2534 Lecture 2: Utility Theory

- Tutorial on Bayesian Networks: Weds, Sept.17, 5-6PM, PT266
- LECTURE ORDERING: Game Theory before MDPs? Or vice versa?
-Preference orderings
-Decision making under strict uncertainty
-Preference over lotteries and utility functions
-Useful concepts
- Risk attitudes, certainty equivalents
- Elicitation and stochastic dominance
- Paradoxes and behavioral decision theory
- Multi-attribute utility models
- preferential and utility independence
- additive and generalized addition models

Why preferences?

-Natural question: why not specify behavior with goals?
-Preferences: coffee $>$ OJ $>$ tea

- Natural goal: coffee
- but what if unavailable? requires a 30 minute wait? ...
- allows alternatives to be explored in face of costs, infeasibility,...

Preference Orderings

- Assume (finite) outcome set X (states, products, etc.)
- Preference ordering \succcurlyeq over X :
- $y \geqslant z$ interpreted as: "I (weakly) prefer y to z "
- $y>z$ iff $y \geqslant z$ and $z \not y$ (strict preference)
- $y \sim z$ iff $y \geqslant z$ and $y \geqslant z$ (indifference, incomparability?)
-Conditions: \succcurlyeq must be:
- (a) transitive: if $x \geqslant y$ and $y \geqslant z$ then $x \geqslant z$
- (b) connected (orderable): either $y \geqslant z$ or $z \succcurlyeq y$
- i.e., a total preorder

Preference Orderings

-Total preorder: seems natural, but conditions reasonable?

- implies (iff) strict relation $>$ is asymmetric and neg. transitive*
- *if a not better than b, b not better than c, then a not better than c
- why connected? why transitive? (e.g., money pump)
-Are preference orderings enough?
- decisions under certainty? under uncertainty?
- Exercise: what properties of $\succcurlyeq,>$ needed if you desire incomparability?

Revealed Preference

-Given a non-empty subset of $Y \subseteq X$, preferences "predict" choice: $c(Y) \in X$ should be a most preferred element

- More general choice function: select subset $c(Y) \subseteq Y$
- Given $>$, define $c(Y,>)=\{y \in Y: \nexists z \in Y$ s.t. $z>y\}$
- i.e., the set of "top elements" of $>$ (works for partial orders too)
- Exercise: show that $c(Y, \succ)$ must be non-empty
- Exercise: show that if $y, z \in c(Y, \succ)$ then $y \sim z$
-CF c is rationalizable iff exists $>$ s.t. for all $Y, c(Y)=c(Y,>)$
- are all choice functions rationalizable? (give counterexample)

Weak Axiom of Revealed Preference

- Desirable properties of choice functions:
- (AX1) If $y \in Y, Y \subseteq Z$, and $y \in c(Z)$, then $y \in c(Y)$
- (AX2) If $Y \subseteq Z, y, z \in c(Y)$, and $z \in c(Z)$, then $y \in c(Z)$
- Thm: (a) given prefs $>, c(;>)$ satisfies (AX1) and (AX2)
(b) if c satisfies (AX1) and (AX2), then $c=c(;>)$ for some $>$
- Exercise: prove this
-Thus: a characterization of rationalizable choice functions
-Weak axiom of revealed preference:
- (WARP) If $y, z \in Y \cap Z, y \in c(Y), z \in c(Z)$, then $y \in c(Z)$ and $z \in c(Y)$
- Alternative characterization: c satisfies WARP iff (AX1) and (AX2)

Making Decisions: One-shot

-Basic model of (one-shot) decisions:

- finite set of actions A, each leads to set of possible outcomes X
- given preference ordering \succcurlyeq, is decision obvious?
-Deterministic actions: $f: A \rightarrow X$
- Let $f(A)=\{f(a) \in A\}$ be the set of possible outcomes, choose a with most preferred outcome: $c(f(A))$
- preferences more useful than goals: what if A is set of plans?
-Is it always so straightforward?

$$
x_{1}>x_{2}>x_{3:} \text { then choose } a_{1}
$$

Making Decisions: Uncertainty

-What if a given action has several possible outcomes

- Nondeterministic actions: f: $A \rightarrow \mathscr{P}(X)$
- Stochastic actions: f:A $\rightarrow \Delta(X)$
- Initial state uncertainty (nondeterministic or stochastic)

$x_{1}>x_{2}>x_{3}>x_{4}:$ choose a_{1} or a_{2} ?

Making Decisions: Uncertainty

-Two solutions to this problem:
-Soln 1: Assign values to outcomes

- decision making under strict uncertainty if nondeterministic
- expected value/utility theory if stochastic
- Question: where do values come from? what do they mean?
-Soln 2: Assign preferences to lotteries over outcomes
- decision making under quantified uncertainty

Making Decisions: Strict Uncertainty

- Suppose you have no way to quantify uncertainty, but each outcome has some "value" to you
- require the value function respect $\succcurlyeq: v(x) \geq v(y)$ iff $x \geqslant y$
-Useful to specify a decision table
- rows: actions; columns: states of nature; entries: values
- unknown states of nature dictate outcomes, table has: $v\left(f\left(a, \Theta_{1}\right)\right)$

Strict Uncertainty: Decision Criteria

-Maximin (Wald): choose action with best worst outcome

- $\max _{a} \min _{\Theta} v(f(a, \Theta))$
- a with max security level s(a)
- very pessimistic
-Maximax: choose action with best best outcome
- $\max _{a} \max _{\Theta} v(f(a, \Theta))$
- a with max optimism level o(a)
- Hurwicz criterion: set $\alpha \in(0,1)$
- $\max _{a} \alpha \mathrm{~s}(\mathrm{a})+(1-\alpha) \mathrm{o}(\mathrm{a})$

	Θ_{1}	Θ_{2}	Θ_{3}	Θ_{4}
a_{1}	2	2	0	1
a_{2}	1	1	1	1
a_{3}	0	4	0	0
a_{4}	1	3	0	0

- Maximin: a_{2}
-Maximax: a_{3}
-Hurwicz: which decisions are possible?
- What if $\mathrm{a}_{3}=<0.532$ 2>?

Minimax Regret (Savage)

-Regret of a_{i} under outcome $\Theta_{j}: r_{i j}=\max \left\{v_{k j}\right\}-v_{i j}$

- How sorry l'd be doing a_{i} if I'd known Θ_{j} was coming
- Why worry about worst outcome: beyond my control
- Minimax regret: choose arg $\min _{a} \max _{j} r_{i j}$

	Θ_{1}	Θ_{2}	Θ_{3}	Θ_{4}	Max Regret
a_{1}	$2 / 0$	$2 / 2$	$0 / 1$	$1 / 0$	2
a_{2}	$1 / 1$	$1 / 3$	$1 / 0$	$1 / 0$	3
a_{3}	$0 / 2$	$4 / 0$	$0 / 1$	$0 / 1$	2
a_{4}	$1 / 1$	$3 / 1$	$0 / 1$	$0 / 1$	1

*red values are regrets $r_{i j}$

Qualitative Criteria: Reasonable?

-Criteria all make sense at some level, but not at others

- indeed, all have "faults"
- Independence of irrelevant alternatives (IIA): adding an action to decision problem does not influence relative ranking of other actions
-Minimax regret violates IIA
- a_{1} lower MR than a_{2} (no a_{3})
- a_{2} lower MR than a_{1} (with a_{3})
- Classic impossibility result:

*red: regrets $r_{i j}$ without a3
*green: regrets $r_{i j}$ with a3
- no qualitative decision criterion satisfies all of a set of intuitively reasonable principles (like IIA)

Making Decisions: Probabilistic Uncertainty

- What if:

- 2% chance no coffee made (30 min delay)? 10% ? 20% ? 95% ?
- robot has enough charge to check only one possibility
- 5% chance of damage in coffee room, 1% at OJ vending mach.

Preference over Lotteries

- If uncertainty in action/choice outcomes, \geqslant not enough
-Each action is a "lottery" over outcomes
- A simple lottery over X has form:

$$
I=\left[\left(p_{1}, x_{1}\right),\left(p_{2}, x_{2}\right), \ldots,\left(p_{n}, x_{n}\right)\right]
$$

where $p_{i} \geq 0$ and $\sum p_{i}=1$

- outcomes are just trivial lotteries (one outcome has prob 1)
- A compound lottery allows outcomes to be lotteries:

$$
\left[\left(p_{1}, l_{1}\right),\left(p_{2}, l_{2}\right), \ldots,\left(p_{n}, l_{n}\right)\right]
$$

- restrict to finite compounding

Constraints on Lotteries

-Continuity:

- If $x_{1} \succ x_{2} \succ x_{3}$ then $\exists p$ s.t. $\left[\left(p, x_{1}\right),\left(1-p, x_{3}\right)\right] \sim x_{2}$
-Substitutability:
- If $x_{1} \sim x_{2}$ then $\left[\left(p, x_{1}\right),\left(1-p, x_{3}\right)\right] \sim\left[\left(p, x_{2}\right),\left(1-p, x_{3}\right)\right]$
-Mononoticity:
- If $x_{1} \geqslant x_{2}$ and $p \geq q$ then $\left[\left(p, x_{1}\right),\left(1-p, x_{2}\right)\right] \geqslant\left[\left(q, x_{1}\right),\left(1-q, x_{2}\right)\right]$
-Reduction of Compound Lotteries ("no fun gambling"):
- $\left[\left(p,\left[\left(q, x_{1}\right),\left(1-q, x_{2}\right)\right]\right),\left(1-p,\left[\left(q^{\prime}, x_{3}\right),\left(1-q^{\prime}, x_{4}\right)\right]\right)\right]$

$$
\sim\left[\left(p q, x_{1}\right),\left(p-p q, x_{2}\right),\left(q^{\prime}-p q^{\prime}, x_{3}\right),\left((1-p)\left(1-q^{\prime}\right), x_{4}\right)\right]
$$

-Nontriviality:

- $X_{T}>X_{\perp}$

Implications of Properties on \succcurlyeq

- Since \succcurlyeq is transitive, connected: representable by ordinal value function $V(x)$
-With constraints on lotteries: we can construct a utility function $U(I) \in R$ s.t. $U\left(I_{1}\right) \geq U\left(I_{2}\right)$ iff $I_{1} \geqslant I_{2}$
- where $U\left(\left[\left(p_{1}, x_{1}\right), \ldots,\left(p_{n}, x_{n}\right)\right]\right)=\sum_{i} p_{i} U\left(x_{i}\right)$
- famous result of Ramsey, von Neumann \& Morgenstern, Savage
- Exercise: prove existence of such a utility function
- Exercise: given any U over outcomes X, show that ordering \succcurlyeq over lotteries induced by U satisfies required properties of \succcurlyeq

Implications of Properties on \succcurlyeq

- Assume some collection of actions/choices at your disposal
- Knowing $U\left(x_{i}\right)$ for each outcome allows tradeoffs to be made over uncertain courses of action (lotteries)
- simply compute expected utility of each course of action

-Principle of Maximum Expected Utility (MEU)

- utility of choice is a expected utility of its outcome
- appropriate choice is that with maximum expected utility
- Why? Action (lottery) with highest EU is the action (lottery) that is most preferred in ordering \geqslant over lotteries!

Some Discussion Points

- Utility function existence: proof is straightforward
- Hint: set $U\left(x_{T}\right)=1 ; U\left(x_{\perp}\right)=0$; find a p s.t. $x \sim\left[\left(p, x_{T}\right),\left(1-p, x_{\perp}\right)\right]$
- Utility function for > over lotteries is not unique:
- any positive affine transformation of U induces same ordering $>$
- normalization in range [0,1] common
-Ordinal preferences "easy" to elicit (if X small)
- cardinal utilities trickier for people: an "art form" in decision anal.
- Outcome space often factored: exponential size
- requires techniques of multi-attribute utility theory (MAUT)
- Expected utility accounts for risk attitudes: inherent in preferences over lotteries
- see utility of money (next)

Risk profiles and Utility of money

-What would you choose?

- (a) $\$ 100,000$ or (b) $[(.5, \$ 200,000),(.5,0)]$
- what if (b) was $\$ 250 \mathrm{~K}, \$ 300 \mathrm{~K}, \$ 400 \mathrm{~K}, \$ 1 \mathrm{M} ; \mathrm{p}=.6, .7, .9, .999, \ldots$
- generally, U(EMV(lottery)) > U(lottery) EMV = expected monetary value - Utility of money is nonlinear: e.g., $U(\$ 100 K)>.5 U(\$ 200 K)+.5 U(\$ 0)$ - Certainty equivalent of $I: U(C E)=U(I) ; C E=U^{-1}(E U(I))$

For many people, CE ~ \$40K Note: $2^{\text {nd }} \$ 100 K$ "worth less" than $1^{\text {st }} \$ 100 \mathrm{~K}$

Risk attitudes

-Risk Premium: EMV(I) - CE(I)

- how much of EMV will I give up to remove risk of losing
-Risk averse:
- decision maker has positive risk premium; U (money) is concave -Risk neutral:
- decision maker has zero risk premium; U (money) is linear
-Risk seeking:
- decision maker has negative risk premium; U (money) is convex
- Most people are risk averse
- this explains insurance
- often risk seeking in negative range
- linear a good approx in small ranges

St. Peterburg Paradox

- How much would you pay to play this game?
- A coin is tossed until it falls heads. If it occurs on the $\mathrm{N}^{\text {th }}$ toss you get $\$ 2^{N}$

$$
E M V=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} 2^{n}=\sum_{n=1}^{\infty} 1=\infty
$$

- Most people will pay about \$2-\$20
- Not a paradox per se... doesn't contradict utility theory

A Game

- Situation 1: choose either
- (1) \$1M, Prob=1.00
- (2) \$5M, Prob=0.10; \$1M, Prob=0.89; nothing, Prob=0.01

Another Game

- Situation 2: choose either
- (3) \$1M, Prob=0.11; nothing, Prob=0.89
- (4) $\$ 5 \mathrm{M}$, Prob=0.10; nothing, Prob=0.90

Allais' Paradox

- Situation 1: choose either
- (1) \$1M, Prob=1.00
- (2) \$5M, Prob=0.10; \$1M, Prob=0.89; nothing, Prob=0.01
- Situation 2: choose either
- (3) \$1M, Prob=0.11; nothing, Prob=0.89
- (4) \$5M, Prob=0.10; nothing, Prob=0.90
- Most people: (1) > (2) and (4) > (3)
- e.g., in related setups: $65 \%(1)>(2) ; 25 \%(3)>(4)$
-Paradox: no way to assign utilities to monetary outcomes that conforms to expected utility theory and the stated preferences (violates substitutability)
- possible explanation: regret

Allais' Paradox: The Paradox

-Situation 1: choose either

- (1) \$1M, Prob=1.00
- equiv: (\$1M 0.89; \$1M 0.11)
- (2) \$5M, Prob=0.10; \$1M, Prob=0.89; nothing, Prob=0.01
- So if (1)>(2), by subst: \$1M > (\$5M 10/11; nothing 1/11)
- Situation 2: choose either
- (3) \$1M, Prob=0.11; nothing, Prob=0.89
- (4) \$5M, Prob=0.10; nothing, Prob=0.90
- equiv: nothing 0.89; \$5M 0.10; nothing 0.01
- So if (4)>(3), by subst: (\$5M 10/11; nothing 1/11) > \$1M

...and the Fall 2014 survey says

- Situation 1:
- (1)>(2): $a(x \%)$
- (2)>(1): b (y\%)
- Situation 2:
- (3)>(4): c (w\%)
- (4)>(3): d (z\%)
- The 2534 class of 2014 is
- many people who take a class on decision theory tend to think in terms of expected monetary value (so 2534 surveys tend to be consistent than more standard empirical results; however, if there was real money on the line, my guess is the proportions would be somewhat more in line with experiments)

Ellsberg Paradox

-Urn with 30 red balls, 60 yellow or black balls; well mixed
-Situation 1: choose either

- (1) \$100 if you draw a red ball
- (2) $\$ 100$ if you draw a black ball
- Situation 2: choose either
- (3) \$100 if you draw a red or yellow ball
- (4) \$100 if you draw a black or yellow ball
- Most people: (1) > (2) and (4) > (3)
-Paradox: no way to assign utilities (all the same) and beliefs about yellow/black proportions that conforms to expected utility theory
- possible explanation: ambiguity aversion

Utility Representations

- Utility function $u: X \rightarrow[0,1]$
- decisions induce distribution over outcomes
- or we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
- representing, eliciting u difficult in explicit form

Product Configuration*

COACH*

-POMDP for prompting Alzheimer's patients

- solved using factored models, value-directed compression of belief space
-Reward function (patient/caregiver preferences)
- indirect assessment (observation, policy critique)

Winner Determination in Combinatorial Auctions

- Expressive bidding in auctions becoming common
- expressive languages allow: combinatorial bids, side-constraints, discount schedules, etc.
- direct expression of utility/cost: economic efficiency
- Advances in winner determination
- determine least-cost allocation of business to bidders
- new optimization methods key to acceptance
- applied to large-scale problems (e.g., sourcing)

Non-price Preferences

Non-price Preferences

-WD algorithms minimize cost alone

- but preferences for non-price attributes play key role
- Some typical attributes in sourcing:
- percentage volume business to specific supplier
- average quality of product, delivery on time rating
- geographical diversity of suppliers
- number of winners (too few, too many), ...
- Clear utility function involved
- difficult to articulate precise tradeoff weights
- "What would you pay to reduce \%volumeJoe by 1\%?"

Manual Scenario Navigation*

-Current practice: manual scenario navigation

- impose constraints on winning allocation
- not a hard constraint!
- re-run winner determination
- new allocation satisfying constraint: higher cost
- assess tradeoff and repeat (often hundreds of times) until satisfied with some allocation

Utility Representations

- Utility function $u: X \rightarrow[0,1]$
- decisions induce distribution over outcomes
- or we simply choose an outcome (no uncertainty), but constraints on outcomes
- If X is combinatorial, sequential, etc.
- representing, eliciting u difficult in explicit form
-Some structural form usually assumed
- so u parameterized compactly (weight vector w)
- e.g., linear/additive, generalized additive models
- Representations for qualitative preferences, too
- e.g., CP-nets, TCP-nets, etc. [BBDHP03, BDS05]

Flat vs. Structured Utility Representation

- Naïve representation: vector of values
- e.g., car7:1.0, car15:0.92, car3:0.85, ..., car22:0.0
- Impractical for combinatorial domains
- e.g., can't enumerate exponentially many cars, nor expect user to assess them all (choose among them)
- Instead we try to exploit independence of user preferences and utility for different attributes
- the relative preference/utility of one attribute is independent of the value taken by (some) other attributes
- Assume $X \subseteq \operatorname{Dom}\left(X_{1}\right) \times \operatorname{Dom}\left(X_{2}\right) \times \ldots \operatorname{Dom}\left(X_{n}\right)$
- e.g., car7: Color=red, Doors=2, Power=320hp, LuggageCap=0.52m³

Preferential, Utility Independence

- \boldsymbol{X} and $\boldsymbol{Y}=\boldsymbol{V}$ - \boldsymbol{X} are preferentially independent if:
- $\boldsymbol{x}_{1} \boldsymbol{y}_{1} \geq \boldsymbol{x}_{2} \boldsymbol{y}_{1}$ iff $\boldsymbol{x}_{1} \boldsymbol{y}_{2} \geq \boldsymbol{x}_{2} \boldsymbol{y}_{2} \quad$ (for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}$)
- e.g., Color: red>blue regardless of value of Doors, Power, LugCap
- conditional P.I. given set Z: definition is straightforward
- \boldsymbol{X} and $\boldsymbol{Y}=\boldsymbol{V}$ - \boldsymbol{X} are utility independent if:
- $I_{1}\left(X y_{1}\right) \geq I_{2}\left(X y_{1}\right)$ iff $I_{1}\left(X y_{2}\right) \geq I_{2}\left(X y_{2}\right)$ (for all $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$, all distr. $\left.I_{1}, I_{2}\right)$
- e.g., preference for lottery(Red,Green,Blue) does not vary with value of Doors, Power, LugCap
- implies existence of a "utility" function over local (sub)outcomes
- conditional U.I. given set \mathbf{Z} : definition is straightforward

Question

- Is each attribute PI of others in preference relation 1? 2?

Preferences \#1	
Better	$a \underline{b} c$
\square	$\underline{a} \underline{b} c$
$a b b$	
$a \underline{b} \underline{c}$	
$\underline{a} \underline{b} \underline{c}$	
	$a b \underline{c}$
	$\underline{a} b c$
Worse	$\underline{a} b \underline{c}$

Preferences \#2	
Better	$a \underline{b} c$
\square	$\underline{a} \underline{b} c$
$a b c$	
$\underline{a} \underline{b} \underline{c}$	
$a \underline{b} \underline{c}$	
	$a b \underline{c}$
	$\underline{a} b c$
Worse	$\underline{b} \underline{c}$

-Does UI imply PI? Does PI imply UI?

Additive Utility Functions

- Additive representations commonly used [KR76]
- breaks exponential dependence on number of attributes
- use sum of local utility functions u_{i} over attributes
- or equivalently local value functions v_{i} plus scaling factors λ_{i}

$$
u(\mathbf{x})=\sum_{i=1}^{n} u_{i}\left(x_{i}\right)=\sum_{i=1}^{n} \lambda_{i} v_{i}\left(x_{i}\right)
$$

- e.g., $U($ Car $)=0.3 v_{1}$ (Color) $+0.2 v_{2}$ (Doors) $+0.5 v_{3}$ (Power) and v_{1} (Color) : cherryred:1.0, metallicblue:0.7, ..., grey:0.0
- This will make elicitation much easier (more on this next time)
- It can also make optimization more practical (more next time)

Additive Utility Functions

- An additive representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each attribute are identical
- $I_{1}(X) \sim I_{2}(X)$ whenever $I_{1}\left(X_{i}\right)=I_{2}\left(X_{i}\right)$ for all X_{i}

$$
u(\mathbf{x})=\sum_{i=1}^{n} u_{i}\left(x_{i}\right)=\sum_{i=1}^{n} \lambda_{i} v_{i}\left(x_{i}\right)
$$

Generalized Additive Utility

-Generalized additive models more flexible

- interdependent value additivity [Fishburn67], GAI [BG95]
- assume (overlapping) set of m subsets of vars $X[j]$
- use sum of local utility functions u_{j} over attributes

$$
u(\mathbf{x})=\sum_{j=1}^{m} u_{j}\left(\mathbf{x}_{j}\right)
$$

- e.g., $U($ Car $)=0.3 v_{1}$ (Color,Doors) $+0.7 v_{2}$ (Doors, Power) with v_{1} (Color,Door) : blue,sedan:1.0; blue,coupe:0.7;blue,hatch:0.1, red, sedan: 0.8, red,coupe:0.9; red,hatch:0.0
- This will make elicitation much easier (more on this next time)
- It can also make optimization more practical (more next time)

GAI Utility Functions

-An GAI representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each factor are identical

- $I_{1}(X) \sim I_{2}(X)$ whenever $I_{1}(X[i])=I_{2}(X[i])$ for all i

$$
u(\mathbf{x})=\sum_{j=1}^{m} u_{j}\left(\mathbf{x}_{j}\right)
$$

Further Background Reading

- John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944.
- L. Savage. The Foundations of Statistics. Wiley, NY, 1954.
- R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. Wiley, NY, 1976.
- P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected utility theory. International Economic Review, 8:335-342, 1967.
- Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.
- F. Bacchus , A. Grove. Graphical models for preference and utility. UAI-95, pp.3-10, 1995.
- S. French, Decision Theory, Halsted, 1986.

