2534 Lecture 11: Intro to Social Choice

-Wrap up from last time:

- briefly: Sandholm and Conitzer's work on automated mechanism design; Blumrosem, Nisan, Segal: limited communication auctions
- note: review material on auction design from last week's slides (we won't go over in class due to time limitations)
- Intro to Social Choice
-Announcements
- Make up class next week: Tues, Dec.9, 1-3PM, PT266
- Assignment 2: marker not quite done (sorry!)
- Assignment 3 (short): posted today, due Dec. 15
- Projects due on Dec. 17

Social Choice

- Social choice

- more general version of the mechanism design problem
- assume agents (society, club, ...) have preferences over outcomes
- we have a social choice function that specifies the "right" outcome given the preferences of the population
- Focus is different than mechanism design
- preferences are usually orderings (qualitative, not quantitative)
- no monetary transfers considered ("mechanism design w/o money")
- often focus on design and analysis of aggregation schemes (or "voting rules") that satisfy specific axioms, usually assuming sincere reporting of preferences
- computational focus: winner determination, approximation, communication complexity, manipulability, ...

Social Choice: Basic Setup

- Set of m possible alternatives (outcomes) A
- n players
- each with preference ordering $>_{k}$ (or ranking/vote v_{k}) over A
- assume $>_{k}$ is a linear order (no indifference): not a critical assumption
- let $v=\left(\succ_{1}, \ldots, \succ_{n}\right)$ denote preference profile
- let L denote the set of linear orderings over A
- Two settings considered
- A social choice function (SCF) C: $L^{n} \rightarrow A$ (i.e., consensus winner)
- A social welfare function (SWF) C: $L^{n} \rightarrow L$ (i.e., consensus ranking)

Why Should We Care?

- Computational models/tradeoffs inherently interesting
- Winner determination, manipulation, approximations, computational/communication complexity
- Decision making/resource allocation in multi-agent systems
- Preference and rank learning in machine learning
- Ready availability of preference data from millions of individuals
- Web search data, ratings data in recommender systems, ...
- Often implicit; but explicit preferences available at low cost

Voting Rules

- Often SCFs are specified using voting rules
- each player specifies a vote (her ranking or some part of it)
- given vote profile, rule $r: V^{n} \rightarrow A$ specifies consensus choice
- distinguish resolute, irresolute rules; assume sincere voting
- Three simple rules (with different forms of votes)
- plurality vote: each voter specifies their preferred alternative; winner is candidate with largest number of votes (with some tie-breaking rule)
- Borda rule: each voter specifies ranking; each alternative receives m-1 points for every $1^{\text {st }}-$ place rank, $m-2$ points for every $2^{\text {nd }}-p l a c e, ~ e t c . ;$ alternative with highest total score wins
- approval vote: each voter specifies a subset of alternatives they "approve of;" a point given for each approval; alternative with highest total score wins (variant: k-approval, list exactly k candidates)

Notice: each of these can be defined by assigning a score to each rank position

How do they differ?

-Example preference profile (3 alternatives, bold=approval):

- $A>B>C$: 5 voters (approve of only top alternative)
- $\mathrm{C}>\mathrm{B}>\mathrm{A}$: 4 voters (approve of only top alternative)
- $\mathbf{B}>\mathbf{C} \succ \mathrm{A}$: 2 voters (approve of top two alternatives)
-Winners:
- plurality: A wins (5 votes)
- Borda: B wins (scores B: 13; A: 10; C: 10)
- approval: C wins (scores C: 6; A: 5; B: 2)
-Which is voting rule is better?
- hard to say: depends on social objective one is trying to meet
- common approach: identify axioms/desirable properties and try to show certain voting rules satisfy them
- we will see it is not possible in general!

Some Voting Systems/Rules

- Plurality, Borda, k-approval, k-veto
- all implementable with scoring rules: assign score α to each rank position; winner a with max total: $\sum_{i} \alpha\left(v_{i}(a)\right)$
- for two candidates, plurality sometimes called majority voting
- Approval
- can't predict how sincere voters will vote based on ranking alone
- Single-transferable vote (STV) or Hare system
- Round 1: vote for favorite candidate; eliminate candidate with lowest plurality score;
- Round t : if your favorite eliminated at round $t-1$, recast vote for favorite remaining candidate; eliminate candidate with lowest plurality score
- Round $m-1$: winner is last remaining candidate
- terminate at any round if plurality score of top candidate $>m / 2$
- Needn't be online: voters can submit rankings once
- used in Australia, New Zealand, Ireland, ...

Small Sampling of Voting Systems/Rules

- Egalitarian (maxmin fairness)
- Winner maximizes min rank: $\operatorname{argmax}_{a} \min _{j}\left(m-v_{j}(a)\right)$
- Copeland
- Let $W(a, b, v)=1$ if more voters rank $a>b ; 0$ if more $b>a ; 1 / 2$ if tied
- Score $s_{c}(a, v)=\sum_{b \neq a} W(a, b, v)$; winner is a with max score - i.e., winner is candidate that wins most pairwise elections
-Nanson's rule
- Just like STV, but use Borda score to eliminate candidates
-Tournament/Cup
- Arrange a (balanced) tournament tree of pairwise contests
- Winner is last surviving candidate
- Lots of others!!!

Condorcet Principle

- Condorcet winner (CW): an alternative that beats any other in a pairwise majority vote
- if it exists, must be unique
- a rule is Condorcet-consistent if it selects the Condorcet winner whenever one exists
- Condorcet paradox: CW may not exist
- and pairwise majority preferences may induce cycles in "societal ranking"
- $\mathrm{A}>\mathrm{B}>\mathrm{C}$: $\mathrm{m} / 3$ voters
- $\mathrm{C}>\mathrm{A}>\mathrm{B}$: $\mathrm{m} / 3$ voters
- $B>C>A$:
$\mathrm{m} / 3$ voters

Violations of Condorcet Principle

- Plurality violates Condorcet
- 499 votes: $\quad A>B>C$
- 3 votes: $\quad B>C>A$
- 498 votes: $\quad C>B>A$
- plurality choses A; but B is a CW ($B>A$ 501:499; $B>C$ 502:498)
- Borda violates Condorcet
- 3 votes: $\quad A>B>C$
- 2 votes: $\quad B>C>A$
- 1 vote: $\quad B>A>C$
- 1 vote: $\quad C>A>B$
- Borda choses B (9 pts) ; but A is a CW (A>B 4:3; A>C 4:3)
- notice any scoring rule (not just Borda) will choose B if scores strictly decrease with rank
- Nanson, Copeland, Kemeny**ba rules are Condorcet consistent

Consensus Rankings

- May wish to determine a societal preference order
- notice: any rule that scores candidates can determine a societal ranking
- Another important rule: Kemeny rule
- Distance measure between rankings—Kendall's τ

$$
\tau(r, v)=\sum_{\left\{c, c^{\prime}\right\}} I\left[r(c)>r\left(c^{\prime}\right) \text { and } v\left(c^{\prime}\right)>v(c)\right]
$$

Also co-inventor of BASIC

- Kemeny ranking $\kappa(V)$: minimizes sum of distances

$$
\kappa(V)=\min _{r} \kappa(r, V) ; \kappa(r, V)=\sum_{\ell=1}^{n} \tau\left(r, \nu_{\ell}\right)
$$

- Can determine winner too: top of Kemeny ranking
- Condorcet consistent
- Example of a voting rule that is hard to compute: NP-hard

- Other difficult rules include Dodgson's rule, Slater's rule

Other Principles

- Weak monotonicity: Let profile V^{\prime} be identical to V except that some candidate a is ranked higher in some votes. Then:
- Rule: If $a \in r(V)$ then $a \in\left(V^{\prime}\right)$;
- Ranking: If $a>b$ in $r(V)$ then $a>b$ in $r\left(V^{\prime}\right)$;
- STV violates weak monotonicity
- 22 votes: $\quad A>B>C$
- 21 votes: $\quad B>C>A$
- 20 votes: $\quad C>A>B$
- A wins (C, then B eliminated)...
- ... but if 2-9 voters in BCA group "promote" A to top of ranking, C wins (B, then A eliminated)
- Lot of rules satisfy it (plurality, Borda, ...)

Other Principles

- Strong monotonicity: Let $a=r(V)$. Let V ' be s.t. for every k, every $b \neq a$, if $a>b$ in v_{k}, then $a>b$ in v_{k}. Then $a=r\left(V^{\prime}\right)$.
- i.e., if no voter "demotes" a relative to any other candidate, a still wins
- unlike WeakMon, can reorder non-winning candidates w.r.t. each other
- Plurality (and many others) violate SM
- 22 votes: $\quad A>B>C$
- 21 votes: $\quad B>C>A$
- 20 votes: $\quad C>A>B$
- A wins; but if 3 or more BCA voters "promote" C, C wins (even though relative standing of A to B, C unchanged by any voter)

Other Principles

- Independence of Irrelevant Alternatives (IIA): V' different from V, but relative ordering of a, b, same in each vote
- Rule: If $a \in r(V), b \notin r(V)$, then $b \notin r\left(V^{\prime}\right)$;
- i.e., if b wasn't strong enough to beat a given V, it shouldn't be given V^{\prime}
- Rank: if $a>b$ in $r(V)$ then $a>b$ in $r\left(V^{\prime}\right)$;
- Most rules violate IIA: easy to construct examples

Other Principles (Relatively Uncontroversial)

- In what follows, assume all preference/vote profiles are possible
- Unanimity: if all $v \in V$ rank a first, $r(V)=a$; if all rank $a>b$, then $a>b$ in $r(V)$
- relatively uncontroversial (sometimes called weak Pareto)
- Weak Pareto: if all $v \in V$ rank $a>b$, then $b \notin r(V)$
- relatively uncontroversial
- Non-dictatorial: there is no voter k s.t. $r(V)=a$ whenever k ranks a first
- for rankings, no k s.t. $a>b$ in $r(V)$ whenever k ranks $a>b$
- Anonymity: permuting votes within a profile doesn't change outcome
- e.g., if all votes identical, but provided by "different" voters
- implies non-dictatorship
- Neutrality: permuting alternatives in a profile doesn't change outcome
- i.e., result depends on relative position in votes, not identity
- implies non-imposition (any candidate can win, i.e., for some profile)

Arrow's Theorem

- Arrow's Theorem (1951): Assume at least three alternatives. No voting rule can satisfy IIA, unanimity (weak Pareto), and nondictatorship. Equivalently, there is no SWF that satisfies these properties.
- (Recall SWF produces "societal ranking," not just a winner; c.f. SCF)
- Most celebrated theorem in social choice
- Broadly (perhaps too broadly) interpreted as stating there is no good way to aggregate preferences
- There are a wide variety of alternative proofs around
- see text for one
- we'll consider a simple proof

Brief Proof Sketch

- Fix SWF F; let $>_{F}$ denote social preference order given input profile
- A coalition $S \subseteq N$ is decisive for a over b if, whenever $a>_{k} b, \forall k \in S$, and $a \not \psi_{j} b, \forall j \notin S$, we have $a>_{F} b$.
- Lemma 1: if S is decisive for a over b then, for any c, S is decisive for a over c and c over b.
- Sketch: Let S be decisive for a over b.
- Suppose $a \succ_{k} b \succ_{k} c, \forall k \in S$ and $b \succ_{j} c \succ_{j} a, \forall j \notin S$.
- Clearly, $a>_{F} b$ by decisiveness.
- Since $b>_{j} c$ for all $j, b>_{F} c$ (by unanimity), so $a>_{F} c$.
- If b placed anywhere in ordering of any agent, by

IIA, we must still have $a>_{F} c$.

$$
\begin{aligned}
S: a>b>c \\
-S: b>c>a
\end{aligned} \Rightarrow F: a>b>c
$$

- Hence S is decisive for a over c.
- Similar argument applies to show S is decisive for c over b.
- Lemma 2: If S is decisive for a over b, then it's decisive for every pair of alternatives $(c, d) \in A^{2}$
- Sketch: By Lemma 1, S decides cover b. Reapplying Lemma 1, S decides cover d.

Brief Proof Sketch

- So now we know a coalition S is either decisive for all pairs or for no pairs.
- Notice that entire group N is decisive for any pair of outcomes (by unanimity)
- Lemma 3: For any $S \subseteq N$, and any partition (T, U) of S. If S is decisive then either T is decisive or U is decisive.
- Sketch: Let $a>_{k} b>_{k} c$ for $k \in T ; \quad b>_{j} c>_{j} a$ for $j \in U ; \quad c>_{q} a>_{q} b$ for $q \in N \mid S$;
- Social ranking has $b \succ_{F} c$ since S is decisive.
- Suppose social ranking has $a>_{F} b$, which implies $a>_{F} c$ (by transitivity).
- Notice only agents in T rank $a>c$, and those in $U, N I S$ rank $c>a$.
- But if we reorder prefs for any other alternatives (keeping $a>c$ in $T, c>a$ in U and $N I S$), by IIA, we must still have $a>_{F} c$ in this new profile.
- Hence T is decisive for a over c (hence decisive for all pairs).
- Suppose social ranking has $b>_{F} a$
- Since only agents in U rank $b>a$, similar argument shows U is decisive.
- So either T is decisive or U is decisive.
- Proof of Theorem: Entire group N is decisive. Repeatedly partition, choosing the decisive subgroup at each stage. Eventually we reach a singleton set that is decisive for all pairs... the dictator!

Muller-Satterthwaite Theorem

- Arrow's theorem tells us: impossible to produce a societal ranking satisfying our desired conditions (in a fully general way)
- Maybe producing a full ranking is too much to ask
- What if we only want a unique winner?
- Also not possible...
- Muller-Satterthwaite Theorem (1977): Assume at least three alternatives. No resolute voting rule satisfies strong monotonicity, non-imposition, and non-dictatorship. Equivalently, there is no SCF that satisfies these properties.

May's Theorem

- Should Arrow's Thm cause complete despair? Not really...
- dismiss some of the desiderata as too stringent
- live with "general" impossibility, but use rules that tend to (in practice) give desirable results (behavioral social choice)
- look at restrictions on the assumptions (number of alternatives, all possible preference/vote profiles, ...)
- Here's a positive result (and characterization)...
- May's Theorem (1952): Assume two alternatives. Plurality (which is majority in case of two alternatives) is the only voting rule that satisfies anonymity, neutrality, and positive responsiveness (a slight variant of weak monotonicity).
- Social choice has a variety of interesting (and not so interesting) characterizations of this type (we'll see some more)

Manipulability

- As with mechanism design, most voting rules provide positive incentive to misreport preferences to get a more desirable outcome
- political phenomena such as vote splitting are just one example
- Plurality:
- 100 votes: \quad Bush $>$ Gore $>$ Nader
- 12 votes: \quad Nader $>$ Gore \succ Bush
- 95 votes: \quad Gore $>$ Nader \succ Bush
- Bush wins sincere plurality vote; in the interest of Nader supporters to vote for Gore. Notice that Borda, STV would give election to Gore
- Borda: same example with different numbers
- 100 votes: \quad Bush \succ Gore \succ Nader
- 17 votes: \quad Nader $>$ Gore \succ Bush
- 90 votes: \quad Gore $>$ Nader $>$ Bush
- Bush wins sincere Borda vote (B:200 pts; G:197pts); in the interest of Nader supporters to rank Gore higher than Nader

Manipulability

- Strategyproofness defined for voting procedures just as it is for mechanisms
- no profiles where insincere report by k leads to preferred outcome for k
- strategyproof: dominant strategy truthful
- incentive compatible: truthful in (voting) equlibrium (e.g., Bayes-Nash)
- Alternatively, we can define SCFs themselves as being strategyproof
- there is no profile, agent k s.t. $\left.\left.\left.C\left(\succ_{1}, \ldots \succ_{k}^{\prime}, \ldots\right\rangle_{n}\right)>_{k} C\left(\succ_{1}, \ldots,\right\rangle_{k}, \ldots\right\rangle_{n}\right)$
- Manipulability unavoidable in general (for general SCFs)
- already seen our old friend GS in the context of mechanism design
- Thm (Gibbard73, Sattherwaite75): Let C (over N, O) be s.t.:
- (i) $|O|>2$;
- (ii) C is onto (every outcome is selected for some profile v;
- (iii) C is non-dictatorial;
- (iv) all preference profiles L^{n} are possible.

Then C cannot be strategy-proof.

Single-peaked Preferences

- Special class of preferences for which GS circumvented
- Let >> denote some "natural" ordering over A
- e.g., order political candidates on left-right spectrum
- e.g., locations of park, warehouse on real-line (position on highway)

- k's preferences are single-peaked (with respect to the given ordering of A) if there is alternative $a^{*}[k]$ s.t.:
- $a^{*}[k]$ is k^{\prime} s ideal point, i.e., $a^{*}[k]>_{k}$ a for any $a \neq a^{*}[k]$
- $b>_{k} c$ if (a) $c \gg b \gg a^{*}[k] \quad$ or (b) $a^{*}[k] \gg b \gg c$

Median Voting

- Suppose all voter's prefs are single-peaked (same domain order!)
- Median voting scheme: voter specifies only her peak; winner is median of reported peaks (Black 1948)
- result is a Condorcet winner (if n odd)
- result is Pareto efficient
- voting scheme is strategyproof (easy to see)

Generalized Median Voting

Suppose we add $n-1$ "phantom voters" with arbitrary peaks

- announced in advance, chosen for "some purpose"
- Winner is median of the $2 n-1$ total votes (n real, $n-1$ phantom)
- e.g., in example, the phantom votes implement selection of $33^{\text {rd }}$ percentile (or $1 / 3$ quantile) among true peaks
- Generalized Median: if preferences are single-peaked, any anonymous, Pareto efficient, strategyproof rule must be a generalized median mechanism (Moulin 1980)
- some mild generalizations (e.g., multiple dimensions) possible
- Recent work: can you find an axis/axes that render profile V SP?
- ... are there natural approximations of SP? how does it impact incentives?

(3)

Median of genuine and phantom peaks

(6)

Complexity as Barrier to Manipulation

- Topic of considerable study in CS
- started with seminal work of Bartholdi, Tovey, Trick $(1989,1991)$
- widely ignored for many years, now well-studied
- Given $n-1$ votes, desired candidate a^{*} : can $n^{\text {th }}$ voter ensure a^{*} wins?
- constructive manipulation; also destructive variant (prevent winner)
- can also consider manipulating coalitions (and size needed)
- Decision problem is tractable for some rules
- plurality: easy, if manipulable, it is accomplished by voting for a^{*}
- Borda: easy (for single voter): place a* at top of ballot, greedily add candidates in next positions so they don't "overtake" a* (if not possible, not manipulable)
- Intractable for others:
- STV: determining (constructing) manipulating vote NP-hard (BTT91)
- many voting rules subsequently analyzed this way
- Analysis more nuanced for coalitions, weighted voters, etc.

Complexity as Barrier to Manipulation

- These results should be taken with a grain of salt
- worst-case manipulation: some vote profiles are hard to handle; but doesn't mean typical case is (and that's crucial for "resistance" claims)
- increasing work on empirical analysis and avg. case behavior
- assumptions are beneficial to manipulators: know votes cast by others!
- hence a conclusion of manipulability under this model may not be very meaningful (too pessimistic, unrealistic)
- further analysis needed with realistic knowledge constraints (min entropy, sample complexity, etc.)
- Other forms of manipulation
- control: adding, deleting candidates; setting agenda (tournament); setting up electoral "boundaries" or groups (gerrymandering); ...
- bribery: pay someone to change their vote

Example: Control of Tournament (Cup Rule)

- Set a balanced binary tree of pairwise contests
- Person setting the agenda can sometimes choose whichever winner they want (if they know the votes)
- 35 votes: $\quad A>C>B$
- 33 votes: $\quad B>A>C$
- 32 votes: $\quad C>B>A$
- If (a, b) paired first, c wins; If (b, c) first, a wins; If (a, c) first, b wins
- Complexity of determining if a (dynamic) schedule can make a win:
- known votes: still unknown if polynomial!
- probabilistic votes: NP-hard (even for $v \in\{0,1 / 2,1\}$)
- Other interesting questions in this space (esp. for sports, etc):
- throwing matches, maximizing competitiveness/revenue, etc.

"Complexity" as a barrier to manipulation

- The Doge of Venice:
- chief magistrate of the Most Serene Republic of Venice c.700-1797
- elected for life by the city-state's aristocracy
- concern about the influence of powerful families!
- Voting Protocol in $15^{\text {th }}$ Century (courtesy Wikipedia via Mike Trick ADT-09)
- 30 members of the Great Council are chosen by lot
- The 30 are reduced by lot to 9
- The 9 choose 40 representatives
- The 40 are reduced by lot to 12
- The 12 choose 20 representatives
- The 20 twenty are reduced by lot to 9
- The nine elect 45 representatives
- The 45 are reduced by lot to 11
- The 11 choose 41 representatives

- These 41 actually elect the doge

Objective Rankings

- A different perspective: rankings as beliefs (not preferences)
- suppose there is a true underlying objective ranking r^{*}
- e.g., quality of sports teams, ability to lead a nation, impact of policy P on economy, relevance of document/web page to a query, ...
- agents have opinions on the matter: correlated (noisily) with obj. r*
- Rank aggregation aimed at ascertaining true r^{\star}, not some SCF
- Condorect addressed this in 1785:
- Suppose n voters (e.g., jury) vote on two alternatives (e.g., guilt/innocence). If each votes independently and is correct with $\mathrm{p}>1 / 2$, then plurality rule gives maximum likelihood estimate of correct alternative, and converges to correct decision as $\mathrm{n} \rightarrow \infty$.
- Young (1995) generalized: if each voter noisily ranks arbitrary pairs (a,b) correctly with probability $p>1 / 2$, the Kemeny consensus is a maximum likelihood estimate of the true underlying ranking.
- See Conitzer, Sandholm (2005) for treatment of several other rules (e.g., Borda) using specific noise models tuned to that rule

Other Issues

- Multi-winner elections
- proportional assemblies, committees, multiple projects, etc.
- diversity a key consideration: "first k past the post" usually a bad idea
- Behavioral social choice
- designing, analyzing rules based on empirical preferences
- modeling preference distributions (econometrics, psychometrics)
- Combinatorial preference aggregation
- preferences over complex domains (multi-issue)
- appropriate preference rep'ns, aggregation methods, algorithms
- Communication complexity, privacy concerns (à la mech. design)
- Preference Elicitation
- ballot complexity a barrier to wider-spread use of rank-based voting
- Approximation of Social Choice Functions
- does ability to approximate winner ease burden:
- communication? computation? privacy?

