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2534 Lecture 3: Utility Elicitation

Multi-attribute utility models (started last time)
• preferential and utility independence
• additive and generalized addition models

Classical preference elicitation
• standard gambles
• additive and GAI models

Queries and partial elicitation
• Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. 

Norman,Y. Shahar. In Uncertainty in AI 14 (UAI '98), pp. 79-88, 1998.
• [MAY NOT GET TO IT TODAY:]   Constraint-based Optimization and Utility 

Elicitation using the Minimax Decision Criterion. C. Boutilier, R. Patrascu, P. 
Poupart, and D. Schuurmans. Artificial Intelligence 170:686-713, 2006.
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Game theory or MDPs next?
 Project guidelines posted (and handed out)
 Assignment 1 will be posted this week, due on Oct.13



Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
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Product Configuration

Luggage Capacity?
Two Door? Cost?

Engine Size?
Color? Options?
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Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
• is the following representation reasonable, comprehensible?
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Car 1 Toyota Prius Silver 125hp 5.6l/100k … 0.82

Car 2 Acura TL Black 286hp 8.9l/100k … 1.0

Car 3 Acura TL Blue 286hp 8.9l/100k … 0.96

… … … … … … …

Utility
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COACH*
POMDP for prompting Alzheimer’s patients

• solved using factored models, value-directed compression of 
belief space

Reward function (patient/caregiver preferences)
• indirect assessment (observation, policy critique)
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Winner Determination in Combinatorial 
Auctions

Expressive bidding in auctions becoming common
• expressive languages allow: combinatorial bids, side-constraints, 

discount schedules, etc.
• direct expression of utility/cost: economic efficiency

Advances in winner determination
• determine least-cost allocation of business to bidders
• new optimization methods key to acceptance
• applied to large-scale problems (e.g., sourcing)
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Non-price Preferences
A and B for $12000.
C and D for $5000…

A for $10000.
B and D for $5000 if A;
B and D for $7000 if not A...Joe

Hank

etc…

A, C to Fred.
B, D, G to Frank.
F, H, K to Joe…
Cost: $57,500.

That gives too 
much business 
to Joe!!
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Non-price Preferences
WD algorithms minimize cost alone

• but preferences for non-price attributes play key role 
• Some typical attributes in sourcing:

 percentage volume business to specific supplier
 average quality of product, delivery on time rating
 geographical diversity of suppliers
 number of winners (too few, too many), …

Clear utility function involved
• difficult to articulate precise tradeoff weights

• “What would you pay to reduce  %volumeJoe by 1%?”
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Manual Scenario Navigation*
Current practice: manual scenario navigation

• impose constraints on winning allocation 
 not a hard constraint!

• re-run winner determination
• new allocation satisfying constraint: higher cost
• assess tradeoff and repeat (often hundreds of times) until 

satisfied with some allocation

Here’s a new allocation with 
less business to Joe.
Cost is now: $62,000.
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Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
Some structural form usually assumed

• so u parameterized compactly (weight vector w)
• e.g., linear/additive, generalized additive models

Representations for qualitative preferences, too
• e.g., CP-nets, TCP-nets, etc. [BBDHP03, BDS05]
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Flat vs. Structured Utility Representation

Naïve representation: vector of values
• e.g., car7:1.0, car15:0.92, car3:0.85, …, car22:0.0

Impractical for combinatorial domains
• e.g., can’t enumerate exponentially many cars, nor expect user 

to assess them all (choose among them)
Instead we try to exploit independence of user 

preferences and utility for different attributes
• the relative preference/utility of one attribute is independent of 

the value taken by (some) other attributes
Assume X ⊆ Dom(X1) x Dom(X2) x … Dom(Xn)

• e.g., car7:   Color=red, Doors=2, Power=320hp, LuggageCap=0.52m3
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Preferential, Utility Independence

X and Y = V-X are preferentially independent if: 
• x1y1 ≥ x2y1  iff x1y2 ≥ x2y2 (for all x1, x2, y1, y2)
• e.g., Color: red>blue regardless of value of Doors, Power, LugCap
• conditional P.I. given set Z: definition is straightforward

X and Y = V-X are utility independent if: 
• l1(Xy1) ≥ l2(Xy1)  iff l1(Xy2) ≥ l2(Xy2)  (for all y1, y2 , all distr. l1,l2)
• e.g., preference for lottery(Red,Green,Blue) does not vary with 

value of Doors, Power, LugCap
 implies existence of a “utility” function over local (sub)outcomes

• conditional U.I. given set Z: definition is straightforward
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Question
Is each attribute P.I. of others in preference relation 1, 2?

Does UI imply PI? Does PI imply UI?
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Preferences #1
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c

Preferences #2
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c

Better

Worse

Better

Worse



Additive Utility Functions

Additive representations commonly used [KR76]
• breaks exponential dependence on number of attributes
• use sum of local utility functions ui over attributes
• or equivalently local value functions vi plus scaling factors λi

This will make elicitation/optimization much easier
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Color u1

red 1.0

blue 0.7

grey 0.0

Drs u2

2 1.0

4 0.8

hatch 0.2

wag’n 0.0

Pwr u3

350 1.0

280 0.7

150 0.0

λ1= 0.2

λ2= 0.3

λ3= 0.5

u(red,2dr,280hp) = 0.85



Additive Utility Functions

An additive representation of u exists iff decision maker is 
indifferent between any two lotteries where the marginals
over each attribute are identical
 l1(X) ~ l2(X)  whenever l1(Xi) = l2(Xi) for all Xi

We’ll look at a rough proof sketch when we discuss elicitation of 
additive functions in a few minutes
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Outcome Pr
x1x2 0.3

x'1x2 0.0

x1x’2 0.3

x’1x’2 0.4

Outcome Pr
x1x2 0.18

x'1x2 0.12

x1x’2 0.42

x’1x’2 0.28

Under additivity, two lotteries
equally preferred, since
marginals over X1, X2 are
the same in each:
• Pr(X1) = <.6, .4>
• Pr(X2) = <.3, .7>

l1 l2



Generalized Additive Utility

Generalized additive models more flexible
 interdependent value additivity [Fishburn67], GAI [BG95]

• assume (overlapping) set of m subsets of vars X[j]
• use sum of local utility functions uj over attributes

This can make elicitation/optimization much easier
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Color Drs u1

red 2 1.0

blue 4 0.9

red 4 0.6

blue 2 0.4

Pwr Drs u1

350 2 1.0

350 4 0.7

280 2 0.65

280 4 0.55

λ1= 0.4
λ2= 0.6

u(red,2dr,280hp) = 0.79



GAI Utility Functions

An GAI representation of u exists iff decision maker is 
indifferent between any two lotteries where the marginals
over each factor are identical

• l1(X) ~ l2(X)  whenever l1(X[i]) = l2(X[i]) for all I

Reasoning is similar to the additive case (but more involved)
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Utility Elicitation

Now, how do we assess a user’s utility function?
First, we’ll look at classical elicitation

• we’ll focus on additive models
• review slides on generalized additive models if interested

Then we’ll look at a couple “AI approaches” to assessing 
utility functions using:

• predicting a user’s utility using learning (classification/clustering)
• eliciting partial utility information (identifying “relevant” 

information)
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Basic Elicitation: Flat Representation

“Typical” approach to assessment
• normalization: set best outcome utility 1.0; worst 0.0



• standard gamble queries: ask user for probability p with which 
indifference holds between x and SG(p)

• e.g., car3 ~ <0.85, car7;  0.15, car22 >

SG queries: require precise numerical assessments
Bound queries: fix p, ask if x preferred to SG(p)

• yes/no response: places (lower/upper) bound on utility
• easier to answer, much less info (narrows down interval)
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Elicitation: Additive Models

First: assess local value functions with local SG queries
• calibrates on [0,1]

For instance,
• ask for best value of Color (say, red ), worst value (say, grey)
• then ask local standard gamble for each remaining Color to 

assess it’s local value (*note: user specifies probability… difficult)
 blue ~ <0.85, red;  0.15, grey >
 green ~ <0.67, red;  0.33, grey >, …

Bound queries can be asked as well
• only refine intervals on local utility
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Elicitation: Additive Models
Second: assess scaling factors with “global” queries

• define reference outcome 
 could be worst global outcome, or any salient outcome, …
 e.g., user’s current car: (red, 2door, 150hp, 0.35m3)

• define         by setting Xj to best value, others to reference value
 e.g., for doors: (red, 4door, 150hp, 0.35m3) 
 by independence, best value 4door must be fixed (whatever ref. values)

• compute scaling factor

• assess these 2n utility values with (global) SG queries
Altogether: gives us full utility function
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Calibrates “range” of contribution of 
xj to utility. Fixing reference ensures 
other attr. contributions to outcome 
utility are constant (to assess SG).



Why Does the Additive Rep’n Suffice?
Let ≽ be a pref order with utility f’n u. Want to show (MELEP) iff (ADD)

• (MELEP) any pair of marginal-equivalent lotteries are equally preferred
• (ADD) u has an additive decomposition u(x) = ∑ui(xi)

 (ADD) implies (MELEP) is obvious (exercise)
Sketch other direction. Assume two variables X1,X2 (generalizes easily)

• MELEP implies [½(x1,x2), ½(x’1,x’2)] ~ [½(x1,x’2), ½(x’1,x2)] for any x1,x2,x’1,x’2 (1)
• Let x* = (x*1,x*2) be an arbitrary reference outcome.
• Set u1(x*1) + u2(x*2) = u(x*) (however you want)                                                       (2)
• For all other x1,x2, define u1(x1) = u((x1,x*2)) – u2(x*2) & u2(x2) = u((x*1,x2)) – u1(x*1) (3)
• By (2) and (3): u1(x1) + u2(x2) = u((x1,x*2)) + u((x*1,x2)) – u(x*) (4)
• By (1) : [½(x1,x2), ½(x*1,x*2)] ~ [½(x1,x*2), ½(x*1,x2)]                                                (5)
• So by EU and (5):  ½u(x1,x2) + ½u(x*1,x*2) = ½u(x1,x*2) + ½u(x*1,x2) (6)
• Rearranging (6): u(x1,x2) = u(x1,x*2) + u(x*1,x2) – u(x*1,x*2)  (7)
• Plugging (4) into (7): u(x1,x2) = u1(x1) + u2(x2) 
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Step (3) is key: Define u1(x1) = u((x1,x*2)) – u2(x*2) to be 
the marginal contribution of x1 to utility of an outcome 
given reference value x*2; similarly for u2(x2).



Normalizing Local Utility Functions
Given an additive u(x), normalization is easy:

• Need to define local value functions vi(xi) normalized in [0,1]
• Need to define scaling constants λi that sum to one
• Let’s assume reference outcome is x⊥

• Set u*(x) = 𝑢𝑢 𝑥𝑥 − 𝑢𝑢⊥
𝑢𝑢T− 𝑢𝑢⊥

; just an affine transformation of u.
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Elicitation: GAI Models (Classical)
Assessment is subtle (won’t get into gory details)

• overlap of factors a key issue [F67,GP04,DB05]

• cannot rely on purely local queries: values cannot be fixed 
without reference to others!

• seemingly “different” local preferences correspond to the same u

24CSC 2534 Lecture Slides (c) 2011-2014, C. Boutilier

u(Color,Doors,Power) = u1(Color,Doors) + u2(Doors,Power)

u(red,2door,280hp) = u1(red,2door) + u2(2door,280hp)

u(red,4door,280hp) = u1(red,4door) + u2(4door,280hp)

10 6 4

6 3 3

91



Fishburn’s Decomposition [F67] Optional

Define reference outcome:
For any x, let x[I] be restriction of x to vars I, with 

remaining replaced by default values:

 Utility of x can be written [Fishburn67]

• sum of utilities of certain related “key” outcomes
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Key Outcome Decomposition Optional

Example: GAI over I={ABC}, J={BCD}, K={DE}
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u(x) = u(x[I]) + u(x[J]) + u(x[K])
- u(x[I∩J]) - u(x[I∩K]) - u(x[J∩K])
+ u(x[I∩J∩K]) 

u(abcde) = u(x[abc]) + u(x[bcd]) + u(x[de])
- u(x[bc]) - u(x[]) - u(x[d])
+ u(x[])

u(abcde) = u(abcd0e0) + u(a0bcde0) + u(a0b0c0de)
- u(a0bcd0e0) - u(a0b0c0de0)



Canonical Decomposition [F67] Optional

This leads to canonical decomposition of u:
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u1(x1, x2) u2(x2, x3)

u(abcde) = u(abcd0e0)
+ u(a0bcde0) - u(a0bcd0e0) 
+ u(a0b0c0de) - u(a0b0c0de0)

e.g., I={ABC}, J={BCD}, K={DE}

= u1(abc)
+ u2(bcd)
+ u3(de)



Local Queries [Braziunas, B. UAI05] Optional

We wish to avoid queries on whole outcomes
• can’t be purely local; but condition on a subset of reference values

Conditioning set Ci for factor ui(Xi) :
• vars (excl. Xi) in any factor uk(Xk) where Xi ∩Xk≠∅

• setting Ci to reference values renders Xi independent of remaining 
variables
 e.g.,Power=280hp shields <Color,Door> from any other vars

• Define local  best/worst for ui assuming Ci set at reference levels

• Ask SG queries relative to local best/worst with Ci fixed
 e.g., fix Power=280hp and ask SG queries on <Color,Door>

conditioned on 280hp
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Local Queries [BB05] Optional

Theorem: If for some y (where Y =X - Xi - C(Xi) )

then for all y’

Hence we can legitimately ask local queries:
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Conditioning Sets Optional
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BCD

ABC

FGH

EFDE

AE=a0e0

BCF=b0c0f0

D=d0

EH=e0h0

DGHJ=d0g0h0j0

FGJ

EJ=e0j0



Local Standard Gamble Queries Optional

Local standard gamble queries
• use “best” and “worst” local outcome―conditioned on default 

values of conditioning set
 e.g., xT[1] = abcd0 for factor ABC; x⊥[1] = ~abcd0

• SG queries on other parameters relative to these
• gives local value function v(x[i]) (e.g., v(ABC) )

Can use bound queries as well
But local VFs not enough: must calibrate

• requires global scaling
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Global Scaling Optional

Assess scaling factors with “global” queries
• exactly as with additive models
• define reference outcome 
• define         by setting X[j] to best value, others to ref
• compute scaling factor

• assess the 2n utility values with (global) SG queries
• can use bound queries as well
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Elicitation: Beyond the Classical View

The classic view involving standard gambles difficult:
• large number of parameters to assess (structure helps)
• unreasonable precision required (SGQs)
• queries over full outcomes difficult (structure helps)
• cost (cognitive, communication, computational, revelation) may 

outweigh benefit
 can often make optimal decisions without full utility information

General approach to practical, automated elicitation
• cognitively plausible forms of interaction
• incremental elicitation until decision possible that is good enough
• collaborative/learning models to allow generalization across 

users
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Beyond Standard Gamble Queries

Bound queries
• a boolean version a (global/local) SG query
• global:   “Do you prefer x to   [(p, xT), (1-p, x⊥)]?”
• local:   “Do you prefer x[k]  to  [(p, xT[k]), (1-p, x⊥[k])]?”

 need to fix reference values Ck if using GAI model 
• response tightens bound on specific utility parameter

Comparison queries (is x preferred to x’ ?)
• global:   “Do you prefer x to  x’?”
• local:   “Do you prefer x[k]  to x’[k] ?” 
• impose linear constraints on parameters

 Σk uk(x[k]) > Σk uk(x’[k]) 
• interpretation is straightforward
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Other Modes of Interaction
Stated choice (global or local)

• choose xi from set {x1, …xk}
• imposes k-1 linear constraints on utility parameters

Ranking alternatives (global or local)
• order set {x1, …xk} : similar

Graphical manipulation of parameters
• bound queries: allow tightening of bound (user controlled)

 generally must show implications of moves made
• approximate valuations: user-controlled precision

 useful in quasi-linear settings
Passive observation/revealed preference

• if choice x made in context c, x as preferred as other alternatives
Active, but indirect assessment

• e.g., dynamically generate Web page, with k links
• assume response model:   Pr(linkj | u)
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Local Queries: Comparison
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Local Query: Bound
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Local Query: Bound
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Global Query: Anchor Comparison

CSC 2534 Lecture Slides (c) 2011-2014, C. Boutilier

User selects > or < (from ?)
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Global Query: Anchor Bound
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Cognitive Biases: Anchoring

Decision makers susceptible to context in assessing 
preferences (and other relevant info, like probabilities)
Anchoring: assessment of utility dependent on arbitrary 

influences
Classic experiment [ALP03]:

• (business execs) write last 2 digits of SSN on piece of paper
• place bids in mock auction for wine, chocolate
• those with SSN>50 submitted bids 60-120% higher than SSN<50

Often explained by focus of attention plus adjustment
• holds for estimation of probabilities (Tversky, Kahneman estimate 

of # African countries), numerical quantities, …
How should this impact the design of elicitation methods?
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Cognitive Biases: Framing
How questions/choices are framed is critical
Classic Tversky, Kahneman experiment (1981); disease predicted to 

kill 600 people, choose vaccination program
• Choose between:

 Program A: "200 people will be saved" 
 Program B: "there is a one-third probability that 600 people will be 

saved, and a two-thirds probability that no people will be saved“
• Choose between:

 Program C: "400 people will die" 
 Program D: "there is a one-third probability that nobody will die, and 

a two-third probability that 600 people will die" 
• 72 percent prefer A over B; 78 percent prefer D over C
• Notice that A and C are equivalent, as are B and D

How should this impact design of elicitation schemes?
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Cognitive Biases: Endowment Effect

People become “attached” to their possessions
• e.g., experiment of Kahneman, et al. 1990

Randomly assign subjects as buyers, sellers
• sellers given a coffee mug (sells for $6); all can examine closely
• sellers asked: “at what price would you sell?”
• buyers asked: “at what price would you buy?”
• median asking price: $5.79; median offer price: $2.25

would expect these to be identical given random asst to groups
• if sellers are given tokens with a monetary value (can be used later 

to buy mugs/chocolate in bookstore), no difference between offers 
and ask prices

How should this impact the design of elicitation methods?
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Utility Elicitation as a Classification Problem. 
Chajewksa, et al. (1998)

Want to make decisions: but utility elicitation is difficult
• Large outcome space (exponential, hard to wrap head around 

complete outcomes)
• Hard to assess quantitatively

Problem 2: std. gambles, esp. bound queries, can help
Problem 1: additive independence (or GAI) helps

Still very difficult, intensive
• Can we focus our elicitation effort on only utility information 

relevant to decision at hand?
• If elicitation costly, might be better off making assumptions or 

predictions and living with approximately optimal decisions
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CGNS Motivation

Medical decision scenario (prenatal testing, termination)
• Consequences of decisions are significant

Basic model is this:
• Offline: find clusters of similar utility functions (case database)

Similar: a single decision is close to optimal for each element
Good clusters assumed to exist

• Online: take steps to identify a user’s cluster, propose optimal 
decision for that cluster
Should help ease elicitation burden
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Influence Diagram (PANDA)
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From: Chajewksa, et al., UAI 1998)



CGNS: High Level Picture
Clusters produced using simple agglomerative methods
Elicitation policy: find a decision tree that distinguishes the 

clusters using very few queries
• Plops you into a cluster, makes decision using prototype utility f’n
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Q1

Q2 Q3

C1 C2 C3 C4

Queries:
• Feature: is age < 40?
• Comparison: is o1 > o2?

Clusters: in each cluster C
there is some strategy s, s.t.
for all u in C, s is approx.
optimal for u (we will define)

Yes

YesYes

No

No No



Basic Inputs
Set of strategies S = {s1, …sm}

• Conditional plans, e.g., “Test A. If obs Z, test B; …; if Obs Z’, do X”
• 18 strategies, only 4 useful for DB
• Sequential component of decisions abstracted away

Set of outcomes O = {o1, …on}
• E.g., “healthy baby, no future conception, …” (22 outcomes)

History: observable prior patient info (health status, etc.)

Outcome distribution: P(O|S,H)

EU(S|H) = ∑o P(o|S,H) u(o)     (assuming known utility u)
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Strategies (only 4 optimal)
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From: Chajewksa, et al., UAI 1998)



Clustering
N utility functions in DB, each a vector [u(o1), …, u(on)]

• elicited by clinical decision analysts (70 in DB, 55 used)
• question: why use utilities in DB instead of all possible utility f’ns?

Want to find k clusters of u’s, elements in a cluster similar
Similar? Want to treat all u’s in any C indistinguishably

• Same strategy applied to all, so there should be one strategy that 
is optimal, or at least very good, for every u in C
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Clustering: Distance Function

Fix history h
• Define EU(s|h,ui) = ∑o P(o|s,h) ui(o)
• s*(ui) is best strategy for ui given h 
• If we use prototype utility up for the cluster containing ui instead 

of ui itself,  s*(up) would be performed
• Loss:    UL(ui, up |h) = EU(s*(ui) |h,ui) - EU(s*(up) |h,ui))
• Distance: d(ui, uj | h) =  Avg { UL(ui, uj |h) ,UL(uj, ui |h) }

Comments
• Why fixed history? Must cluster online (once h known)

Otherwise would need to perform clustering for all h a priori
• Other alternatives?  d(ui, uj) = ∑h d(ui, uj | h) Pr(h) ?

d(ui, uj) = max h d(ui, uj | h)?
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Agglomerative Clustering

Initially, each u in its own cluster (recall: h is fixed)
Then repeatedly merge two clusters that are most similar

• d(Ci, Cj) is avg of the pairwise distances between u’s in each C

Merge until we have k clusters (or use some validation method)

Score(ui) in cluster C: ∑ { UL(ui, uj | h) : uj ∊ C }
Choose prototype utility for C: the ui ∊ C with min score

Comments
• Why choose prototype utility, and use s*(ui) ? 
• What about: min s  ∑ ui∊C { EU(s*(ui) |h,ui) - EU(s |h,ui) }
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Classification
Goal: minimize elicitation effort
Technique: build a decision tree that asks various 

questions/tests so that any sequence of answers 
“uniquely” determines a cluster (hence prototype)
CGNS do the following:

• Data is set of utility functions in DB, labeled by cluster it is in
• Now try to find predictor for cluster membership
• Possible splits (features for classification):

 Is oi ≻ oj?:  implicit in u, O(n2) such Boolean tests
 Is oi ≻ [p, oT; 1-p, o⊥ ]?:  equiv to Is u(oi) > p?

• Note: boolean, but infinitely many such splits (values of p)
• Trick: no more than n values of u(oi) in DB; so consider 

midpoints between such values (and ignore small intervals)
 Note: no history/patient features used! Tree is for fixed h
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Resulting Decision Tree (h = “Teen”)
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Empirical Results
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Discussion Points

Queries over full outcomes: OK?
Are utility function clusters legitimate?

• cover cases in DB, but how different could other u’s be?
• high error rate for 45YO: very sensitive to small changes in u (!)

Could we use other features for prediction?
• CGNS assume utility independent of observable history

How do you account for all observable histories?
Distributional information about preferences?
Cost/effort of questions?
Myopic nature of decision tree construction
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Interactive Decision Making

General framework for interactive decision making:

B: beliefs about user’s utility function u
Opt(B): “optimal” decision given incomplete, noisy, and/or imprecise beliefs about u

• Repeat until B meets some termination condition
 ask user some query (propose some interaction) q
 observe user response r
 update B given r

• Return/recommend Opt(B)
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Regret-Based Elicitation

Elicitation model that gives guarantees on decision quality
• contrast data-driven approach of CGNS (and learning models)

In regret-based methods:
• uncertainty represented by a set of utility functions

 those utility functions consistent with query responses
• decisions made using minimax regret

 robustness criterion well-suited to utility function uncertainty
 provides bounds on how far decision could be from optimal

• queries are asked to drive down minimax regret as quickly as 
possible

Constraint-based Optimization and Utility Elicitation using the 
Minimax Decision Criterion. Boutilier, et al. 2006:

• attack constraint-based combinatorial optimization problems
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Decision Problem: Constraint Optimization

Standard constraint satisfaction problem (CSP):
• outcomes over variables X = {X1 … Xn}
• constraints C over X : feasible decisions/outcomes 

 generally compact,  e.g.,   X1 & X2 ⊃ ¬ X3

 e.g., Power > 280hp & Make=BMW ⊃ FuelEff > 9.5l/100km
 e.g., Volume(Supplier27) > $10,000,000

Feasible solution: a satisfying variable assignment
Constraint-based/combinatorial optimization:

• add to C a utility function u: Dom(X) → R / [0,1]
• u parameterized compactly (weight vector w)

 e.g., linear/additive, generalized additive models
Solved using search (B&B), integer programming, 

variable elimination, etc.
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Strict Utility Function Uncertainty

User’s utility parameters w unknown
Assume feasible set W

• e.g., W defined by a set of linear constraints on w

• allows for unquantified or “strict” uncertainty

How should one make a decision? elicit info?
• regret-based approaches
• polyhedral approaches (and other heuristics)
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Minimax Regret

• Regret of  x  under  w

• Max regret of  x  under W

• Minimax regret  and optimal allocation
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Computing MMR

Direct factored representation:
• minimax program (rather than straight min or max)
• potentially quadratic objective

Solution:
• natural structure that allows direct integer program formulation
• Bender’s style decomposition/constraint generation
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Pairwise Regret (Bounds)
Graphical (GAI) model with 

factors fk
Assume bounds ux[k]↑ and

ux[k]↓ on parameters
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Pairwise Regret (Bounds)
Graphical (GAI) model with 

factors fk
Assume bounds ux[k]↑ and

ux[k]↓ on parameters

Pairwise regret of  x and  x’ can be 
broken into sum of local regrets:
• rx[k]x’[k] = ux’[k]↑ - ux[k]↓ if x[k] ≠ x[k]’

= 0 otherwise

• R(x,x’) = rxx’ = Σk rx[k]x’[k]

• no need to maximize over U explicitly
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Computing Max Regret
Max regret MR(x,W) computed as an IP

• number of vars linear in GAI model size
• number of (precomputed) constants (i.e., local regret terms for 

all possible x) quadratic in GAI model size
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Minimax Regret in GAI Models

We convert minimax to min (standard trick)
• obtain a MIP with one constraint per feasible config
• linearly many vars (in utility model size)

Key question: can we avoid enumerating all x’ ? 
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Constraint Generation
Very few constraints will be active in sol’n
Iterative approach: 

• solve relaxed IP (using a subset of constraints)
• if any constraint violated at solution, add it and repeat

• Let Gen = {x’} for some feasible x’
• Solve MMX-IP using only constraints for x’ ∈ Gen

 let solution be x* with objective value m*
• Solve MR-IP for x* obtaining solution x’, r
• If r > m*, add x’ to Gen and  repeat;   

else terminate
 note: x’ is maximally violated constraint
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Varying Bounds (Real Estate)
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Regret-based Elicitation
Minimax optimal solution may not be satisfactory
Improve quality by asking queries

• new bounds on utility model parameters
Which queries to ask?

• what will reduce regret most quickly?
• myopically? sequentially?

BPPS develop a heuristic: the current solution strategy
• explored for bound queries on GAI model parameters
• Intuition: ask user to refine our knowledge to utility parameters 

that impact utility of the minimax optimal solution or the 
adversarial witness; if we don’t change those, we won’t reduce 
pairwise max regret between them (and these determine MMR 
currently)

70CSC 2534 Lecture Slides (c) 2011-2014, C. Boutilier



Elicitation Strategies (Bound): Simple GAI
Halve Largest Gap (HLG)

• ask if parameter with largest gap > midpoint
• MMR(U) ≤ maxgap(U),  hence n⋅log(maxgap(U)/ε) queries 

needed to reduce regret to ε
• bound is tight 
• like polyhedral-based conjoint analysis  [THS04]
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Elicitation Strategies (Bound): Simple GAI
Current Solution (CS)

• only ask about parameters of optimal solution x* or regret-
maximizing witness xw

• intuition: focus on parameters that contribute to regret
 reducing u.b. on xw or increasing l.b. on x* helps

• use early stopping to get regret bounds (CS-5sec)
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Elicitation Strategies (Bound): Simple GAI

Optimistic
• query largest-gap parameter in optimistic soln xo

Pessimistic
• query largest-gap parameter in pessimistic soln xp

Optimistic-pessimistic (OP)
• query largest-gap parameter xo or xp

Most uncertain state (MUS)
• query largest-gap parameter in uncertain soln xmu

CS needs minimax optimization; HLG needs no optimization; others 
require standard optimization
None except CS knows what MMR is (termination is problematic)
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Results (Small Rand, Unif)
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Results (Car Rental, Unif)
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Results (Real Estate, Unif)
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Results (Large Rand, Unif)
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Elicitation Strategies: Summary
Comparison queries can be generated using CSS too

• HLG is harder to generalize to comparisons (see polyhedral)
CSS: ask user to compare minimax optimal solution x* with regret-

maximizing witness xw

 easy to prove this query is never “vacuous”

CS works best on test problems
• time bounds (CS-5): little impact on query quality
• always know max regret (or bound) on solution
• time bound adjustable (use bounds, not time)

OP competitive on most problems
• computationally faster  (e.g., 0.1s vs 14s on RealEst)
• no regret computed so termination decisions harder

Other strategies less promising (incl. HLG)
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Apartment Search [Braziunas, B, EC-10]

Are users comfortable with MMR?
Study with UofT students

• search subset of student housing DB 
(100 apts) for rental

• GAI model over 9 variables, 7 factors
• queries generated using CSS (bound, 

anchor, local, global)
 continue until MMR=0 or user 

terminates (“happy”)
• post-search: through entire DB to find 

best 10 or so apartments

Qualitative Results:
• system-recommended apartment almost always in top ten
• if MMR-apartment not top ranked, error (how much more is top apartment worth) 

tends to be very small
• very few queries/interactions needed (8-40); time taken roughly 1/3 of that of 

searching through DB with our tools
• user feedback: comfortable with queries, MMR, felt search was efficient
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