960)
• intuitively: no local maxima in value space, and each policy must 

improve value; since finite number of policies, will converge to 
optimal policy

Very flexible algorithm
• need only improve policy at one state (not each state)

Gives exact value of optimal policy
Generally converges much faster than VI

• each iteration more complex O(n3), but fewer iterations
• quadratic rather than linear rate of convergence (sometimes)
• known to be pseudo-polynomial for fixed β
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Modified Policy Iteration

Modified policy iteration (MPI):flexible alternative to VI, PI
Run PI, but don’t solve linear system to evaluate policy:

• instead do several iterations of successive approximation (SA)  
to evaluate policy

You can run SA until near convergence
• but in practice, you often only need a few backups to get an 

estimate of V(π) that allows improvement in π
• quite efficient in practice
• choosing number of SA steps an important practical issue
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Asynchronous Value Iteration (AVI)

Needn’t do full backups of VF when running VI
Gauss-Siedel: Start with Vk .Once you compute Vk+1(s), 

you replace Vk(s) before proceeding to the next state 
(assume some ordering of states)

• tends to converge much more quickly
• note:  Vk no longer k-stage-to-go VF

Asynchronous VI: set some V0; Choose random state s
and do a Bellman backup at that state alone to produce 
V1; Choose random state s…

• if each state backed up frequently enough, convergence assured
• useful for online algorithms (reinforcement learning)
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Some Remarks on Search Trees

Analogy of Value Iteration to decision trees
• decision tree (expecti-max search) is really value iteration with 

computation focused on reachable states
Real-time Dynamic Programming (RTDP)

• simply real-time search applied to MDPs
• can exploit heuristic estimates of value function
• can bound search depth using discount factor
• can cache/learn values
• can use pruning techniques
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