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2534 Lecture 11: Intro to Social Choice

Wrap up from last time:
• briefly: Sandholm and Conitzer’s work on automated mechanism 

design; Blumrosem, Nisan, Segal: limited communication 
auctions

• note: review material on auction design from last week’s slides 
(we won’t go over in class due to time limitations)

Intro to Social Choice
Announcements

• Make up class next week: Tues, Dec.9, 1-3PM, PT266
• Assignment 2: marker not quite done (sorry!)
• Assignment 3 (short): posted today, due Dec.15
• Projects due on Dec.17
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Social Choice

Social choice
• more general version of the mechanism design problem
• assume agents (society, club, …) have preferences over outcomes
• we have a social choice function that specifies the “right” outcome given 

the preferences of the population

Focus is different than mechanism design
• preferences are usually orderings (qualitative, not quantitative)
• no monetary transfers considered (“mechanism design w/o money”)
• often focus on design and analysis of aggregation schemes (or “voting 

rules”) that satisfy specific axioms, usually assuming sincere reporting 
of preferences

• computational focus: winner determination, approximation, 
communication complexity, manipulability, …
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Social Choice: Basic Setup
Set of m possible alternatives (outcomes) A
n players

• each with preference ordering ≻k (or ranking/vote vk) over A
• assume ≻k is a linear order (no indifference): not a critical assumption
• let v = (≻1,…,≻n )  denote preference profile 
• let L denote the set of linear orderings over A

Two settings considered
• A social choice function (SCF) C: Ln → A (i.e., consensus winner)
• A social welfare function (SWF) C: Ln → L (i.e., consensus ranking)
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Why Should We Care?
Computational models/tradeoffs inherently interesting

• Winner determination, manipulation, approximations, 
computational/communication complexity

Decision making/resource allocation in multi-agent systems
Preference and rank learning in machine learning

• Ready availability of preference data from millions of individuals
• Web search data, ratings data in recommender systems, … 
• Often implicit; but explicit preferences available at low cost
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Voting Rules
Often SCFs are specified using voting rules

• each player specifies a vote (her ranking or some part of it)
• given vote profile, rule r: Vn →A specifies consensus choice

 distinguish resolute,  irresolute rules;  assume sincere voting
Three simple rules (with different forms of votes)

• plurality vote: each voter specifies their preferred alternative; winner is 
candidate with largest number of votes (with some tie-breaking rule)

• Borda rule: each voter specifies ranking; each alternative receives m-1 
points for every 1st-place rank, m-2 points for every 2nd-place, etc.; 
alternative with highest total score wins

• approval vote: each voter specifies a subset of alternatives they 
“approve of;” a point given for each approval; alternative with highest 
total score wins (variant: k-approval, list exactly k candidates)
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Plur:        1          0           0
Borda:    2           1           0
2-Appr:   1           1           0

Notice: each of these can
be defined by assigning a
score to each rank position



How do they differ?
Example preference profile (3 alternatives, bold=approval):

• A ≻ B ≻ C:   5 voters (approve of only top alternative)

• C ≻ B ≻ A:   4 voters  (approve of only top alternative) 

• B ≻ C ≻ A:   2 voters  (approve of top two alternatives)

Winners:
• plurality: A wins (5 votes)
• Borda:    B wins (scores B: 13; A: 10; C: 10)
• approval: C wins (scores C: 6;  A: 5;  B: 2)

Which is voting rule is better?
• hard to say: depends on social objective one is trying to meet
• common approach: identify axioms/desirable properties and try 

to show certain voting rules satisfy them
 we will see it is not possible in general!
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Some Voting Systems/Rules
Plurality, Borda, k-approval, k-veto

• all implementable with scoring rules: assign score α to each rank 
position; winner a with max total: ∑i α(vi (a))

• for two candidates, plurality sometimes called majority voting
Approval

• can’t predict how sincere voters will vote based on ranking alone
Single-transferable vote (STV) or Hare system

• Round 1: vote for favorite candidate; eliminate candidate with lowest 
plurality score;

• Round t: if your favorite eliminated at round t-1, recast vote for favorite 
remaining candidate; eliminate candidate with lowest plurality score

• Round m-1: winner is last remaining candidate
 terminate at any round if plurality score of top candidate > m/2

• Needn’t be online: voters can submit rankings once
• used in Australia, New Zealand, Ireland, …
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Small Sampling of Voting Systems/Rules
Egalitarian (maxmin fairness)
Winner maximizes min rank:   argmaxa minj (m-vj (a))

Copeland
• Let W(a,b,v) = 1 if more voters rank a≻b; 0 if more b≻a; ½ if tied
• Score sc(a,v) = ∑b≠a W(a,b,v);    winner is a with max score

 i.e., winner is candidate that wins most pairwise elections

Nanson’s rule
• Just like STV, but use Borda score to eliminate candidates

Tournament/Cup
• Arrange a (balanced) tournament tree

of pairwise contests
• Winner is last surviving candidate

Lots of others!!!
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Condorcet Principle
Condorcet winner (CW): an alternative that beats any other in a 

pairwise majority vote
• if it exists, must be unique
• a rule is Condorcet-consistent if it selects the Condorcet winner 

whenever one exists
Condorcet paradox: CW may not exist

• and pairwise majority preferences may induce cycles in “societal 
ranking”

• A ≻ B ≻ C: m/3 voters 
• C ≻ A ≻ B: m/3 voters
• B ≻ C ≻ A: m/3 voters 
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Violations of Condorcet Principle
Plurality violates Condorcet

 499 votes: A ≻ B ≻ C
 3 votes: B ≻ C ≻ A
 498 votes: C ≻ B ≻ A

• plurality choses A;   but  B  is a CW  (B>A 501:499;   B>C 502:498)
Borda violates Condorcet

 3 votes: A ≻ B ≻ C
 2 votes: B ≻ C ≻ A
 1 vote: B ≻ A ≻ C
 1 vote: C ≻ A ≻ B

• Borda choses B (9 pts) ; but A is a  CW (A>B 4:3;   A>C 4:3)
• notice any scoring rule (not just Borda) will choose B if scores strictly 

decrease with rank
Nanson, Copeland, Kemeny*tba rules are Condorcet consistent
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Consensus Rankings
May wish to determine a societal preference order

• notice: any rule that scores candidates can
determine a societal ranking

Another important rule: Kemeny rule
• Distance measure between rankings—Kendall’s τ

• Kemeny ranking κ(V): minimizes sum of distances

Can determine winner too: top of Kemeny ranking
• Condorcet consistent
• Example of a voting rule that is hard to compute: NP-hard
• Other difficult rules include Dodgson’s rule, Slater’s rule
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Other Principles
Weak monotonicity: Let profile V’ be identical to V except that some 

candidate a is ranked higher in some votes. Then:
• Rule: If a∊r(V) then a∊r(V’);
• Ranking: If a≻b in r(V) then a≻b in r(V’); 
• STV violates weak monotonicity

 22 votes: A ≻ B ≻ C
 21 votes: B ≻ C ≻ A
 20 votes: C ≻ A ≻ B
 A wins (C, then B eliminated)…
… but if 2-9 voters in BCA group “promote” A to top of ranking, C wins 

(B, then A eliminated)
• Lot of rules satisfy it (plurality, Borda, …)
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Other Principles
Strong monotonicity: Let a=r(V). Let V’ be s.t. for every k, every b ≠ a, if 

a≻b in vk, then a≻b in vk. Then a=r(V’).
• i.e., if no voter “demotes” a relative to any other candidate, a still wins
• unlike WeakMon, can reorder non-winning candidates w.r.t. each other
• Plurality (and many others) violate SM

 22 votes: A ≻ B ≻ C
 21 votes: B ≻ C ≻ A
 20 votes: C ≻ A ≻ B
 A wins; but if 3 or more BCA voters “promote” C, C wins (even though 

relative standing of A to B, C unchanged by any voter)
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Other Principles
 Independence of Irrelevant Alternatives (IIA):  V’ different from V, but 

relative ordering of a, b, same in each vote
• Rule: If a∊r(V), b∉r(V), then b∉r(V’);

 i.e., if b wasn’t strong enough to beat a given V, it shouldn’t be given V’
• Rank: if a≻b in r(V) then a≻b in r(V’); 
• Most rules violate IIA: easy to construct examples
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Other Principles (Relatively Uncontroversial)

 In what follows, assume all preference/vote  profiles are possible

Unanimity: if all v∊ V rank a first, r(V)=a; if all rank a≻b, then a≻b in r(V)
• relatively uncontroversial (sometimes called weak Pareto)

Weak Pareto: if all v∊ V rank a≻b, then b∉r(V)
• relatively uncontroversial

Non-dictatorial: there is no voter k s.t. r(V)=a whenever k ranks a first
• for rankings, no k s.t. a≻b in r(V)   whenever   k ranks a≻b

Anonymity: permuting votes within a profile doesn’t change outcome
• e.g., if all votes identical, but provided by “different” voters
• implies non-dictatorship

Neutrality: permuting alternatives in a profile doesn’t change outcome
• i.e., result depends on relative position in votes, not identity
• implies non-imposition (any candidate can win, i.e., for some profile)
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Arrow’s Theorem

Arrow’s Theorem (1951): Assume at least three alternatives. No 
voting rule can satisfy IIA, unanimity (weak Pareto), and non-
dictatorship. Equivalently, there is no SWF that satisfies these 
properties.

• (Recall SWF produces “societal ranking,” not just a winner; c.f. SCF)
• Most celebrated theorem in social choice
• Broadly (perhaps too broadly) interpreted as stating there is no good 

way to aggregate preferences
There are a wide variety of alternative proofs around

• see text for one
• we’ll consider a simple proof
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Brief Proof Sketch
 Fix SWF F; let ≻F denote social preference order given input profile
 A coalition S ⊆ N is decisive for a over b if, whenever a≻kb, ∀k∈S, and                

a ⊁jb, ∀j∉S, we have a≻F b.
 Lemma 1: if S is decisive for a over b then, for any c, S is decisive for a over c 

and c over b.
 Sketch: Let S be decisive for a over b.

• Suppose  a ≻k b ≻k c, ∀k∈S and  b ≻j c ≻j a , ∀ j∉S.
• Clearly, a ≻F b by decisiveness. 
• Since b ≻j c for all j, b ≻F c (by unanimity), so a ≻F  c.
• If b placed anywhere in ordering of any agent, by

IIA, we must still have a ≻F  c.
• Hence S is decisive for a over c.
• Similar argument applies to show S is decisive for c over b.

 Lemma 2: If S is decisive for a over b, then it’s decisive for every pair of 
alternatives (c,d) ∈ A2

 Sketch: By Lemma 1, S decides c over b. Reapplying Lemma 1, S decides c over d.
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Brief Proof Sketch
 So now we know a coalition S is either decisive for all pairs or for no pairs.
 Notice that entire group N is decisive for any pair of outcomes (by unanimity)
 Lemma 3: For any S ⊆ N, and any partition (T,U) of S. If S is decisive then 

either T is decisive or U is decisive. 
 Sketch: Let  a ≻k b ≻k c for k ∈ T; b ≻j c ≻j a for j ∈ U;   c ≻q a ≻q b for q ∈ N\S; 

• Social ranking has b ≻F c since S is decisive.
• Suppose social ranking has  a ≻F b, which implies a ≻F c (by transitivity). 

 Notice only agents in T rank a ≻ c, and those in U, N\S rank c ≻ a.
 But if we reorder prefs for any other alternatives (keeping a ≻ c in T, c ≻ a in U 

and N\S), by IIA, we must still have a ≻F c in this new profile.
 Hence T is decisive for a over c (hence decisive for all pairs).

• Suppose social ranking has  b ≻F a 
 Since only agents in U rank b ≻ a, similar argument shows U is decisive.

• So either T is decisive or U is decisive.
 Proof of Theorem: Entire group N is decisive. Repeatedly partition, choosing 

the decisive subgroup at each stage. Eventually we reach a singleton set that is 
decisive for all pairs… the dictator!
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Muller-Satterthwaite Theorem
Arrow’s theorem tells us: impossible to produce a societal ranking 

satisfying our desired conditions (in a fully general way)
• Maybe producing a full ranking is too much to ask
• What if we only want a unique winner?
• Also not possible…

Muller-Satterthwaite Theorem (1977): Assume at least three 
alternatives. No resolute voting rule satisfies strong monotonicity, 
non-imposition, and non-dictatorship. Equivalently, there is no SCF 
that satisfies these properties.
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May’s Theorem
Should Arrow’s Thm cause complete despair? Not really…

• dismiss some of the desiderata as too stringent
• live with “general” impossibility, but use rules that tend to (in practice) 

give desirable results (behavioral social choice)
• look at restrictions on the assumptions (number of alternatives, all 

possible preference/vote profiles, …)
Here’s a positive result (and characterization)…

May’s Theorem (1952): Assume two alternatives. Plurality (which is 
majority in case of two alternatives) is the only voting rule that 
satisfies anonymity, neutrality, and positive responsiveness (a slight 
variant of weak monotonicity).

Social choice has a variety of interesting (and not so interesting) 
characterizations of this type (we’ll see some more)
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Manipulability
As with mechanism design, most voting rules provide positive 

incentive to misreport preferences to get a more desirable outcome
• political phenomena such as vote splitting are just one example

Plurality:
 100 votes: Bush ≻ Gore ≻ Nader
 12 votes: Nader ≻ Gore ≻ Bush
 95 votes: Gore ≻ Nader ≻ Bush
 Bush wins sincere plurality vote; in the interest of Nader supporters 

to vote for Gore. Notice that Borda, STV would give election to Gore
Borda: same example with different numbers

 100 votes: Bush ≻ Gore ≻ Nader
 17 votes: Nader ≻ Gore ≻ Bush
 90 votes: Gore ≻ Nader ≻ Bush
 Bush wins sincere Borda vote (B:200 pts; G:197pts); in the interest 

of Nader supporters to rank Gore higher than Nader
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Manipulability
Strategyproofness defined for voting procedures just as it is for 

mechanisms
• no profiles where insincere report by k leads to preferred outcome for k 

 strategyproof: dominant strategy truthful
 incentive compatible: truthful in (voting) equlibrium (e.g., Bayes-Nash)

Alternatively, we can define SCFs themselves as being strategyproof
• there is no profile, agent k s.t. C(≻1, … ≻’k, … ≻n) ≻k C(≻1, … ≻k, … ≻n) 

Manipulability unavoidable in general (for general SCFs)
• already seen our old friend GS in the context of mechanism design

Thm (Gibbard73, Sattherwaite75): Let C (over N, O) be s.t.:
• (i) |O| > 2; 
• (ii) C is onto (every outcome is selected for some profile v; 
• (iii) C is non-dictatorial; 
• (iv) all preference profiles Ln are possible.

Then C cannot be strategy-proof.
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Single-peaked Preferences
Special class of preferences for which GS circumvented
Let ≫ denote some “natural” ordering over A

• e.g., order political candidates on left-right spectrum
• e.g., locations of park, warehouse on real-line (position on highway)

k’s preferences are single-peaked (with respect to the given ordering 
of A) if there is alternative a*[k] s.t.:

• a*[k] is k’s ideal point, i.e., a*[k] ≻k a for any a ≠ a*[k]
• b ≻k c if  (a) c ≫ b ≫ a*[k]     or (b) a*[k] ≫ b ≫ c
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Median Voting
Suppose all voter’s prefs are single-peaked (same domain order!)
Median voting scheme: voter specifies only her peak; winner is 

median of reported peaks (Black 1948)
• result is a Condorcet winner (if n odd)
• result is Pareto efficient
• voting scheme is strategyproof (easy to see)
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Generalized Median Voting
Suppose we add n-1 “phantom voters” with arbitrary peaks

• announced in advance, chosen for “some purpose”
Winner is median of the 2n-1 total votes (n real, n-1 phantom)

• e.g., in example, the phantom votes implement selection of 33rd percentile 
(or 1/3 quantile) among true peaks

Generalized Median: if preferences are single-peaked, any anonymous, 
Pareto efficient, strategyproof rule must be a generalized median 
mechanism (Moulin 1980)

• some mild generalizations (e.g., multiple dimensions) possible
• Recent work: can you find an axis/axes that render profile V SP?
• … are there natural approximations of SP? how does it impact incentives?
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Complexity as Barrier to Manipulation
Topic of considerable study in CS

• started with seminal work of Bartholdi, Tovey, Trick (1989, 1991)
• widely ignored for many years, now well-studied

Given n-1 votes, desired candidate a*: can nth voter ensure a* wins?
• constructive manipulation; also destructive variant (prevent winner)
• can also consider manipulating coalitions (and size needed)

Decision problem is tractable for some rules
• plurality: easy, if manipulable, it is accomplished by voting for a*
• Borda: easy (for single voter): place a* at top of ballot, greedily add 

candidates in next positions so they don’t “overtake” a* (if not possible, 
not manipulable)

Intractable for others:
• STV: determining (constructing) manipulating vote NP-hard (BTT91)
• many voting rules subsequently analyzed this way

Analysis more nuanced for coalitions, weighted voters, etc. 
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Complexity as Barrier to Manipulation
These results should be taken with a grain of salt

• worst-case manipulation: some vote profiles are hard to handle; but 
doesn’t mean typical case is (and that’s crucial for “resistance” claims)
 increasing work on empirical analysis and avg. case behavior

• assumptions are beneficial to manipulators: know votes cast by others!
 hence a conclusion of manipulability under this model may not be 

very meaningful (too pessimistic, unrealistic)
 further analysis needed with realistic knowledge constraints (min 

entropy, sample complexity, etc.)

Other forms of manipulation
• control: adding, deleting candidates; setting agenda (tournament); 

setting up electoral “boundaries” or groups (gerrymandering); …
• bribery: pay someone to change their vote
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Example: Control of Tournament (Cup Rule)

Set a balanced binary tree of pairwise contests
Person setting the agenda can sometimes choose whichever winner 

they want (if they know the votes)
 35 votes: A ≻ C ≻ B
 33 votes: B ≻ A ≻ C
 32 votes: C ≻ B ≻ A

• If (a,b) paired first, c wins; If (b,c) first, a wins; If (a,c) first, b wins
Complexity of determining if a (dynamic) schedule can make a win:

• known votes: still unknown if polynomial!
• probabilistic votes: NP-hard (even for v∊ {0, ½, 1})

Other interesting questions in this space (esp. for sports, etc): 
• throwing matches, maximizing competitiveness/revenue, etc.
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“Complexity” as a barrier to manipulation

The Doge of Venice:
• chief magistrate of the Most Serene Republic of Venice c.700-1797
• elected for life by the city-state's aristocracy
• concern about the influence of powerful families!

Voting Protocol in 15th Century (courtesy Wikipedia via Mike Trick ADT-09)

• 30 members of the Great Council are chosen by lot
• The 30 are reduced by lot to 9
• The 9 choose 40 representatives
• The 40 are reduced by lot to 12
• The 12 choose 20 representatives 
• The 20 twenty are reduced by lot to 9
• The nine elect 45 representatives
• The 45 are reduced by lot to 11
• The 11 choose 41 representatives
• These 41 actually elect the doge
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Objective Rankings
A different perspective: rankings as beliefs (not preferences)

• suppose there is a true underlying objective ranking r*
 e.g., quality of sports teams, ability to lead a nation, impact of policy P on 

economy, relevance of document/web page to a query, …
• agents have opinions on the matter: correlated (noisily) with obj. r*

Rank aggregation aimed at ascertaining true r*, not some SCF
Condorect addressed this in 1785:

• Suppose n voters (e.g., jury) vote on two alternatives (e.g., 
guilt/innocence). If each votes independently and is correct with p>½, 
then plurality rule gives maximum likelihood estimate of correct 
alternative, and converges to correct decision as n →∞.

• Young (1995) generalized: if each voter noisily ranks arbitrary pairs 
(a,b) correctly with probability p>½, the Kemeny consensus is a 
maximum likelihood estimate of the true underlying ranking.

• See Conitzer, Sandholm (2005) for treatment of several other rules 
(e.g., Borda) using specific noise models tuned to that rule
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Other Issues
Multi-winner elections

• proportional assemblies, committees, multiple projects, etc.
• diversity a key consideration: “first k past the post” usually a bad idea

Behavioral social choice
• designing, analyzing rules based on empirical preferences
• modeling preference distributions (econometrics, psychometrics)

Combinatorial preference aggregation
• preferences over complex domains (multi-issue)
• appropriate preference rep’ns, aggregation methods, algorithms

Communication complexity, privacy concerns (à la mech. design)
Preference Elicitation

• ballot complexity a barrier to wider-spread use of rank-based voting
Approximation of Social Choice Functions

• does ability to approximate winner ease burden:
 communication? computation? privacy?
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