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2534 Lecture 2: Utility Theory
 Tutorial on Bayesian Networks: Weds, Sept.17, 5-6PM, PT266
 LECTURE ORDERING: Game Theory before MDPs? Or vice versa?

Preference orderings
Decision making under strict uncertainty
Preference over lotteries and utility functions
Useful concepts

• Risk attitudes, certainty equivalents
• Elicitation and stochastic dominance

Paradoxes and behavioral decision theory
Multi-attribute utility models

• preferential and utility independence
• additive and generalized addition models
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Why preferences?
Natural question: why not specify behavior with goals?
Preferences: coffee ≻ OJ ≻ tea

• Natural goal: coffee
 but what if unavailable? requires a 30 minute wait? …

• allows alternatives to be explored in face of costs, infeasibility,…
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Preference Orderings

Assume (finite) outcome set X (states, products, etc.)
Preference ordering ≽ over X:

• y ≽ z interpreted as: “I (weakly) prefer y to z”
• y ≻ z iff y ≽ z and z ⋡ y  (strict preference)
• y ~ z iff y ≽ z and y ≽ z   (indifference, incomparability?)

Conditions: ≽ must be: 
• (a) transitive: if x ≽ y and y ≽ z then x ≽ z
• (b) connected (orderable): either y ≽ z or z ≽ y 
• i.e., a total preorder
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Preference Orderings

Total preorder: seems natural, but conditions reasonable?
• implies (iff) strict relation ≻ is asymmetric and neg. transitive*

• *if a not better than b, b not better than c, then a not better than c

• why connected? why transitive? (e.g., money pump)
Are preference orderings enough?

• decisions under certainty? under uncertainty?

Exercise: what properties of ≽, ≻ needed if you desire incomparability?
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Revealed Preference

Given a non-empty subset of Y⊆ X, preferences “predict” 
choice: c(Y) ∈ X should be a most preferred element
More general choice function: select subset c(Y)⊆ Y

Given ≻, define c(Y, ≻) = {y∈ Y : ∄ z∈ Y s.t. z ≻ y}
• i.e., the set of “top elements” of ≻ (works for partial orders too)
• Exercise: show that c(Y, ≻) must be non-empty
• Exercise: show that if y, z ∈ c(Y, ≻) then y ~ z

CF c is rationalizable iff exists≻  s.t. for all Y, c(Y)=c(Y,≻) 
• are all choice functions rationalizable? (give counterexample)
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Weak Axiom of Revealed Preference

Desirable properties of choice functions:
• (AX1) If y∈ Y, Y⊆ Z, and y∈ c(Z), then y ∈ c(Y)
• (AX2) If Y⊆ Z, y,z∈ c(Y), and z∈ c(Z), then y ∈ c(Z)

Thm: (a) given prefs ≻, c(∙,≻) satisfies (AX1) and (AX2)
(b) if c satisfies (AX1) and (AX2), then c=c(∙,≻) for some ≻

• Exercise: prove this

Thus: a characterization of rationalizable choice functions
Weak axiom of revealed preference:

• (WARP) If y,z∈ Y∩Z, y∈ c(Y), z∈ c(Z), then y ∈ c(Z) and z ∈ c(Y)
• Alternative characterization: c satisfies WARP iff (AX1) and (AX2)
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Making Decisions: One-shot
Basic model of (one-shot) decisions:

• finite set of actions A, each leads to set of possible outcomes X
• given preference ordering ≽, is decision obvious?

Deterministic actions: f:A ⟶ X
• Let f(A) = {f(a) ∈ A} be the set of possible outcomes, choose a

with most preferred outcome: c(f(A))
• preferences more useful than goals: what if A is set of plans?

Is it always so straightforward?
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Making Decisions: Uncertainty
What if a given action has several possible outcomes

• Nondeterministic actions: f:A ⟶ P(X)

• Stochastic actions: f:A ⟶ Δ(X)
• Initial state uncertainty (nondeterministic or stochastic)
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Making Decisions: Uncertainty

Two solutions to this problem:

Soln 1: Assign values to outcomes
• decision making under strict uncertainty if nondeterministic
• expected value/utility theory if stochastic
• Question: where do values come from? what do they mean?

Soln 2: Assign preferences to lotteries over outcomes
• decision making under quantified uncertainty
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Making Decisions: Strict Uncertainty
Suppose you have no way to quantify uncertainty, but 

each outcome has some “value” to you
• require the value function respect ≽:  v(x) ≥ v(y)  iff x≽ y

Useful to specify a decision table
• rows: actions; columns: states of nature; entries: values
• unknown states of nature dictate outcomes, table has: v(f(a,Θ1))
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Strict Uncertainty: Decision Criteria
Maximin (Wald): choose action 

with best worst outcome
• maxa minΘ v(f(a,Θ))
• a with max security level s(a)
• very pessimistic

Maximax: choose action with 
best best outcome

• maxa maxΘ v(f(a,Θ))
• a with max optimism level o(a)

Hurwicz criterion: set α ∈ (0,1)
• maxa α s(a) + (1- α)o(a)

Maximin: a2

Maximax: a3

Hurwicz: which 
decisions are possible?
What if a3 = <0.5 3 2 2>?
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Minimax Regret (Savage)

Regret of ai under outcome Θj: rij = max {vkj } – vij
• How sorry I’d be doing ai if I’d known Θj was coming
• Why worry about worst outcome: beyond my control

Minimax regret: choose arg mina maxj rij
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Qualitative Criteria: Reasonable?

Criteria all make sense at some level, but not at others
• indeed, all have “faults”

Independence of irrelevant alternatives (IIA): adding an 
action to decision problem does not influence relative 
ranking of other actions

Minimax regret violates IIA
• a1 lower MR than a2 (no a3)
• a2 lower MR than a1 (with a3)

Classic impossibility result:
• no qualitative decision criterion satisfies all of a set of intuitively 

reasonable principles (like IIA)
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Making Decisions: Probabilistic Uncertainty

What if:
• 2% chance no coffee made (30 min delay)?  10%?  20%?  95%?
• robot has enough charge to check only one possibility
• 5% chance of damage in coffee room, 1% at OJ vending mach.
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Preference over Lotteries

If uncertainty in action/choice outcomes, ≽ not enough
Each action is a “lottery” over outcomes

A simple lottery over X has form:
l = [ (p1 ,x1), (p2 ,x2), …, (pn ,xn) ]

where  pi ≥ 0 and ∑ pi = 1
• outcomes are just trivial lotteries (one outcome has prob 1)

A compound lottery allows outcomes to be lotteries:
[ (p1 ,l1), (p2 ,l2), …, (pn ,ln) ]

• restrict to finite compounding
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Constraints on Lotteries

Continuity:  
• If  x1 ≻ x2 ≻ x3 then  ∃ p s.t. [(p,x1), (1-p,x3)] ~ x2

Substitutability: 
• If  x1 ~ x2 then [(p,x1), (1-p,x3)] ~ [(p,x2), (1-p,x3)] 

Mononoticity:
• If  x1 ≽ x2 and p≥ q then  [(p,x1), (1-p,x2)] ≽ [(q,x1), (1-q,x2)] 

Reduction of Compound Lotteries (“no fun gambling”):
• [ (p, [(q,x1), (1-q,x2)] ), (1-p, [(q’,x3), (1-q’,x4)]) ] 

~ [ (pq,x1), (p-pq,x2), (q’-pq’,x3), ((1-p)(1-q’),x4) ]

Nontriviality:
• xT ≻ x⊥
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Implications of Properties on ≽

Since ≽ is transitive, connected: representable by ordinal 
value function V(x)

With constraints on lotteries: we can construct a utility 
function U(l)∈ R s.t. U(l1)≥ U(l2) iff l1 ≽ l2

• where U([ (p1 ,x1), … , (pn ,xn) ]) =  ∑i piU(xi)
• famous result of Ramsey, von Neumann & Morgenstern, Savage

Exercise: prove existence of such a utility function
Exercise: given any U over outcomes X, show that ordering ≽ over 

lotteries induced by U satisfies required properties of ≽

17CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Implications of Properties on ≽

Assume some collection of actions/choices at your 
disposal

Knowing U(xi) for each outcome allows tradeoffs to be 
made over uncertain courses of action (lotteries)

• simply compute expected utility of each course of action

Principle of Maximum Expected Utility (MEU)
• utility of choice is a expected utility of its outcome
• appropriate choice is that with maximum expected utility
• Why? Action (lottery) with highest EU is the action (lottery) that 

is most preferred in ordering ≽ over lotteries!
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Some Discussion Points
Utility function existence: proof is straightforward

• Hint: set U(xT)= 1; U(x⊥)= 0; find a p s.t. x ~ [(p,xT), (1-p,x⊥)] 

Utility function for > over lotteries is not unique:
• any positive affine transformation of U induces same ordering >
• normalization in range [0,1] common

Ordinal preferences “easy” to elicit (if X small)
• cardinal utilities trickier for people: an “art form” in decision anal.

Outcome space often factored: exponential size
• requires techniques of multi-attribute utility theory (MAUT)

Expected utility accounts for risk attitudes: inherent in 
preferences over lotteries

• see utility of money (next)
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Risk profiles and Utility of money
What would you choose?

• (a) $100,000   or  (b)  [(.5, $200,000),  (.5, 0) ]
• what if (b) was $250K, $300K, $400K, $1M; p = .6, .7, .9, .999, …
• generally, U(EMV(lottery)) > U(lottery)    EMV = expected monetary value

Utility of money is nonlinear:  e.g., U($100K) > .5U($200K)+.5U($0)

Certainty equivalent of l:  U(CE) = U(l); CE = U-1(EU(l))
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Risk attitudes
Risk Premium: EMV(l) – CE(l)

• how much of EMV will I give up to remove risk of losing
Risk averse:

• decision maker has positive risk premium; U(money) is concave
Risk neutral:

• decision maker has zero risk premium; U(money) is linear
Risk seeking:

• decision maker has negative risk premium; U(money) is convex
Most people are risk averse

• this explains insurance
• often risk seeking in negative range
• linear a good approx in small ranges
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St. Peterburg Paradox

How much would you pay to play this game?
• A coin is tossed until it falls heads. If it occurs on the Nth toss 

you get $2N

• Most people will pay about $2-$20

Not a paradox per se… doesn’t contradict utility theory
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A Game

Situation 1: choose either
• (1) $1M, Prob=1.00
• (2) $5M, Prob=0.10;  $1M, Prob=0.89;  nothing, Prob=0.01
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Another Game


•
•

Situation 2: choose either
• (3) $1M, Prob=0.11; nothing, Prob=0.89
• (4) $5M, Prob=0.10; nothing, Prob=0.90
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Allais’ Paradox

Situation 1: choose either
• (1) $1M, Prob=1.00
• (2) $5M, Prob=0.10;  $1M, Prob=0.89;  nothing, Prob=0.01

Situation 2: choose either
• (3) $1M, Prob=0.11; nothing, Prob=0.89
• (4) $5M, Prob=0.10; nothing, Prob=0.90

Most people: (1) > (2)   and  (4) > (3)
• e.g., in related setups:  65% (1) > (2);   25% (3) > (4)

Paradox: no way to assign utilities to monetary outcomes 
that conforms to expected utility theory and the stated 
preferences (violates substitutability)

• possible explanation: regret
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Allais’ Paradox: The Paradox
Situation 1: choose either

• (1) $1M, Prob=1.00
 equiv: ($1M 0.89; $1M 0.11) 

• (2) $5M, Prob=0.10;  $1M, Prob=0.89;  nothing, Prob=0.01
• So if (1)>(2), by subst:  $1M > ($5M 10/11; nothing 1/11)

Situation 2: choose either
• (3) $1M, Prob=0.11; nothing, Prob=0.89
• (4) $5M, Prob=0.10; nothing, Prob=0.90

 equiv: nothing 0.89; $5M 0.10; nothing 0.01
• So if (4)>(3), by subst: ($5M 10/11; nothing 1/11) > $1M
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…and the Fall 2014 survey says

Situation 1:
• (1)>(2): a (x%)
• (2)>(1):  b (y%)

Situation 2:
• (3)>(4):  c (w%)
• (4)>(3):  d (z%)

The 2534 class of 2014 is ___________________
• many people who take a class on decision theory tend to think in 

terms of expected monetary value (so 2534 surveys tend to be 
consistent than more standard empirical results; however, if 
there was real money on the line, my guess is the proportions 
would be somewhat more in line with experiments)
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Ellsberg Paradox

Urn with 30 red balls, 60 yellow or black balls; well mixed
Situation 1: choose either

• (1) $100 if you draw a red ball
• (2) $100 if you draw a black ball

Situation 2: choose either
• (3) $100 if you draw a red or yellow ball
• (4) $100 if you draw a black or yellow ball

Most people: (1) > (2)   and  (4) > (3)
Paradox: no way to assign utilities (all the same) and 

beliefs about yellow/black proportions that conforms to 
expected utility theory

• possible explanation: ambiguity aversion
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Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
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Product Configuration*

Luggage Capacity?
Two Door? Cost?

Engine Size?
Color? Options?
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COACH*
POMDP for prompting Alzheimer’s patients

• solved using factored models, value-directed compression of 
belief space

Reward function (patient/caregiver preferences)
• indirect assessment (observation, policy critique)
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Winner Determination in Combinatorial 
Auctions

Expressive bidding in auctions becoming common
• expressive languages allow: combinatorial bids, side-constraints, 

discount schedules, etc.
• direct expression of utility/cost: economic efficiency

Advances in winner determination
• determine least-cost allocation of business to bidders
• new optimization methods key to acceptance
• applied to large-scale problems (e.g., sourcing)
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Non-price Preferences
A and B for $12000.
C and D for $5000…

A for $10000.
B and D for $5000 if A;
B and D for $7000 if not A...Joe

Hank

etc…

A, C to Fred.
B, D, G to Frank.
F, H, K to Joe…
Cost: $57,500.

That gives too 
much business 
to Joe!!
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Non-price Preferences
WD algorithms minimize cost alone

• but preferences for non-price attributes play key role 
• Some typical attributes in sourcing:

 percentage volume business to specific supplier
 average quality of product, delivery on time rating
 geographical diversity of suppliers
 number of winners (too few, too many), …

Clear utility function involved
• difficult to articulate precise tradeoff weights

• “What would you pay to reduce  %volumeJoe by 1%?”
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Manual Scenario Navigation*
Current practice: manual scenario navigation

• impose constraints on winning allocation 
 not a hard constraint!

• re-run winner determination
• new allocation satisfying constraint: higher cost
• assess tradeoff and repeat (often hundreds of times) until 

satisfied with some allocation

Here’s a new allocation with 
less business to Joe.
Cost is now: $62,000.

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Utility Representations

Utility function u: X →[0,1]
• decisions induce distribution over outcomes
• or we simply choose an outcome (no uncertainty), but 

constraints on outcomes
If X is combinatorial, sequential, etc.

• representing, eliciting u difficult in explicit form
Some structural form usually assumed

• so u parameterized compactly (weight vector w)
• e.g., linear/additive, generalized additive models

Representations for qualitative preferences, too
• e.g., CP-nets, TCP-nets, etc. [BBDHP03, BDS05]

36CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



Flat vs. Structured Utility Representation

Naïve representation: vector of values
• e.g., car7:1.0, car15:0.92, car3:0.85, …, car22:0.0

Impractical for combinatorial domains
• e.g., can’t enumerate exponentially many cars, nor expect user 

to assess them all (choose among them)
Instead we try to exploit independence of user 

preferences and utility for different attributes
• the relative preference/utility of one attribute is independent of 

the value taken by (some) other attributes
Assume X ⊆ Dom(X1) x Dom(X2) x … Dom(Xn)

• e.g., car7:   Color=red, Doors=2, Power=320hp, LuggageCap=0.52m3
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Preferential, Utility Independence

X and Y = V-X are preferentially independent if: 
• x1y1 ≥ x2y1  iff x1y2 ≥ x2y2 (for all x1, x2, y1, y2)
• e.g., Color: red>blue regardless of value of Doors, Power, LugCap
• conditional P.I. given set Z: definition is straightforward

X and Y = V-X are utility independent if: 
• l1(Xy1) ≥ l2(Xy1)  iff l1(Xy2) ≥ l2(Xy2)  (for all y1, y2 , all distr. l1,l2)
• e.g., preference for lottery(Red,Green,Blue) does not vary with 

value of Doors, Power, LugCap
 implies existence of a “utility” function over local (sub)outcomes

• conditional U.I. given set Z: definition is straightforward
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Question
Is each attribute PI of others in preference relation 1?  2?

Does UI imply PI? Does PI imply UI?
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Additive Utility Functions

Additive representations commonly used [KR76]
• breaks exponential dependence on number of attributes
• use sum of local utility functions ui over attributes
• or equivalently local value functions vi plus scaling factors λi

• e.g., U(Car) = 0.3 v1(Color) + 0.2 v2(Doors) + 0.5 v3(Power)
and v1(Color) :  cherryred:1.0, metallicblue:0.7,  …, grey:0.0

This will make elicitation much easier (more on this next time)
 It can also make optimization more practical (more next time)
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Additive Utility Functions

An additive representation of u exists iff decision maker is 
indifferent between any two lotteries where the marginals
over each attribute are identical
 l1(X) ~ l2(X)  whenever l1(Xi) = l2(Xi) for all Xi
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Generalized Additive Utility

Generalized additive models more flexible
 interdependent value additivity [Fishburn67], GAI [BG95]

• assume (overlapping) set of m subsets of vars X[j]
• use sum of local utility functions uj over attributes

• e.g., U(Car) = 0.3 v1(Color,Doors) + 0.7 v2(Doors,Power) with
v1(Color,Door) :  blue,sedan:1.0; blue,coupe:0.7;blue,hatch:0.1,

red, sedan: 0.8, red,coupe:0.9; red,hatch:0.0

This will make elicitation much easier (more on this next time)
 It can also make optimization more practical (more next time)
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GAI Utility Functions

An GAI representation of u exists iff decision maker is 
indifferent between any two lotteries where the marginals
over each factor are identical

• l1(X) ~ l2(X)  whenever l1(X[i]) = l2(X[i]) for all i
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Further Background Reading
 John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton 

University Press, Princeton, 1944.
 L. Savage. The Foundations of Statistics. Wiley, NY, 1954.
 R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. 

Wiley, NY, 1976.
 P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility 

theory. International Economic Review, 8:335–342, 1967.
 Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.
 F. Bacchus , A. Grove. Graphical models for preference and utility. UAI-95, pp.3–10, 1995.
 S. French, Decision Theory, Halsted, 1986.
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