2534 Lecture 3: Utility Elicitation

- Game theory or MDPs next?
- Project guidelines posted (and handed out)
- Assignment 1 will be posted this week, due on Oct.13
- Multi-attribute utility models (started last time)
 - preferential and utility independence
 - additive and generalized addition models
- Classical preference elicitation
 - standard gambles
 - additive and GAI models
- Queries and partial elicitation
 - <u>Utility Elicitation as a Classification Problem.</u> Chajewska, U., L. Getoor, J. Norman, Y. Shahar. In Uncertainty in AI 14 (UAI '98), pp. 79-88, 1998.
 - [MAY NOT GET TO IT TODAY:] <u>Constraint-based Optimization and Utility</u> <u>Elicitation using the Minimax Decision Criterion.</u> C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Artificial Intelligence 170:686-713, 2006.

Utility Representations

- •Utility function $u: X \rightarrow [0, 1]$
 - decisions induce distribution over outcomes
 - *or* we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
 - representing, eliciting *u* difficult in explicit form

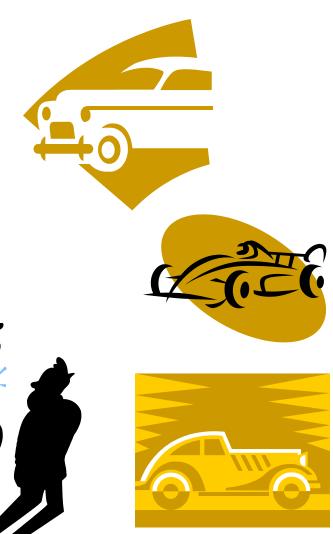
Luggage Capacity?

Two Door? Cost?

Engine Size?

Color? Options?

Product Configuration



Utility Representations

•Utility function $u: X \rightarrow [0, 1]$

- decisions induce distribution over outcomes
- *or* we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
 - representing, eliciting *u* difficult in explicit form
 - is the following representation reasonable, comprehensible?

	_				Utility
Car 1	Toyota Prius	Silver	125hp	5.6l/100k	 0.82
Car 2	Acura TL	Black	286hp	8.9l/100k	 1.0
Car 3	Acura TL	Blue	286hp	8.9l/100k	 0.96

COACH*

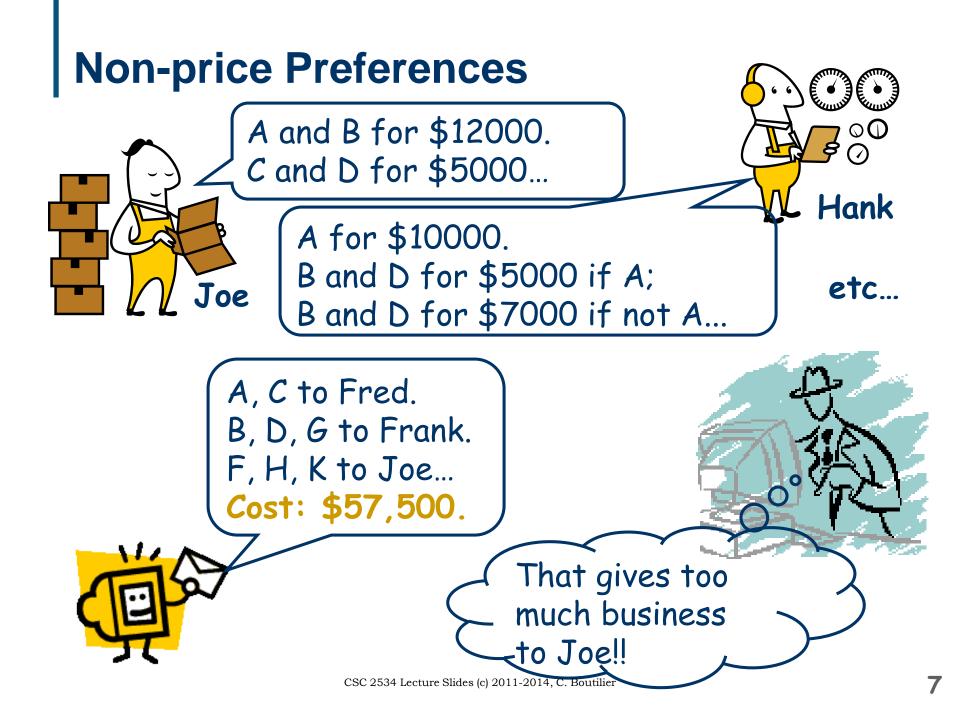
POMDP for prompting Alzheimer's patients

- solved using factored models, value-directed compression of belief space
- Reward function (patient/caregiver preferences)
 - indirect assessment (observation, policy critique)

Winner Determination in Combinatorial Auctions

Expressive bidding in auctions becoming common

- expressive languages allow: combinatorial bids, side-constraints, discount schedules, etc.
- direct expression of utility/cost: economic efficiency
- Advances in winner determination
 - determine least-cost allocation of business to bidders
 - new optimization methods key to acceptance
 - applied to large-scale problems (e.g., sourcing)



Non-price Preferences

- WD algorithms minimize cost alone
 - but preferences for *non-price attributes* play key role
 - Some typical attributes in sourcing:
 - percentage volume business to specific supplier
 - average quality of product, delivery on time rating
 - geographical diversity of suppliers
 - number of winners (too few, too many), ...
- Clear utility function involved
 - difficult to articulate precise tradeoff weights
 - "What would you pay to reduce %volumeJoe by 1%?"

Manual Scenario Navigation*

Current practice: manual scenario navigation

- impose constraints on winning allocation
 - not a hard constraint!
- re-run winner determination
- new allocation satisfying constraint: higher cost
- assess tradeoff and repeat (often hundreds of times) until satisfied with some allocation

Utility Representations

- •Utility function $u: X \rightarrow [0, 1]$
 - decisions induce distribution over outcomes
 - *or* we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
 - representing, eliciting *u* difficult in explicit form
- Some structural form usually assumed
 - so u parameterized compactly (weight vector w)
 - e.g., linear/additive, generalized additive models
- Representations for qualitative preferences, too
 - e.g., CP-nets, TCP-nets, etc. [BBDHP03, BDS05]

Flat vs. Structured Utility Representation

Naïve representation: vector of values

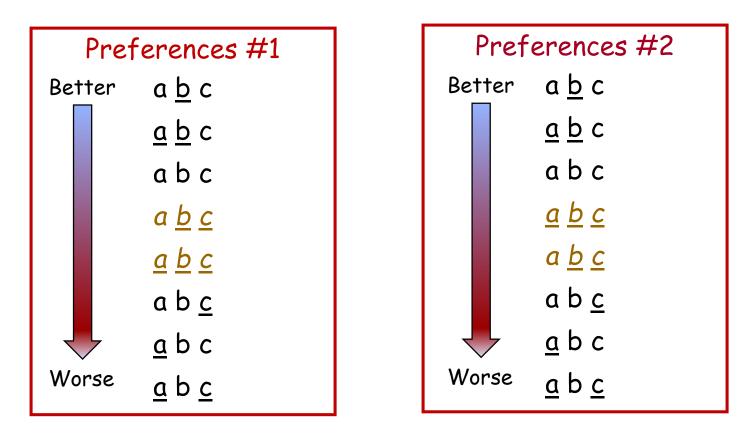
- e.g., car7:1.0, car15:0.92, car3:0.85, ..., car22:0.0
- Impractical for combinatorial domains
 - e.g., can't enumerate exponentially many cars, nor expect user to assess them all (choose among them)
- Instead we try to exploit independence of user preferences and utility for different attributes
 - the relative preference/utility of one attribute is independent of the value taken by (some) other attributes
- ■Assume $X \subseteq Dom(X_1) \times Dom(X_2) \times ... Dom(X_n)$
 - e.g., car7: Color=red, Doors=2, Power=320hp, LuggageCap=0.52m³

Preferential, Utility Independence

X and **Y** = **V**-**X** are preferentially independent if:

- $x_1y_1 \ge x_2y_1$ iff $x_1y_2 \ge x_2y_2$ (for all x_1, x_2, y_1, y_2)
- e.g., Color: red>blue regardless of value of Doors, Power, LugCap
- conditional P.I. given set Z: definition is straightforward
- **X** and **Y** = **V**-**X** are *utility independent* if:
 - $I_1(Xy_1) \ge I_2(Xy_1)$ iff $I_1(Xy_2) \ge I_2(Xy_2)$ (for all y_1, y_2 , all distr. I_1, I_2)
 - e.g., preference for *lottery(Red,Green,Blue)* does not vary with value of *Doors, Power, LugCap*
 - implies existence of a "utility" function over local (sub)outcomes
 - conditional U.I. given set **Z**: definition is straightforward

Is each attribute P.I. of others in preference relation 1, 2?



Does UI imply PI? Does PI imply UI?

Additive Utility Functions



u(red,2dr,280hp) = 0.85

Additive representations commonly used [KR76]

- breaks exponential dependence on number of attributes
- use sum of *local utility functions u_i* over attributes
- or equivalently *local value functions* v_i plus scaling factors λ_i

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i)$$

This will make elicitation/optimization much easier

Additive Utility Functions

An additive representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each attribute are identical

• $I_1(\mathbf{X}) \sim I_2(\mathbf{X})$ whenever $I_1(X_i) = I_2(X_i)$ for all X_i

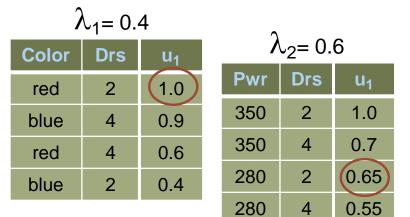
1	Outcome	Pr	12	Outcome	Pr	
- 1	x ₁ x ₂	0.3	-2	x ₁ x ₂	0.18	
	x' ₁ x ₂	0.0		x' ₁ x ₂	0.12	
	x ₁ x' ₂	0.3		x ₁ x' ₂	0.42	
	x' ₁ x' ₂	0.4	-	x' ₁ x' ₂	0.28	

Under additivity, two lotteries equally preferred, since marginals over X_1 , X_2 are the same in each:

•
$$Pr(X_2) = <.3, .7>$$

We'll look at a rough proof sketch when we discuss elicitation of additive functions in a few minutes

Generalized Additive Utility



u(*red*,2*dr*,280*hp*) = 0.79

Generalized additive models more flexible

interdependent value additivity [Fishburn67], GAI [BG95]

- assume (overlapping) set of m subsets of vars X[j]
- use sum of *local utility functions u_j* over attributes

$$u(\mathbf{x}) = \sum_{j=1}^{m} u_j(\mathbf{x}_j)$$

This can make elicitation/optimization much easier

GAI Utility Functions

An GAI representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each factor are identical

• $I_1(\mathbf{X}) \sim I_2(\mathbf{X})$ whenever $I_1(\mathbf{X}[i]) = I_2(\mathbf{X}[i])$ for all I

$$u(\mathbf{x}) = \sum_{j=1}^{m} u_j(\mathbf{x}_j)$$

Reasoning is similar to the additive case (but more involved)

Utility Elicitation

Now, how do we assess a user's utility function?

- First, we'll look at classical elicitation
 - we'll focus on additive models
 - review slides on generalized additive models if interested
- Then we'll look at a couple "AI approaches" to assessing utility functions using:
 - predicting a user's utility using *learning* (classification/clustering)
 - eliciting *partial* utility information (identifying "relevant" information)

Basic Elicitation: Flat Representation

"Typical" approach to assessment

• *normalization:* set best outcome utility 1.0; worst 0.0

•
$$u(\mathbf{x}^{\top}) = 1$$
 $u(\mathbf{x}^{\perp}) = 0$

 standard gamble queries: ask user for probability p with which indifference holds between x and SG(p)

$$\mathbf{x} \sim \langle p, \mathbf{x}^{\top}; 1 - p, \mathbf{x}^{\perp} \rangle$$
$$u(\mathbf{x}) = p \ u(\mathbf{x}^{\top}) + (1 - p) \ u(\mathbf{x}^{\perp}) = p$$

• e.g., car3 ~ <0.85, car7; 0.15, car22 >

SG queries: require precise numerical assessments

- Bound queries: fix p, ask if x preferred to SG(p)
 - yes/no response: places (lower/upper) bound on utility
 - easier to answer, much less info (narrows down interval)

Elicitation: Additive Models

First: assess local value functions with *local SG queries*

calibrates on [0,1]

$$x_i \sim \langle p, x_i^\top; 1 - p, x_i^\perp \rangle \iff v_i(x_i) = p$$

For instance,

- ask for best value of Color (say, red), worst value (say, grey)
- then ask local standard gamble for each remaining Color to assess it's local value (*note: user specifies probability... difficult)

blue ~ <0.85, red; 0.15, grey >

- green ~ <0.67, red; 0.33, grey >, ...
- Bound queries can be asked as well
 - only refine intervals on local utility

Elicitation: Additive Models

Second: assess scaling factors with "global" queries

- define *reference* outcome $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)$
 - could be worst global outcome, or any salient outcome, …
 - e.g., user's current car: *(red, 2door, 150hp, 0.35m³)*
- define \mathbf{x}^{\top_j} by setting X_j to best value, others to reference value
 - e.g., for doors: *(red, 4door, 150hp, 0.35m³)*
 - by independence, best value 4door must be fixed (whatever ref. values)
- compute scaling factor

$$\lambda_j = u(\mathbf{x}^{\top_j}) - u(\mathbf{x}^{\perp_j})$$

Calibrates "range" of contribution of X_j to utility. Fixing reference ensures other attr. contributions to outcome utility are constant (to assess SG).

- assess these 2n utility values with (global) SG queries
- Altogether: gives us full utility function

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i)$$

Why Does the Additive Rep'n Suffice?

- Let \geq be a pref order with utility f'n *u*. Want to show (MELEP) iff (ADD)
 - (MELEP) any pair of marginal-equivalent lotteries are equally preferred
 - (ADD) *u* has an additive decomposition $u(\mathbf{x}) = \sum u_i(x_i)$
- (ADD) implies (MELEP) is obvious (exercise)
- Sketch other direction. Assume two variables X₁, X₂ (generalizes easily)
 - MELEP implies $[\frac{1}{2}(x_1, x_2), \frac{1}{2}(x'_1, x'_2)] \sim [\frac{1}{2}(x_1, x'_2), \frac{1}{2}(x'_1, x_2)]$ for any x_1, x_2, x'_1, x'_2 (1)
 - Let $\mathbf{x}^* = (x^*_1, x^*_2)$ be an arbitrary reference outcome.
 - Set $u_1(x_1^*) + u_2(x_2^*) = u(x^*)$ (however you want) (2)
 - For <u>all other</u> x_1, x_2 , define $u_1(x_1) = u((x_1, x_2^*)) u_2(x_2^*) \& u_2(x_2) = u((x_1^*, x_2)) u_1(x_1^*)$ (3)
 - By (2) and (3): $u_1(x_1) + u_2(x_2) = u((x_1, x_2^*)) + u((x_1^*, x_2)) u(x^*)$ (4)
 - By (1) : $[\frac{1}{2}(x_1, x_2), \frac{1}{2}(x_{11}^*, x_{12}^*)] \sim [\frac{1}{2}(x_1, x_{12}^*), \frac{1}{2}(x_{11}^*, x_{22}^*)]$ (5)
 - So by EU and (5): $\frac{1}{2}u(x_1, x_2) + \frac{1}{2}u(x_1^*, x_2^*) = \frac{1}{2}u(x_1, x_2^*) + \frac{1}{2}u(x_1^*, x_2)$
 - Rearranging (6): $u(x_1, x_2) = u(x_1, x_2^*) + u(x_1^*, x_2) u(x_1^*, x_2^*)$ (7)
 - Plugging (4) into (7): $u(x_1, x_2) = u_1(x_1) + u_2(x_2)$

Step (3) is key: Define $u_1(x_1) = u((x_1, x_2)) - u_2(x_2)$ to be the <u>marginal contribution</u> of x_1 to utility of an outcome given reference value x_2 ; similarly for $u_2(x_2)$. (6)

Normalizing Local Utility Functions

Given an additive *u*(**x**), normalization is easy:

- Need to define local value functions $v_i(x_i)$ normalized in [0,1]
- Need to define scaling constants λ_i that sum to one
- Let's assume reference outcome is x[⊥]

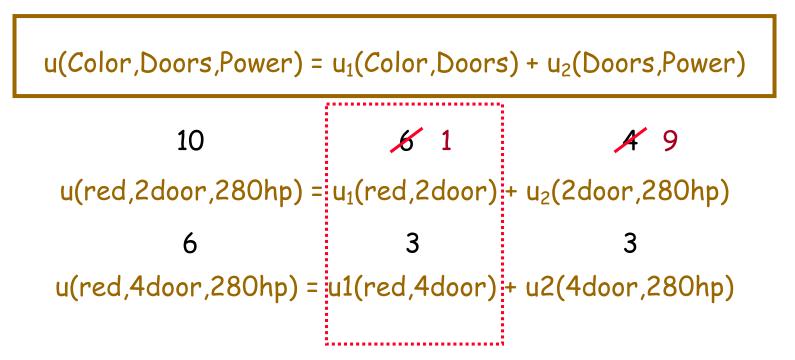
• Set $u^*(\mathbf{x}) = \frac{u(x) - u^{\perp}}{u^T - u^{\perp}}$; just an affine transformation of *u*.

$$u^{*}(\mathbf{x}) = \frac{u(\mathbf{x}) - u^{\perp}}{u^{\top} - u^{\perp}} = \frac{\sum u_{i}(x_{i}) - \sum u_{i}^{\perp}}{\sum u_{i}^{\top} - \sum u_{i}^{\perp}} = \frac{\sum (u_{i}(x_{i}) - u_{i}^{\perp})}{\sum (u_{i}^{\top} - u_{i}^{\perp})}$$
$$= \sum \frac{u_{i}^{\top} - u_{i}^{\perp}}{\sum (u_{i}^{\top} - u_{i}^{\perp})} \frac{u_{i}(x_{i}) - u_{i}^{\perp}}{u_{i}^{\top} - u_{i}^{\perp}}$$
$$= \sum \lambda_{i} v_{i}(x_{i}),$$

Elicitation: GAI Models (Classical)

Assessment is subtle (won't get into gory details)

- overlap of factors a key issue [F67,GP04,DB05]
- cannot rely on purely local queries: values cannot be fixed without reference to others!
- seemingly "different" local preferences correspond to the same *u*



Fishburn's Decomposition [F67] Optional

Define reference outcome: $\mathbf{x}^{0} = (x_{1}^{0}, x_{2}^{0}, x_{3}^{0}, \dots, x_{n}^{0})$

For any x, let x[l] be restriction of x to vars l, with remaining replaced by default values:

$$\mathbf{x}[\{1,2\}] = (x_1, x_2, x_3^0, \dots, x_n^0)$$

Utility of x can be written [Fishburn67]

$$u(\mathbf{x}) = \sum_{j=1}^{m} (-1)^{j+1} \sum_{1 \le i_1 < i_2 < \dots < i_j \le m} u\left(\mathbf{x}\left[\bigcap_{s=1}^{j} I_{i_s}\right]\right)$$

sum of utilities of certain related "key" outcomes

Key Outcome Decomposition Optional

Example: GAI over I={ABC}, J={BCD}, K={DE}

$$u(x) = u(x[I]) + u(x[J]) + u(x[K]) - u(x[I \cap J]) - u(x[I \cap K]) - u(x[J \cap K]) + u(x[I \cap J \cap K])$$

- u(abcde) = u(x[abc]) + u(x[bcd]) + u(x[de]) - u(x[bc]) - u(x[]) - u(x[d]) + u(x[])
 - ■u(abcde)
- $= u(abcd^{0}e^{0}) + u(a^{0}bcde^{0}) + u(a^{0}b^{0}c^{0}de)$ - u(a^{0}bcd^{0}e^{0}) - u(a^{0}b^{0}c^{0}de^{0})

Canonical Decomposition [F67] Optional

This leads to canonical decomposition of *u*:

$$u(x_1, x_2, x_3) = u(x_1, x_2, x_3^0) + u(x_1^0, x_2, x_3) - u(x_1^0, x_2, x_3^0).$$

$$u_1(x_1, x_2) \qquad u_2(x_2, x_3)$$

e.g., $I=\{ABC\}, J=\{BCD\}, K=\{DE\}$

$$= u_1(abc) + u_2(bcd) + u_3(de)$$

 $u(abcde) = u(abcd^{0}e^{0}) + u(a^{0}bcde^{0}) - u(a^{0}bcd^{0}e^{0}) + u(a^{0}b^{0}c^{0}de) - u(a^{0}b^{0}c^{0}de^{0})$

Local Queries [Braziunas, B. UAI05] Optional

•We wish to avoid queries on whole outcomes

- can't be purely local; but condition on a *subset* of reference values
- Conditioning set C_i for factor $u_i(X_i)$:
 - vars (excl. X_i) in any factor $u_k(X_k)$ where $X_i \cap X_k \neq \emptyset$
 - setting C_i to reference values renders X_i independent of remaining variables

• e.g., Power=280hp shields <Color, Door> from any other vars

- Define *local* best/worst for u_i assuming C_i set at reference levels
- Ask SG queries relative to local best/worst with C_i fixed
 e.g., fix *Power=280hp* and ask SG queries on <*Color,Door*> conditioned on *280hp*

Local Queries [BB05] Optional

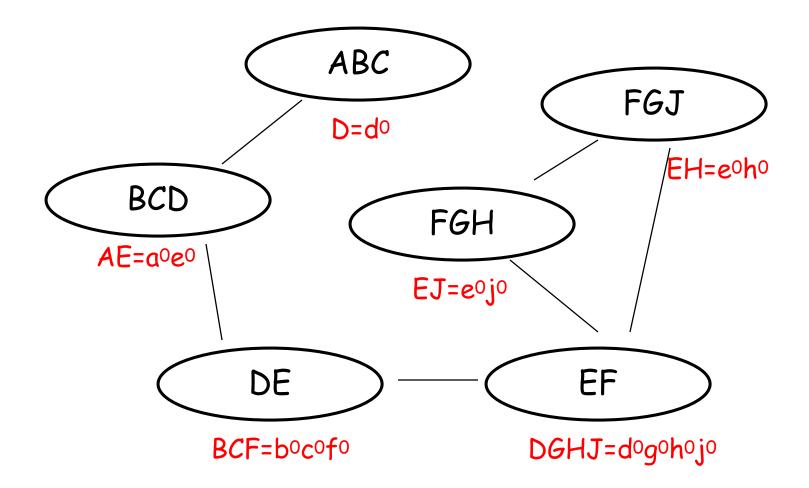
Theorem: If for some \boldsymbol{y} (where $\boldsymbol{Y} = \boldsymbol{X} - \boldsymbol{X}_i - C(\boldsymbol{X}_i)$) $(\mathbf{x}_i, \mathbf{x}_{C_i}^0, \mathbf{y}) \sim \langle p, (\mathbf{x}_i^\top, \mathbf{x}_{C_i}^0, \mathbf{y}); 1 - p, (\mathbf{x}_i^\bot, \mathbf{x}_{C_i}^0, \mathbf{y}) \rangle$ then for all \boldsymbol{y}'

$$(\mathbf{x}_i, \mathbf{x}_{C_i}^0, \mathbf{y}') \sim \langle p, (\mathbf{x}_i^\top, \mathbf{x}_{C_i}^0, \mathbf{y}'); 1 - p, (\mathbf{x}_i^\perp, \mathbf{x}_{C_i}^0, \mathbf{y}') \rangle$$

Hence we can legitimately ask *local* queries:

$$(\mathbf{x}_i, \mathbf{x}_{C_i}^0) \sim \langle p, (\mathbf{x}_i^\top, \mathbf{x}_{C_i}^0); 1 - p, (\mathbf{x}_i^\perp, \mathbf{x}_{C_i}^0) \rangle$$

Conditioning Sets Optional



Local Standard Gamble Queries Optional

Local standard gamble queries

 use "best" and "worst" local outcome—conditioned on default values of conditioning set

• e.g., $\mathbf{x}^{T}[1] = abcd^{0}$ for factor ABC; $\mathbf{x}^{\perp}[1] = -abcd^{0}$

- SG queries on other parameters relative to these
- gives local value function v(x[i]) (e.g., v(ABC))
- Can use bound queries as well
- But local VFs not enough: must calibrate
 - requires global scaling

Global Scaling Optional

Assess scaling factors with "global" queries

- exactly as with additive models
- define *reference* outcome $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)$
- define $\mathbf{x}^{\top j}$ by setting X[j] to best value, others to ref
- compute scaling factor

$$\lambda_j = u(\mathbf{x}^{\top_j}) - u(\mathbf{x}^{\perp_j})$$

- assess the 2n utility values with (global) SG queries
- can use bound queries as well

Elicitation: Beyond the Classical View

The classic view involving standard gambles difficult:

- large number of parameters to assess (structure helps)
- unreasonable precision required (SGQs)
- queries over full outcomes difficult (structure helps)
- cost (cognitive, communication, computational, revelation) may outweigh benefit
 - can often make **optimal** decisions without full utility information
- General approach to practical, automated elicitation
 - cognitively plausible forms of interaction
 - incremental elicitation until decision possible that is good enough
 - collaborative/learning models to allow generalization across users

Beyond Standard Gamble Queries

Bound queries

- a boolean version a (global/local) SG query
- global: "Do you prefer x to [(p, x^T), (1-p, x⊥)]?"
- *local*: "Do you prefer *x*[*k*] to [(*p*, *x*^T[*k*]), (1-*p*, *x*[⊥][*k*])]?" *need to fix reference values C_k if using GAI model*
- response tightens bound on specific utility parameter
- Comparison queries (is x preferred to x'?)
 - global: "Do you prefer x to x?"
 - *local*: "Do you prefer *x[k]* to *x'[k]*?"
 - impose linear constraints on parameters
 - $\quad \Sigma_{\pmb{k}} \, u_{\pmb{k}}(\pmb{x}[k]) > \Sigma_{\pmb{k}} \, u_{\pmb{k}}(\pmb{x}'[k])$
 - interpretation is straightforward

Other Modes of Interaction

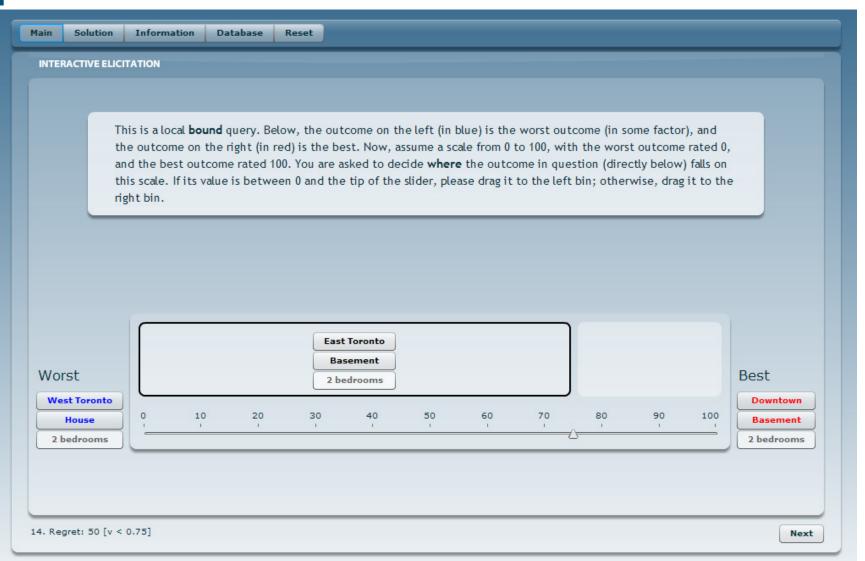
Stated choice (global or local)

- choose x_i from set $\{x_1, \ldots x_k\}$
- imposes *k-1* linear constraints on utility parameters
- Ranking alternatives (global or local)
 - order set {*x*₁, ...,*x*_k} : similar
- Graphical manipulation of parameters
 - bound queries: allow tightening of bound (user controlled)
 generally must show implications of moves made
 - approximate valuations: user-controlled precision
 - useful in quasi-linear settings
- Passive observation/revealed preference
 - if choice x made in context c, x as preferred as other alternatives
- Active, but indirect assessment
 - e.g., dynamically generate Web page, with k links
 - assume response model: Pr(link_i | u)

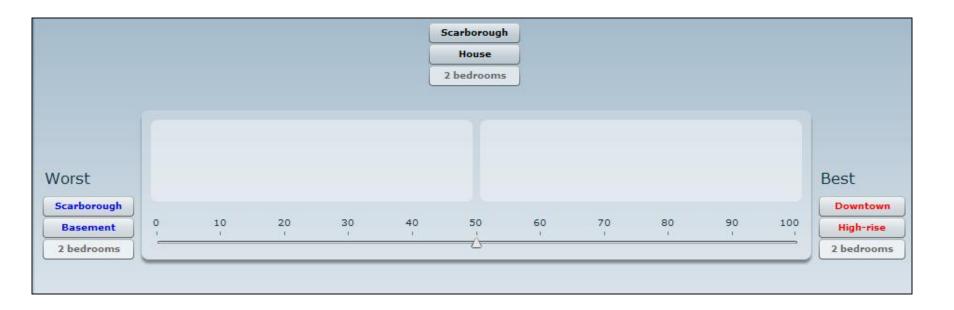
Local Queries: Comparison

NTERACTIVE ELICITATION	
This is a comparison query. Please c higher value by dicking on the quest	arefully consider the two outcomes below and indicate which outcome is of tion mark.
	Basement House 2 bedrooms 2 bedrooms Downtown Downtown
	You prefer Outcome 2 to Outcome 1

Local Query: Bound



Local Query: Bound



Global Query: Anchor Comparison

NTERACTIVE ELICITATION This is a comparison query. P higher value by clicking on the	-	outcomes below and indicate whi	ch outcome is of
	West Toronto House 2 bedrooms Unfurnished Laundry available Parking available Smoking not allowed You prefer Outcome J	Downtown High-rise 2 bedrooms Unfurnished Laundry available Parking available Smoking not allowed	
Us	ser selects	\ > or < (from	?)

Global Query: Anchor Bound

_				
This global bou	nd query asks you to provid	e a monetary boun	d on the value of the outcome below.	
		Downtow High-rise		
		2 bedroor		
		Unfurnish		
		Laundry avai		
		Smoking not a		
	Is the value	of this outcom	e greater than \$1650?	
	Yes, greater th	an \$1650	No, less than \$1650	

Cognitive Biases: Anchoring

- Decision makers susceptible to context in assessing preferences (and other relevant info, like probabilities)
- Anchoring: assessment of utility dependent on arbitrary influences
- Classic experiment [ALP03]:
 - (business execs) write last 2 digits of SSN on piece of paper
 - place bids in mock auction for wine, chocolate
 - those with SSN>50 submitted bids 60-120% higher than SSN<50

Often explained by focus of attention plus adjustment

- holds for estimation of probabilities (Tversky, Kahneman estimate of # African countries), numerical quantities, ...
- •How should this impact the design of elicitation methods?

Cognitive Biases: Framing

- How questions/choices are <u>framed</u> is critical
- Classic Tversky, Kahneman experiment (1981); disease predicted to kill 600 people, choose vaccination program
 - Choose between:
 - Program A: "200 people will be saved"
 - Program B: "there is a one-third probability that 600 people will be saved, and a two-thirds probability that no people will be saved"
 - Choose between:
 - Program C: "400 people will die"
 - Program D: "there is a one-third probability that nobody will die, and a two-third probability that 600 people will die"
 - 72 percent prefer A over B; 78 percent prefer D over C
 - Notice that A and C are equivalent, as are B and D
- How should this impact design of elicitation schemes?

Cognitive Biases: Endowment Effect

People become "attached" to their possessions

- e.g., experiment of Kahneman, et al. 1990
- Randomly assign subjects as buyers, sellers
 - sellers given a coffee mug (sells for \$6); all can examine closely
 - sellers asked: "at what price would you sell?"
 - buyers asked: "at what price would you buy?"
 - median asking price: \$5.79; median offer price: \$2.25
 - would expect these to be identical given random asst to groups
 - if sellers are given tokens with a monetary value (can be used later to buy mugs/chocolate in bookstore), no difference between offers and ask prices

How should this impact the design of elicitation methods?

Utility Elicitation as a Classification Problem. Chajewksa, et al. (1998)

Want to make decisions: but utility elicitation is difficult

- Large outcome space (exponential, hard to wrap head around complete outcomes)
- Hard to assess *quantitatively*

Problem 2: std. gambles, esp. *bound queries*, can help

Problem 1: additive independence (or GAI) helps

Still very difficult, intensive

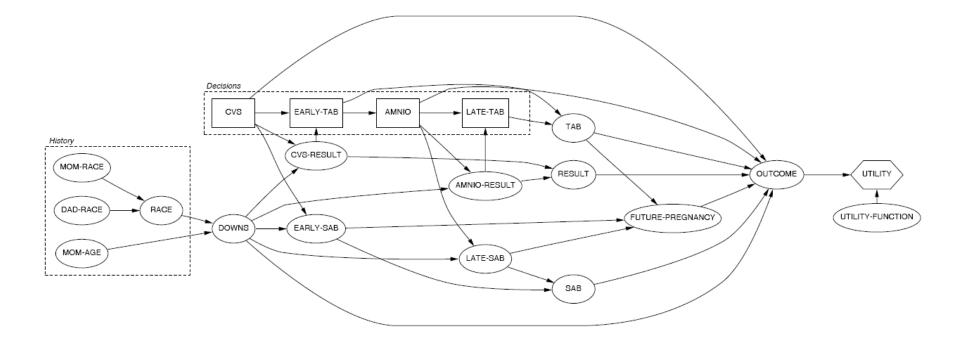
- Can we focus our elicitation effort on only utility information relevant to decision at hand?
- If elicitation costly, might be better off making assumptions or *predictions* and living with *approximately optimal decisions*

CGNS Motivation

Medical decision scenario (prenatal testing, termination)

- Consequences of decisions are significant
- Basic model is this:
 - **Offline:** find clusters of *similar utility functions* (case database)
 - Similar: a single decision is close to optimal for each element
 - Good clusters assumed to exist
 - Online: take steps to identify a user's cluster, propose optimal decision for that cluster
 - Should help ease elicitation burden

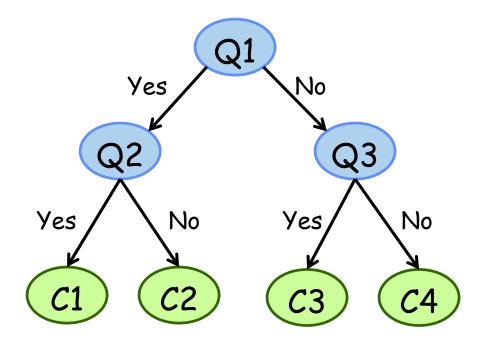
Influence Diagram (PANDA)



From: Chajewksa, et al., UAI 1998)

CGNS: High Level Picture

- Clusters produced using simple agglomerative methods
- Elicitation policy: find a *decision tree* that distinguishes the clusters using very few queries
 - Plops you into a cluster, makes decision using prototype utility f'n



Queries:

- Feature: is age < 40?
- Comparison: is o1 > o2?

Clusters: in each cluster C there is some strategy s, s.t. for all u in C, s is approx. optimal for u (we will define)

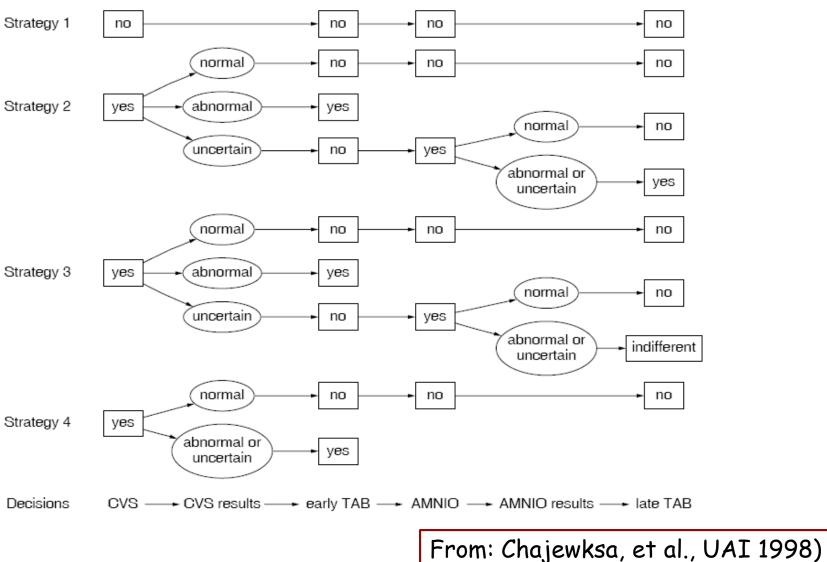
Basic Inputs

•Set of strategies $S = \{s_1, \dots, s_m\}$

- Conditional plans, e.g., "Test A. If obs Z, test B; ...; if Obs Z', do X"
- 18 strategies, only 4 useful for DB
- Sequential component of decisions abstracted away
- Set of outcomes $O = \{O_1, \dots, O_n\}$
 - E.g., "healthy baby, no future conception, ..." (22 outcomes)
- History: observable prior patient info (health status, etc.)
- Outcome distribution: P(O/S,H)

• $EU(S|H) = \sum_{o} P(o|S,H) u(o)$ (assuming known utility u)

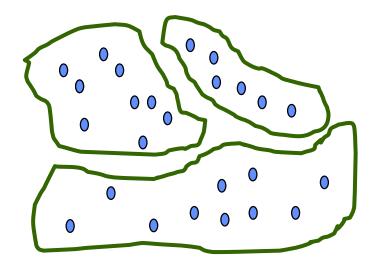
Strategies (only 4 optimal)



Clustering

N utility functions in DB, each a vector $[u(o_1), ..., u(o_n)]$

- elicited by clinical decision analysts (70 in DB, 55 used)
- *question:* why use utilities in DB instead of all possible utility f'ns?
- Want to find k clusters of u's, elements in a cluster similar
- Similar? Want to treat all *u*'s in any *C* indistinguishably
 - Same strategy applied to all, so there should be one strategy that is optimal, or at least very good, for every u in C



Clustering: Distance Function

•Fix history *h*

- Define $EU(s|h,u_i) = \sum_{o} P(o|s,h) u_i(o)$
- s*(u_i) is best strategy for u_i given h
- If we use prototype utility u_p for the cluster containing u_i instead of u_i itself, s*(u_p) would be performed
- Loss: $UL(u_i, u_p | h) = EU(s^*(u_i) | h, u_i) EU(s^*(u_p) | h, u_i))$
- **Distance**: $d(u_i, u_j | h) = Avg \{ UL(u_i, u_j | h), UL(u_j, u_i | h) \}$

Comments

Why fixed history? Must cluster online (once h known)

Otherwise would need to perform clustering for all h a priori

• Other alternatives? $d(u_i, u_j) = \sum_h d(u_i, u_j \mid h) Pr(h)$?

 $d(u_i, u_j) = max_h d(u_i, u_j | h)?$

Agglomerative Clustering

- Initially, each u in its own cluster (recall: h is fixed)
- Then repeatedly merge two clusters that are most similar
 - $d(C_i, C_j)$ is avg of the pairwise distances between *u*'s in each *C*
- Merge until we have k clusters (or use some validation method)
- Score(u_i) in cluster C: $\sum \{ UL(u_i, u_j | h) : u_j \in C \}$
- Choose *prototype* utility for *C*: the $u_i \in C$ with min score

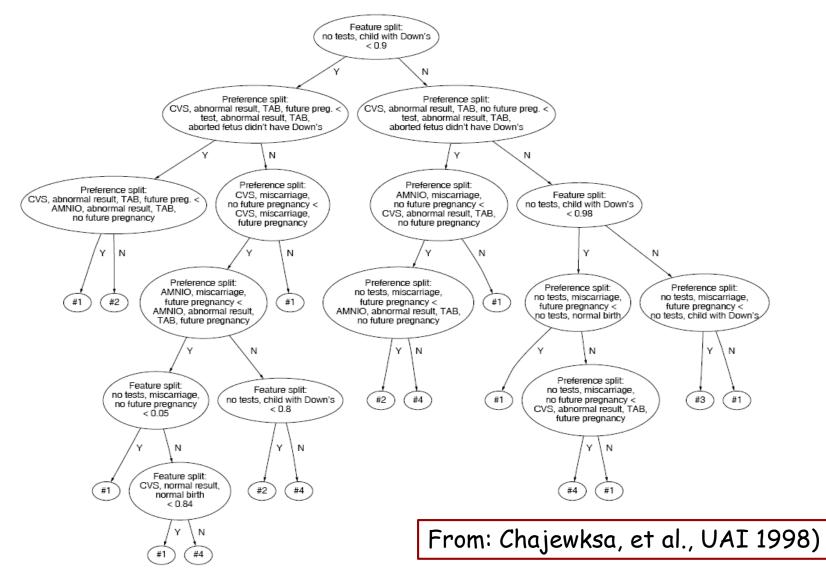
Comments

- Why choose prototype utility, and use $s^*(u_i)$?
- What about: $\min_{s} \sum_{ui \in C} \{ EU(s^*(u_i) | h, u_i) EU(s | h, u_i) \}$

Classification

- Goal: minimize elicitation effort
- Technique: build a decision tree that asks various questions/tests so that any sequence of answers "uniquely" determines a cluster (hence prototype)
- CGNS do the following:
 - Data is set of utility functions in DB, *labeled* by cluster it is in
 - Now try to find predictor for cluster membership
 - Possible splits (features for classification):
 - Is $o_i > o_j$?: implicit in *u*, $O(n^2)$ such Boolean tests
 - Is o_i > [p, o_T; 1-p, o_⊥]?: equiv to Is u(o_i) > p?
 - Note: boolean, but infinitely many such splits (values of *p*)
 - Trick: no more than *n* values of *u(o_i)* in DB; so consider midpoints between such values (and ignore small intervals)
 - Note: no history/patient features used! Tree is for fixed *h*

Resulting Decision Tree (h = "Teen")



Empirical Results

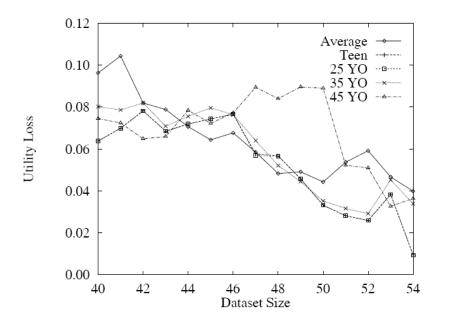


Figure 6: Learning curves (average of 10,000 runs).

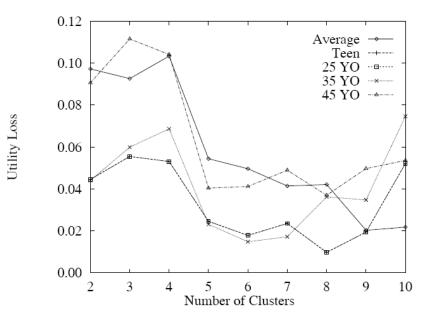


Figure 7: Leave-one-out cross-validation for number of clusters.

From: Chajewksa, et al., UAI 1998)

Discussion Points

Queries over full outcomes: OK?

Are utility function clusters legitimate?

- cover cases in DB, but how different could other *u*'s be?
- high error rate for 45YO: very sensitive to small changes in *u* (!)
- Could we use other features for prediction?
 - CGNS assume utility independent of observable history
- How do you account for all observable histories?
- Distributional information about preferences?
- Cost/effort of questions?
- Myopic nature of decision tree construction

Further Background Reading

- John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944.
- L. Savage. The Foundations of Statistics. Wiley, NY, 1954.
- R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. Wiley, NY, 1976.
- P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility theory. International Economic Review, 8:335–342, 1967.
- Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.
- F. Bacchus , A. Grove. Graphical models for preference and utility. UAI-95, pp.3–10, 1995.
- S. French, *Decision Theory*, Halsted, 1986.
- C. Gonzales and P. Perny. GAI networks for utility elicitation. In Proc. of KR-04, pp.224–234, Whistler, BC, 2004.
- D. Braziunas and C. Boutilier. Local utility elicitation in GAI models. In *Proc. of UAI-05, pp.42–49,Edinburgh,2005.*
- D. Braziunas and C. Boutilier. Minimax regret based elicitation of generalized additive utilities. In Proc. of UAI-07, 2007.
- Daniel Kahneman, Jack L. Knetsch, and Richard H. Thaler, Experimental Tests of the Endowment Effect and the Coase Theorem, J. Political Economy 98(6), 1990
- A Tversky and D Kahneman, The framing of decisions and the psychology of choice, Science 211, 1981.
- D. Ariely, G. Loewenstein and D. Prelec (2003), "Coherent arbitrariness: Stable demand curves without stable preferences," Quarterly Journal of Economics, No.118 (1), (February), 73-105.

Interactive Decision Making

General framework for interactive decision making:

B: beliefs about user's utility function u Opt(*B*): "optimal" decision given incomplete, noisy, and/or imprecise beliefs about u

- Repeat until *B* meets some termination condition
 - ask user some query (propose some interaction) q
 - observe user response r
 - update *B* given *r*
- Return/recommend Opt(B)

Regret-Based Elicitation

Elicitation model that gives guarantees on decision quality

- contrast data-driven approach of CGNS (and learning models)
- In regret-based methods:
 - uncertainty represented by a set of utility functions
 - those utility functions consistent with query responses
 - decisions made using *minimax regret*
 - robustness criterion well-suited to utility function uncertainty
 - provides bounds on how far decision could be from optimal
 - queries are asked to drive down minimax regret as quickly as possible
- Constraint-based Optimization and Utility Elicitation using the Minimax Decision Criterion. Boutilier, et al. 2006:
 - attack constraint-based combinatorial optimization problems

Decision Problem: Constraint Optimization

Standard constraint satisfaction problem (CSP):

- outcomes over variables $X = \{X_1 \dots X_n\}$
- constraints **C** over **X** : feasible decisions/outcomes
 - generally compact, e.g., $X_1 \& X_2 \supset \neg X_3$
 - e.g., *Power* > 280hp & *Make=BMW* ⊃ *FuelEff* > 9.5l/100km
 - e.g., Volume(Supplier27) > \$10,000,000
- Feasible solution: a satisfying variable assignment
- Constraint-based/combinatorial optimization:
 - add to **C** a *utility function* $u: Dom(\mathbf{X}) \to \mathcal{R} / [0,1]$
 - *u* parameterized compactly (weight vector *w*)
 - e.g., linear/additive, generalized additive models
- Solved using search (B&B), integer programming, variable elimination, etc.

Strict Utility Function Uncertainty

User's utility parameters w unknown

- Assume feasible set W
 - e.g., W defined by a set of linear constraints on w

u(red,2door,280hp) > 0.4 u(red,2door,280hp) > u(blue,2door,280hp)

- allows for unquantified or "strict" uncertainty
- How should one make a decision? elicit info?
 - regret-based approaches
 - polyhedral approaches (and other heuristics)

Minimax Regret

• Regret of x under w

$$R(x, \mathbf{w}) = \max_{x' \in X} u(x'; \mathbf{w}) - u(x; \mathbf{w})$$
• Max regret of x under W
$$MR(x, W) = \max_{\mathbf{w} \in W} R(x, \mathbf{w})$$

$$K \text{ is feasible set} (\text{satisfying constraints})$$

• Minimax regret and optimal allocation

 $x_W^* = \underset{x \in X}{\operatorname{arg\,min}} MR(x, W)$

Computing MMR

Direct factored representation:

- minimax program (rather than straight min or max)
- potentially quadratic objective

$$MMR(\mathbf{U}) = \min_{\mathbf{x}\in Feas(\mathbf{X})} MR(\mathbf{x}, \mathbf{U})$$
$$= \min_{\mathbf{x}\in Feas(\mathbf{X})} \max_{u \in \mathbf{U}} \max_{\mathbf{x}' \in Feas(\mathbf{X})} u(\mathbf{x}') - u(\mathbf{x})$$

Solution:

- natural structure that allows direct integer program formulation
- Bender's style decomposition/constraint generation

Pairwise Regret (Bounds)

- Graphical (GAI) model with factors f_k
- Assume bounds u_{x[k]} ↑ and u_{x[k]} ↓ on parameters

Factor₁

	i			
Color	Drs	u ₁		
red	2	1.0		
blue	4	0.9		
red	4	0.6		
blue	2	0.4		

Pairwise Regret (Bounds)

- Graphical (GAI) model with factors f_k
- Assume bounds u_{x[k]} ↑ and u_{x[k]} ↓ on parameters

F	Factor ₁			
Color	Drs	u ₁		
red	2	[0.7, 1.0]		
blue	4	[0.8, 0.95]		
red	4	[0.2, 0.7]		
blue	2	[0.35,0.4]		

- Pairwise regret of x and x' can be broken into sum of *local regrets*:
 - $r_{\mathbf{x}[k]\mathbf{x}'[k]} = U_{\mathbf{x}'[k]} \uparrow U_{\mathbf{x}[k]} \downarrow$ if $\mathbf{x}[k] \neq \mathbf{x}[k]'$ = 0 otherwise
 - $R(\mathbf{x},\mathbf{x'}) = r_{\mathbf{xx'}} = \Sigma_k r_{\mathbf{x}[k]\mathbf{x'}[k]}$
 - no need to maximize over U explicitly

Computing Max Regret

Max regret MR(x, W) computed as an IP

- number of vars *linear* in GAI model size
- number of (precomputed) constants (i.e., local regret terms for all possible x) quadratic in GAI model size

$$\max_{\{I_{\mathbf{x}[k]}, X'_i\}} \sum_{k} \sum_{\mathbf{x}[k]} r_{\mathbf{x}[k]} I_{\mathbf{x}[k]} \quad \text{subj. to } A, C$$

Minimax Regret in GAI Models

We convert minimax to min (standard trick)

- obtain a MIP with one constraint per feasible config
- linearly many vars (in utility model size)

Key question: can we avoid enumerating all x'?

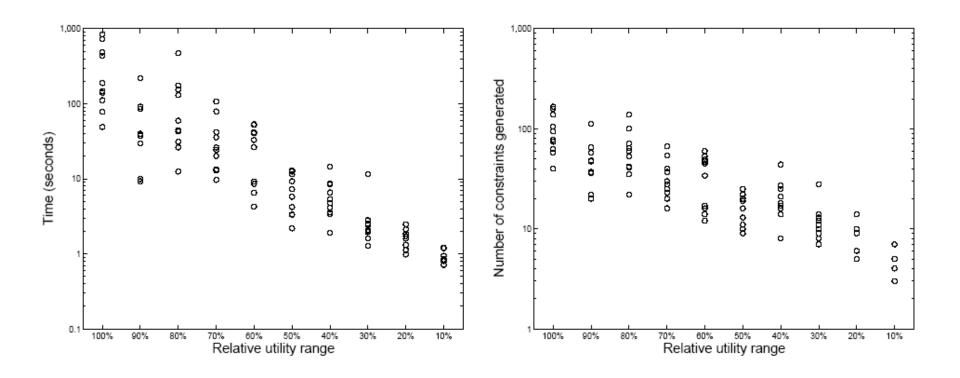
$$MMR(\mathcal{U}) = \min_{\{I_{\mathbf{x}[k]}, X_i\}} \max_{\mathbf{x}' \in Feas(\mathbf{X}')} \sum_{k} \sum_{\mathbf{x}[k]} r_{\mathbf{x}[k], \mathbf{x}'[k]} I_{\mathbf{x}[k]} \text{ subject to } \mathcal{A} \text{ and } \mathcal{C}$$
$$= \min_{\{I_{\mathbf{x}[k]}, X_i, M\}} M$$
$$\text{subject to } \begin{cases} M \ge \sum_{k} \sum_{\mathbf{x}[k]} r_{\mathbf{x}[k]} I_{\mathbf{x}[k]} \ \forall \mathbf{x}' \in Feas(\mathbf{X}') \\ \mathcal{A} \text{ and } \mathcal{C} \end{cases}$$

Constraint Generation

- Very few constraints will be active in sol'n
- Iterative approach:
 - solve relaxed IP (using a subset of constraints)
 - if any constraint violated at solution, add it and repeat

- Let Gen = {x'} for some feasible x'
- Solve MMX-IP using only constraints for *x*' ∈ *Gen* let solution be *x** with objective value *m**
- Solve MR-IP for **x*** obtaining solution **x**', r
- If r > m*, add x' to Gen and repeat;
 else terminate
 - note: x' is maximally violated constraint

Varying Bounds (Real Estate)



real estate: 20 vars (47mill configs); 29 factors in utility model (1-3 vars per), with 160 parameters (320 bounds)

Regret-based Elicitation

- Minimax optimal solution may not be satisfactory
- Improve quality by asking queries
 - new bounds on utility model parameters
- Which queries to ask?
 - what will reduce regret most quickly?
 - myopically? sequentially?

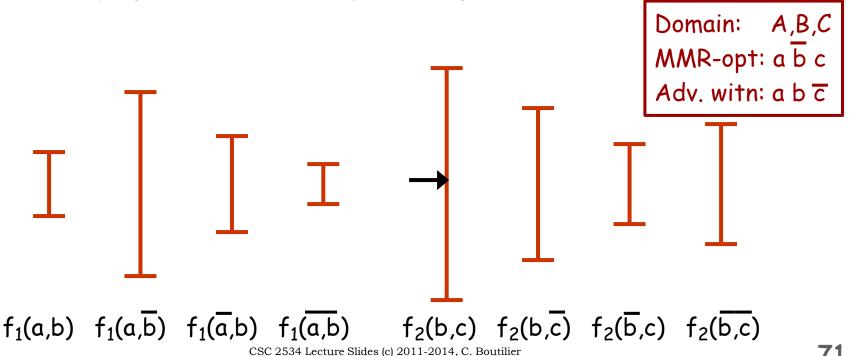
BPPS develop a heuristic: the current solution strategy

- explored for bound queries on GAI model parameters
- Intuition: ask user to refine our knowledge to utility parameters that impact utility of the minimax optimal solution or the adversarial witness; if we don't change those, we won't reduce pairwise max regret between them (and these determine MMR currently)

Elicitation Strategies (Bound): Simple GAI

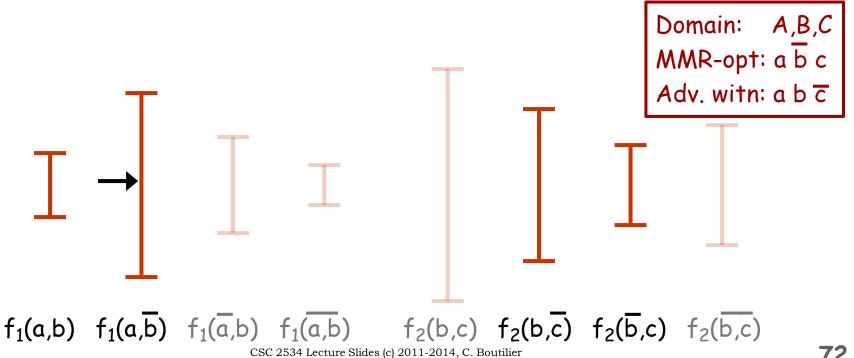
Halve Largest Gap (HLG)

- ask if parameter with largest gap > midpoint
- MMR(U) ≤ maxgap(U), hence n·log(maxgap(U)/ε) queries needed to reduce regret to ε
- bound is tight
- like polyhedral-based conjoint analysis [THS04]



Elicitation Strategies (Bound): Simple GAI

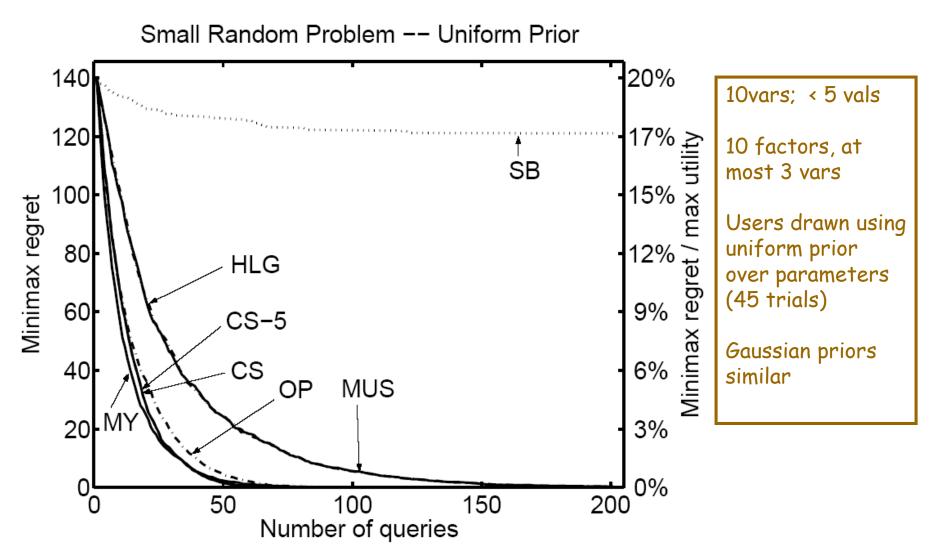
- Current Solution (CS)
 - only ask about parameters of optimal solution x* or regretmaximizing witness xw
 - intuition: focus on parameters that contribute to regret
 - reducing u.b. on x^w or increasing l.b. on x^{*} helps
 - use early stopping to get regret bounds (CS-5sec)



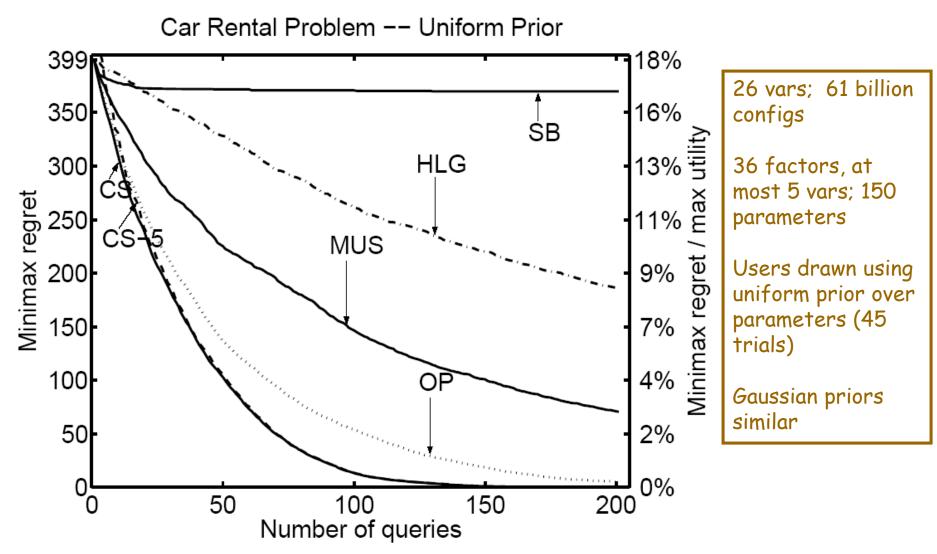
Elicitation Strategies (Bound): Simple GAI

- Optimistic
 - query largest-gap parameter in optimistic soln xº
- Pessimistic
 - query largest-gap parameter in pessimistic soln x^p
- Optimistic-pessimistic (OP)
 - query largest-gap parameter x° or x^p
- Most uncertain state (MUS)
 - query largest-gap parameter in uncertain soln x^{mu}
- CS needs minimax optimization; HLG needs no optimization; others require standard optimization
- None except CS knows what MMR is (termination is problematic)

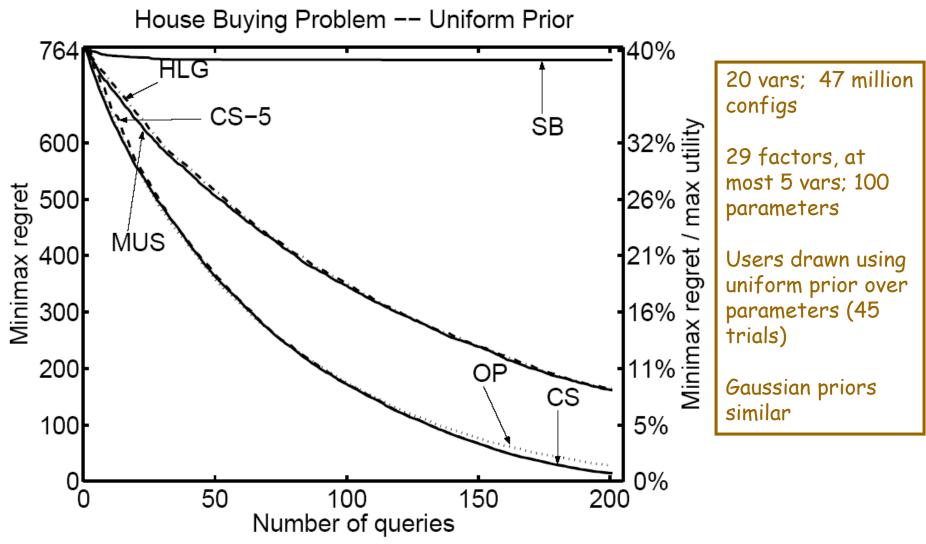
Results (Small Rand, Unif)



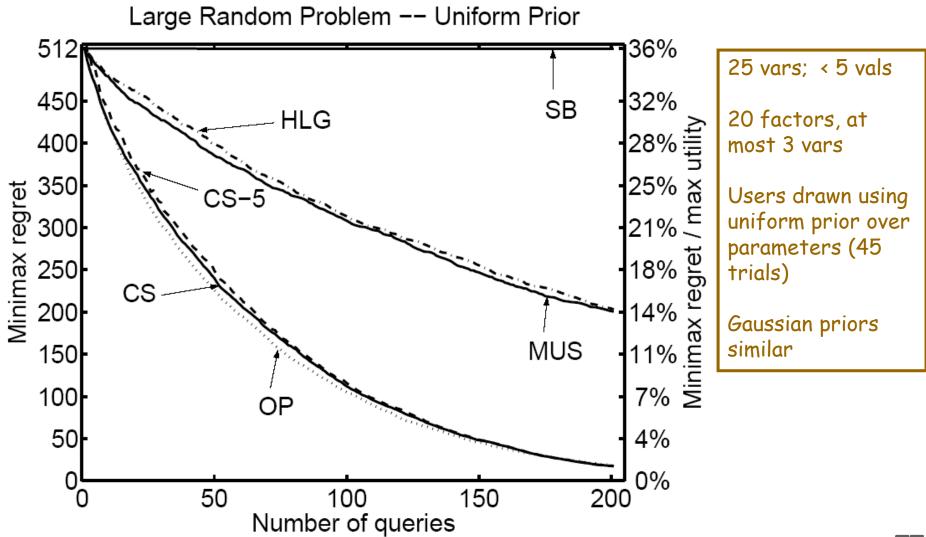
Results (Car Rental, Unif)



Results (Real Estate, Unif)



Results (Large Rand, Unif)



CSC 2534 Lecture Shaes (c) 2011-2014, C. Bouthier

Elicitation Strategies: Summary

Comparison queries can be generated using CSS too

- HLG is harder to generalize to comparisons (see polyhedral)
- CSS: ask user to compare minimax optimal solution x* with regretmaximizing witness x^w
 - easy to prove this query is never "vacuous"
- CS works best on test problems
 - time bounds (CS-5): little impact on query quality
 - always know max regret (or bound) on solution
 - time bound adjustable (use bounds, not time)
- OP competitive on most problems
 - computationally faster (e.g., 0.1s vs 14s on RealEst)
 - no regret computed so termination decisions harder
- Other strategies less promising (incl. HLG)

Apartment Search [Braziunas, B, EC-10]

- Are users comfortable with MMR?
- Study with UofT students
 - search subset of student housing DB (100 apts) for rental
 - GAI model over 9 variables, 7 factors
 - queries generated using CSS (bound, anchor, local, global)
 - continue until MMR=0 or user terminates ("happy")
 - post-search: through entire DB to find best 10 or so apartments

Qualitative Results:

- system-recommended apartment almost always in top ten
- if MMR-apartment not top ranked, error (how much more is top apartment worth) tends to be very small
- very few queries/interactions needed (8-40); time taken roughly 1/3 of that of searching through DB with our tools
- user feedback: comfortable with queries, MMR, felt search was efficient

	латлалы							
ID	PRICE	Area	Building type	No. of bedrooms	Furniture	Laundry	Parking	Smoking restrictio
25	850	East Toronto	House	2 bedrooms	Unfurnished	Laundry available	Parking not available	Smoking allowed
26	1200	West Toronto	House	3 bedrooms	Unfurnished	Laundry not available	Parking not available	Smoking not allow
27	1000	Scarborough	Basement	2 bedrooms	Furnished	Laundry available	Parking not available	Smoking not allow
28	1400	Downtown	High-rise	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking allowed
29	750	West Toronto	House	1 bedroom	Unfurnished	Laundry available	Parking not available	Smoking not allow
30	650	East Toronto	Basement	1 bedroom	Furnished	Laundry available	Parking available	Smoking allowed
31	1200	Devotevo	High-rise	1 bedroom	Furnished	Laundry available	Parking available	Smoking allowed
32	650	West Toronto	Basement	1 bedroom	Furnished	Laundry available	Parking not available	Smoking not allow
33	1100	Downtown	Basement	2 bedrooms	Unfurnished	Laundry available	Parking available	Smoking allowed
34	600	Scarborough	Basement	1 bedroom	Unformished	Laundry available	Parking not available	Smoking allowed
35	1200	West Toronto	Basement	2 bedrooms	Furnished	Laundry not available	Parking not available	Smoking allowed
36	700	West Toronto	Basement	1 bedroom	Unfurnished	Laundry available	Parking not available	Smoking allowed
27	745	Downtown	High-rise	1 bedroom	Furnished	Laundry not available	Parking available	Smoking not allow
38	775	Downtown	High-rise	1 bedroom	Unfornished	Laundry available	Parking not available	Smoking not allow
39	650	Scarborough	Basement	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking allowed
40	900	East Toronto	High-rise	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking not allow
41	900	Scarborough	Basement	2 bedrooms	Furnished	Laundry available	Parking available	Smoking allowed
42	750	Scarborough	Desement	2 bedrooms	Unfurnished	Laundry not available	Parking not available	Smoking allowed
43	995	Downtown	High-rise	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking not allow
44	1360	Downtown	High-rise	2 bedrooms	Unfurnished	Laundry available	Parking available	Smoking not allow
45	650	Scarborough	Desement	1 bedroom	Furnished	Laundry available	Parking not available	Smoking allowed
46	1100	West Toronto	House	1 bedroom	Furnished	Laundry available	Parking not available	Smoking not allow
					Las. Constant			

Further Background Reading

- John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944.
- L. Savage. The Foundations of Statistics. Wiley, NY, 1954.
- R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. Wiley, NY, 1976.
- P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility theory. International Economic Review, 8:335–342, 1967.
- Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.
- F. Bacchus , A. Grove. Graphical models for preference and utility. UAI-95, pp.3–10, 1995.
- S. French, *Decision Theory*, Halsted, 1986.
- C. Gonzales and P. Perny. GAI networks for utility elicitation. In Proc. of KR-04, pp.224–234, Whistler, BC, 2004.
- D. Braziunas and C. Boutilier. Local utility elicitation in GAI models. In *Proc. of UAI-05, pp.42–49,Edinburgh,2005.*
- D. Braziunas and C. Boutilier. Minimax regret based elicitation of generalized additive utilities. In Proc. of UAI-07, 2007.
- Daniel Kahneman, Jack L. Knetsch, and Richard H. Thaler, Experimental Tests of the Endowment Effect and the Coase Theorem, J. Political Economy 98(6), 1990
- A Tversky and D Kahneman, The framing of decisions and the psychology of choice, Science 211, 1981.
- D. Ariely, G. Loewenstein and D. Prelec (2003), "Coherent arbitrariness: Stable demand curves without stable preferences," Quarterly Journal of Economics, No.118 (1), (February), 73-105.