2534 Lecture 2: Utility Theory

- Tutorial on Bayesian Networks: Weds, Sept.17, 5-6PM, PT266
- LECTURE ORDERING: Game Theory before MDPs? Or vice versa?
- Preference orderings
- Decision making under strict uncertainty
- Preference over lotteries and utility functions
- Useful concepts
 - Risk attitudes, certainty equivalents
 - Elicitation and stochastic dominance
- Paradoxes and behavioral decision theory
- Multi-attribute utility models
 - preferential and utility independence
 - additive and generalized addition models

Why preferences?

Natural question: why not specify behavior with goals?

■ Preferences: *coffee* > *OJ* > *tea*

- Natural goal: coffee
 - but what if unavailable? requires a 30 minute wait? ...
- allows alternatives to be explored in face of costs, infeasibility,...

Preference Orderings

Assume (finite) outcome set X (states, products, etc.)

• Preference ordering \geq over X:

- $y \ge z$ interpreted as: "I (weakly) prefer y to z"
- y > z iff $y \ge z$ and $z \ge y$ (strict preference)
- $y \sim z$ iff $y \ge z$ and $y \ge z$ (indifference, *incomparability?*)

•Conditions: \geq must be:

- (a) *transitive*: if $x \ge y$ and $y \ge z$ then $x \ge z$
- (b) *connected* (orderable): either $y \ge z$ or $z \ge y$
- i.e., a total preorder

Preference Orderings

Total preorder: seems natural, but conditions reasonable?

- implies (iff) strict relation > is asymmetric and neg. transitive*
 - **if a not better than b, b not better than c, then a not better than c*
- why connected? why transitive? (e.g., money pump)
- Are preference orderings enough?
 - decisions under certainty? under uncertainty?

■ Exercise: what properties of >, > needed if you desire incomparability?

Revealed Preference

- Given a non-empty subset of $Y \subseteq X$, preferences "predict" choice: $c(Y) \in X$ should be a most preferred element
- ■More general *choice function*: select subset $c(Y) \subseteq Y$
- Given >, define $c(Y, >) = \{y \in Y : \nexists z \in Y \text{ s.t. } z > y\}$
 - i.e., the set of "top elements" of > (works for partial orders too)
 - Exercise: show that $c(Y, \succ)$ must be non-empty
 - Exercise: show that if $y, z \in c(Y, \succ)$ then $y \sim z$
- •CF c is rationalizable iff exists > s.t. for all Y, c(Y)=c(Y, >)
 - are all choice functions rationalizable? (give counterexample)

Weak Axiom of Revealed Preference

Desirable properties of choice functions:

- (AX1) If $y \in Y$, $Y \subseteq Z$, and $y \in c(Z)$, then $y \in c(Y)$
- (AX2) If $Y \subseteq Z$, $y, z \in c(Y)$, and $z \in c(Z)$, then $y \in c(Z)$
- Thm: (a) given prefs >, c(·, >) satisfies (AX1) and (AX2)
 (b) if c satisfies (AX1) and (AX2), then c=c(·, >) for some >
 - Exercise: prove this
- Thus: a characterization of rationalizable choice functionsWeak axiom of revealed preference:
 - (WARP) If $y,z \in Y \cap Z$, $y \in c(Y)$, $z \in c(Z)$, then $y \in c(Z)$ and $z \in c(Y)$
 - Alternative characterization: c satisfies WARP iff (AX1) and (AX2)

Making Decisions: One-shot

Basic model of (one-shot) decisions:

- finite set of actions A, each leads to set of possible outcomes X
- given preference ordering \geq , is decision obvious?
- Deterministic actions: $f: A \rightarrow X$
 - Let f(A) = {f(a) ∈ A} be the set of possible outcomes, choose a with most preferred outcome: c(f(A))
 - preferences more useful than goals: what if A is set of *plans*?

Is it always so straightforward?

 $x_1 > x_2 > x_3$; then choose a_1

Making Decisions: Uncertainty

What if a given action has several possible outcomes

- Nondeterministic actions: $f: A \rightarrow \mathcal{P}(X)$
- Stochastic actions: $f: A \rightarrow \Delta(X)$
- Initial state uncertainty (nondeterministic or stochastic)

 $x_1 > x_2 > x_3$: choose a_1 or a_2 ?

 $x_1 > x_2 > x_3 > x_4$: choose a_1 or a_2 ?

Making Decisions: Uncertainty

Two solutions to this problem:

Soln 1: Assign values to outcomes

- decision making under *strict uncertainty* if nondeterministic
- expected value/utility theory if stochastic
- **Question:** where do values come from? what do they mean?

Soln 2: Assign preferences to lotteries over outcomes

decision making under quantified uncertainty

Making Decisions: Strict Uncertainty

- Suppose you have no way to quantify uncertainty, but each outcome has some "value" to you
 - require the value function respect \geq : $v(x) \geq v(y)$ iff $x \geq y$
- Useful to specify a decision table
 - rows: actions; columns: states of nature; entries: values
 - unknown states of nature dictate outcomes, table has: $v(f(a, \Theta_1))$

	Θ_1	Θ_2	 \mathcal{O}_k
a 1	V ₁₁	V ₁₂	 V _{1k}
a ₂	V ₂₁	V ₂₂	 <i>V</i> _{2k}
a _n	V _{n1}	V _{n2}	 V _{nk}

Strict Uncertainty: Decision Criteria

- Maximin (Wald): choose action with best worst outcome
 - $max_a min_{\Theta} v(f(a, \Theta))$
 - a with max security level s(a)
 - very pessimistic
- Maximax: choose action with best best outcome
 - max_a max_Θ v(f(a, Θ))
 - a with max optimism level o(a)
- •Hurwicz criterion: set $\alpha \in (0, 1)$
 - $max_a \alpha s(a) + (1 \alpha)o(a)$

	Θ_1	Θ_2	Θ_3	Θ_4
a 1	2	2	0	1
a ₂	1	1	1	1
a 3	0	4	0	0
a_4	1	3	0	0

- •Maximin: *a*₂
- Maximax: a₃
- Hurwicz: which decisions are possible?
- What if a₃ = <0.5 3 2 2>?

Minimax Regret (Savage)

Regret of a_i under outcome Θ_j : $r_{ij} = max \{v_{kj}\} - v_{ij}$

- How sorry I'd be doing a_i if I'd known Θ_j was coming
- Why worry about worst outcome: beyond my control
- Minimax regret: choose arg min_a max_i r_{ij}

	Θ_1	Θ_2	Θ_3	Θ_4	Max Regret
a 1	2/0	2/ <mark>2</mark>	0/1	1/ <mark>0</mark>	2
a ₂	1 / 1	1/ <mark>3</mark>	1/0	1 / <mark>0</mark>	3
a ₃	0/2	4/ <mark>0</mark>	0/1	0/1	2
a ₄	1/1	3/1	0/1	0/1	1

*red values are regrets r_{ij}

Qualitative Criteria: Reasonable?

Criteria all make sense at some level, but not at others

- indeed, all have "faults"
- Independence of irrelevant alternatives (IIA): adding an action to decision problem does not influence relative ranking of other actions
- Minimax regret violates IIA
 - a_1 lower MR than a_2 (no a_3)
 - a_2 lower MR than a_1 (with a_3)

	\varTheta_1	Θ_2	\mathcal{O}_3
a ₁	6/ <mark>0</mark> /0	9/0/0	3/1/5
a ₂	2/4/4	9/ <mark>0</mark> /0	4/0/4
a ₃	0/-/6	0/-/9	8/-/0

**red: regrets r_{ij} without* a3 **green: regrets r_{ij} with* a3

- Classic impossibility result:
 - no qualitative decision criterion satisfies all of a set of intuitively reasonable principles (like IIA)

Making Decisions: Probabilistic Uncertainty

What if:

- 2% chance no coffee made (30 min delay)? 10%? 20%? 95%?
- robot has enough charge to check only one possibility
- 5% chance of *damage* in coffee room, 1% at OJ vending mach.

Preference over Lotteries

If uncertainty in action/choice outcomes, ≽ not enough
Each action is a "lottery" over outcomes

■A simple lottery over X has form: $I = [(p_1, x_1), (p_2, x_2), ..., (p_n, x_n)]$ where $p_i \ge 0$ and $\sum p_i = 1$

outcomes are just trivial lotteries (one outcome has prob 1)

A compound lottery allows outcomes to be lotteries: $[(p_1, I_1), (p_2, I_2), ..., (p_n, I_n)]$

restrict to finite compounding

Constraints on Lotteries

Continuity:

- If $x_1 > x_2 > x_3$ then $\exists p \text{ s.t. } [(p, x_1), (1-p, x_3)] \sim x_2$
- Substitutability:
 - If $x_1 \sim x_2$ then $[(p, x_1), (1-p, x_3)] \sim [(p, x_2), (1-p, x_3)]$
- Mononoticity:
 - If $x_1 \ge x_2$ and $p \ge q$ then $[(p, x_1), (1-p, x_2)] \ge [(q, x_1), (1-q, x_2)]$
- Reduction of Compound Lotteries ("no fun gambling"):
 - $[(p, [(q,x_1), (1-q,x_2)]), (1-p, [(q',x_3), (1-q',x_4)])]$
 - ~ [$(pq,x_1), (p-pq,x_2), (q'-pq',x_3), ((1-p)(1-q'),x_4)$]

Nontriviality:

• $\mathbf{x}_T \succ \mathbf{x}_\perp$

Implications of Properties on ≽

Since \geq is transitive, connected: representable by ordinal value function V(x)

■With constraints on lotteries: we can construct a *utility* function $U(I) \in \mathbb{R}$ s.t. $U(I_1) \ge U(I_2)$ iff $I_1 \ge I_2$

- where $U([(p_1, x_1), ..., (p_n, x_n)]) = \sum_i p_i U(x_i)$
- famous result of Ramsey, von Neumann & Morgenstern, Savage
- Exercise: prove existence of such a utility function
- Exercise: given any U over outcomes X, show that ordering ≥ over lotteries induced by U satisfies required properties of ≥

Implications of Properties on ≽

Assume some collection of actions/choices at your disposal

- •Knowing $U(x_i)$ for each *outcome* allows tradeoffs to be made over uncertain courses of action (lotteries)
 - simply compute expected utility of each course of action

Principle of Maximum Expected Utility (MEU)

- utility of choice is a expected utility of its outcome
- appropriate choice is that with *maximum expected utility*
- Why? Action (lottery) with highest EU is the action (lottery) that is most preferred in ordering ≥ over lotteries!

Some Discussion Points

Utility function existence: proof is straightforward

- Hint: set $U(x_T) = 1$; $U(x_\perp) = 0$; find a *p* s.t. $x \sim [(p, x_T), (1-p, x_\perp)]$
- Utility function for > over lotteries is not unique:
 - any positive affine transformation of U induces same ordering >
 - normalization in range [0,1] common
- Ordinal preferences "easy" to elicit (if X small)
 - cardinal utilities trickier for people: an "art form" in decision anal.
- Outcome space often factored: exponential size
 - requires techniques of multi-attribute utility theory (MAUT)
- Expected utility accounts for risk attitudes: inherent in preferences over lotteries
 - see utility of money (next)

Risk profiles and Utility of money

What would you choose?

- (a) \$100,000 or (b) [(.5, \$200,000), (.5, 0)]
- what if (b) was \$250K, \$300K, \$400K, \$1M; p = .6, .7, .9, .999, ...
- generally, *U*(*EMV*(*lottery*)) > *U*(*lottery*) *EMV* = *expected monetary value*

Utility of money is nonlinear: e.g., U(\$100K) > .5U(\$200K)+.5U(\$0)

•Certainty equivalent of *I*: U(CE) = U(I); $CE = U^{-1}(EU(I))$

Risk attitudes

- Risk Premium: EMV(I) CE(I)
 - how much of EMV will I give up to remove risk of losing
- Risk averse:
 - decision maker has positive risk premium; *U(money)* is concave
- Risk neutral:
 - decision maker has zero risk premium; U(money) is linear
- Risk seeking:
 - decision maker has negative risk premium; *U(money)* is convex
- Most people are risk averse
 - this explains insurance
 - often risk seeking in negative range
 - linear a good approx in small ranges

St. Peterburg Paradox

•How much would you pay to play this game?

 A coin is tossed until it falls heads. If it occurs on the Nth toss you get \$2^N

$$EMV = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n 2^n = \sum_{n=1}^{\infty} 1 = \infty$$

• Most people will pay about \$2-\$20

Not a paradox per se... doesn't contradict utility theory

Situation 1: choose either

- (1) \$1M, Prob=1.00
- (2) \$5M, Prob=0.10; \$1M, Prob=0.89; nothing, Prob=0.01

Another Game

Situation 2: choose either

- (3) \$1M, Prob=0.11; nothing, Prob=0.89
- (4) \$5M, Prob=0.10; nothing, Prob=0.90

Allais' Paradox

Situation 1: choose either

- (1) \$1M, Prob=1.00
- (2) \$5M, Prob=0.10; \$1M, Prob=0.89; nothing, Prob=0.01
- Situation 2: choose either
 - (3) \$1M, Prob=0.11; nothing, Prob=0.89
 - (4) \$5M, Prob=0.10; nothing, Prob=0.90
- ■Most people: (1) > (2) and (4) > (3)
 - e.g., in related setups: 65% (1) > (2); 25% (3) > (4)
- Paradox: no way to assign utilities to monetary outcomes that conforms to expected utility theory and the stated preferences (violates substitutability)
 - possible explanation: regret

Allais' Paradox: The Paradox

Situation 1: choose either

- (1) \$1M, Prob=1.00
 - equiv: (\$1M 0.89; \$1M 0.11)
- (2) \$5M, Prob=0.10; \$1M, Prob=0.89; nothing, Prob=0.01
- So if (1)>(2), by subst: \$1M > (\$5M 10/11; nothing 1/11)
- Situation 2: choose either
 - (3) \$1M, Prob=0.11; nothing, Prob=0.89
 - (4) \$5M, Prob=0.10; nothing, Prob=0.90
 - equiv: nothing 0.89; \$5M 0.10; nothing 0.01
 - So if (4)>(3), by subst: (\$5M 10/11; nothing 1/11) > \$1M

...and the Fall 2014 survey says

Situation 1:

- (1)>(2): a (x%)
- (2)>(1): b (y%)
- Situation 2:
 - (3)>(4): c (w%)
 - (4)>(3): d (z%)

The 2534 class of 2014 is

 many people who take a class on decision theory tend to think in terms of expected monetary value (so 2534 surveys tend to be consistent than more standard empirical results; however, if there was real money on the line, my guess is the proportions would be somewhat more in line with experiments)

Ellsberg Paradox

Urn with 30 red balls, 60 yellow or black balls; well mixed

- Situation 1: choose either
 - (1) \$100 if you draw a red ball
 - (2) \$100 if you draw a black ball
- Situation 2: choose either
 - (3) \$100 if you draw a red or yellow ball
 - (4) \$100 if you draw a black or yellow ball
- •Most people: (1) > (2) and (4) > (3)
- Paradox: no way to assign utilities (all the same) and beliefs about yellow/black proportions that conforms to expected utility theory
 - possible explanation: *ambiguity aversion*

Utility Representations

- •Utility function $u: X \rightarrow [0, 1]$
 - decisions induce distribution over outcomes
 - *or* we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
 - representing, eliciting *u* difficult in explicit form

30

Product Configuration*

COACH*

POMDP for prompting Alzheimer's patients

- solved using factored models, value-directed compression of belief space
- Reward function (patient/caregiver preferences)
 - indirect assessment (observation, policy critique)

Winner Determination in Combinatorial Auctions

Expressive bidding in auctions becoming common

- expressive languages allow: combinatorial bids, side-constraints, discount schedules, etc.
- direct expression of utility/cost: economic efficiency
- Advances in winner determination
 - determine least-cost allocation of business to bidders
 - new optimization methods key to acceptance
 - applied to large-scale problems (e.g., sourcing)

Non-price Preferences

- WD algorithms minimize cost alone
 - but preferences for *non-price attributes* play key role
 - Some typical attributes in sourcing:
 - percentage volume business to specific supplier
 - average quality of product, delivery on time rating
 - geographical diversity of suppliers
 - number of winners (too few, too many), ...
- Clear utility function involved
 - difficult to articulate precise tradeoff weights
 - "What would you pay to reduce %volumeJoe by 1%?"

Manual Scenario Navigation*

Current practice: manual scenario navigation

- impose constraints on winning allocation
 - not a hard constraint!
- re-run winner determination
- new allocation satisfying constraint: higher cost
- assess tradeoff and repeat (often hundreds of times) until satisfied with some allocation

Utility Representations

- •Utility function $u: X \rightarrow [0, 1]$
 - decisions induce distribution over outcomes
 - *or* we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
 - representing, eliciting *u* difficult in explicit form
- Some structural form usually assumed
 - so u parameterized compactly (weight vector w)
 - e.g., linear/additive, generalized additive models
- Representations for qualitative preferences, too
 - e.g., CP-nets, TCP-nets, etc. [BBDHP03, BDS05]

Flat vs. Structured Utility Representation

Naïve representation: vector of values

- e.g., car7:1.0, car15:0.92, car3:0.85, ..., car22:0.0
- Impractical for combinatorial domains
 - e.g., can't enumerate exponentially many cars, nor expect user to assess them all (choose among them)
- Instead we try to exploit independence of user preferences and utility for different attributes
 - the relative preference/utility of one attribute is independent of the value taken by (some) other attributes
- ■Assume $X \subseteq Dom(X_1) \times Dom(X_2) \times ... Dom(X_n)$
 - e.g., car7: Color=red, Doors=2, Power=320hp, LuggageCap=0.52m³

Preferential, Utility Independence

X and **Y** = **V**-**X** are preferentially independent if:

- $x_1y_1 \ge x_2y_1$ iff $x_1y_2 \ge x_2y_2$ (for all x_1, x_2, y_1, y_2)
- e.g., Color: red>blue regardless of value of Doors, Power, LugCap
- conditional P.I. given set Z: definition is straightforward
- **X** and **Y** = **V**-**X** are *utility independent* if:
 - $I_1(Xy_1) \ge I_2(Xy_1)$ iff $I_1(Xy_2) \ge I_2(Xy_2)$ (for all y_1, y_2 , all distr. I_1, I_2)
 - e.g., preference for *lottery(Red,Green,Blue)* does not vary with value of *Doors, Power, LugCap*
 - implies existence of a "utility" function over local (sub)outcomes
 - conditional U.I. given set **Z**: definition is straightforward

Is each attribute PI of others in preference relation 1? 2?

Does UI imply PI? Does PI imply UI?

Additive Utility Functions

Additive representations commonly used [KR76]

- breaks exponential dependence on number of attributes
- use sum of *local utility functions u_i* over attributes
- or equivalently *local value functions* v_i plus scaling factors λ_i

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i)$$

 e.g., U(Car) = 0.3 V₁(Color) + 0.2 V₂(Doors) + 0.5 V₃(Power) and V₁(Color) : cherryred:1.0, metallicblue:0.7, ..., grey:0.0

This will make elicitation much easier (more on this next time)
It can also make optimization more practical (more next time)

Additive Utility Functions

An additive representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each attribute are identical

• $I_1(\mathbf{X}) \sim I_2(\mathbf{X})$ whenever $I_1(X_i) = I_2(X_i)$ for all X_i

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i)$$

Generalized Additive Utility

Generalized additive models more flexible

- interdependent value additivity [Fishburn67], GAI [BG95]
- assume (overlapping) set of m subsets of vars X[j]
- use sum of *local utility functions u_j* over attributes

$$u(\mathbf{x}) = \sum_{j=1}^{m} u_j(\mathbf{x}_j)$$

e.g., U(Car) = 0.3 v₁(Color,Doors) + 0.7 v₂(Doors,Power) with v₁(Color,Door) : blue,sedan:1.0; blue,coupe:0.7;blue,hatch:0.1, red, sedan: 0.8, red,coupe:0.9; red,hatch:0.0

This will make elicitation much easier (more on this next time)
It can also make optimization more practical (more next time)

GAI Utility Functions

- An GAI representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each factor are identical
 - $I_1(\mathbf{X}) \sim I_2(\mathbf{X})$ whenever $I_1(\mathbf{X}[i]) = I_2(\mathbf{X}[i])$ for all i

$$u(\mathbf{x}) = \sum_{j=1}^{m} u_j(\mathbf{x}_j)$$

Further Background Reading

- John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944.
- L. Savage. The Foundations of Statistics. Wiley, NY, 1954.
- R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. Wiley, NY, 1976.
- P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility theory. International Economic Review, 8:335–342, 1967.
- Peter C. Fishburn. *Utility Theory for Decision Making. Wiley, New York, 1970.*
- F. Bacchus , A. Grove. Graphical models for preference and utility. UAI-95, pp.3–10, 1995.
- S. French, *Decision Theory*, Halsted, 1986.