2534 Lecture 10: Mechanism Design and Auctions

- Mechanism Design
- re-introduce mechanisms and mechanism design
- key results in mechanism design, auctions as an illustration
- we'll briefly discuss (though we'll likely wrap it up next time):
- Sandholm and Conitzer's work on automated mechanism design
- Blumrosem, Nisan, Segal: limited communication auctions
-Announcements
- Project proposals back today
- Assignment 2 in today
- Projects due on Dec. 17

Recap: Second Price Auction

- I want to give away my phone to person values it most
- in other words, I want to maximize social welfare
- but I don't know valuations, so I decide to ask and see who's willing to pay: use $2^{\text {nd }}$-price auction format
-Bidders submit "sealed" bids; highest bidder wins, pays price bid by second-highest bidder
- also known as Vickrey auctions
- special case of Groves mechanisms, Vickrey-Clarke-Groves (VCG) mechanisms
- $2^{\text {nd }}$-price seems weird but is quite remarkable
- truthful bidding, i.e., bidding your true value, is a dominant strategy
-To see this, let's formulate it as a Bayesian game

Recap: SPA as a Bayesian Game

- n players (bidders)
- Types: each player k has value $v_{k} \in[0,1]$ for item
- strategies/actions for player k : any bid b_{k} between $[0,1]$
- outcomes: player k wins, pays price p ($2^{\text {nd }}$ highest bid)
- outcomes are pairs (k,p), i.e., (winner, price)
- payoff for player k :
- if k loses: payoff is 0
- if k wins, payoff depends on price p : payoff is $v_{k}-p$
- Prior: joint distribution over values (will not specify for now)
- we do assume that values (types) are independent and private
- i.e., own value does not influence beliefs about value of other bidders
- Note: action space and type space are continuous

Recap: Truthful Bidding: A DSE

-Needn't specify prior: even without knowing others' payoffs, bidding true valuation is dominant for every k

- strategy depends on valuation: but k selects b_{k} equal to v_{k}
- Not hard to see deviation from truthful bid can't help (and could harm) k, regardless of what others do
-We'll consider two cases: if k wins with truthful bid $b_{k}=v_{k}$ and if k loses with truthful bid $b_{k}=v_{k}$

Recap: Equilibrium in SPA Game

-Suppose k wins with truthful bid v_{k}

- Notice k 's payoff must be positive (or zero if tied)
-Bidding b_{k} higher than v_{k} :
- v_{k} already highest bid, so k still wins and still pays price p equal to second-highest bid $b_{(2)}$
- Bidding b_{k} lower than v_{k} :
- If b_{k} remains higher than second-highest bid $b_{(2)}$ no change in winning status or price
- If b_{k} falls below second-highest bid $b_{(2)} k$ now loses and is worse off, or at least no better (payoff is zero)

Recap: Equilibrium in SPA Game

- Suppose k loses with truthful bid v_{k}
- Notice k 's payoff must be zero and highest bid $b_{(1)}>v_{k}$
-Bidding b_{k} lower than v_{k} :
- v_{k} already a losing bid, so k still loses and gets payoff zero
-Bidding b_{k} higher than v_{k} :
- If b_{k} remains lower than highest bid $b_{(1)}$, no change in winning status (k still loses)
- If b_{k} is above highest bid $b_{(1)}$, k now wins, but pays price p equal to $b_{(1)}>v_{k}$ (payoff is negative since price is more than it's value)
-So a truthful bid is dominant: optimal no matter what others are bidding

Truthful Bidding in Second-Price Auction

- Consider actions of bidder 2

- Ignore values of other bidders, consider only their bids. Their values don't impact outcome, only bids do.
-What if bidder 2 bids:
- truthfully $\$ 105$?
- loses (payoff 0)
- too high: \$120
- loses (payoff 0)
- too high: \$130
- wins (payoff -20)
- too low: \$70
- loses (payoff 0)

Truthful Bidding in Second-Price Auction

- Consider actions of bidder 2

- Ignore values of other bidders, consider only their bids. Their values don't impact outcome, only bids do.
-What if bidder 2 bids:
- truthfully $\$ 105$?
- wins (payoff 10)
- too high: \$120
- wins (payoff 10)
- too low: \$98
- wins (payoff 10)
- too low: \$90
- loses (payoff 0)

Other Properties: Second-Price Auction

- Elicits true values (payoffs) from players in game even though they were unknown a priori
- Allocates item to bidder with highest value (maximizes social welfare)
- Surplus is divided between seller and winning buyer
- splits based on second-highest bid (this is the lowest price the winner could reasonably expect to pay)
- Outcome is similar to Japanese/English auction (ascending auction)
- consider process of raising prices, bidders dropping out, until one bidder remains
- until price exceeds k 's value, k should stay in auction
- drop out too soon: you lose when you might have won
- drop out too late: will pay too much if you win
- last bidder remaining has highest value, pays $2^{\text {nd }}$ highest value! (with some slop due to bid increment)

Mechanism Design

- SPA offers a different perspective on use of game theory
- instead of predicting how agents will act, we design a game to facilitate interaction between players
- aim is to ensure a desirable outcome assuming agents act rationally
- This is the aim of mechanism design (implementation theory)
- Examples:
- voting/policy decisions: want policy preferred by majority of constituents
- resource allocation/usage: want to assign resources for maximal societal benefit (or maximal benefit to subgroup, or ...); often includes determination of payments (e.g., "fair" or "revenue maximizing" or ...)
- task distribution: want to allocate tasks fairly (relative to current workload), or in a way that ensures efficient completion, or ...
- Recurring theme: we usually don't know the preferences (payoffs) of society (participants): hence Bayesian games
- and often incentive to keep these preferences hidden (see examples)

Mechanism Design: Basic Setup

- Set of possible outcomes O
- n players, with each player k having:
- type space Θ_{k}
- utility function $u_{k}: O X \Theta_{k} \rightarrow R$
- $u_{k}\left(0, \theta_{k}\right)$ is utility of outcome o to agent k when type is $\theta_{k} \in \Theta_{k}$
- think of θ_{k} as an encoding of k 's preferences (or utility function)
- (Typically) a common prior distribution P over Θ
- A social choice function (SCF) C: $\Theta \rightarrow O$
- intuitively $C(\theta)$ is the most desirable option if player preferences are θ
- can allow "correspondence", social "objectives" that score outcomes
- Examples of social choice criteria:
- make majority "happy"; maximize social welfare (SWM); find "fairest" outcome; make one person as happy as possible (e.g., revenue max'ztn in auctions), make least well-off person as happy as possible...
- set up for SPA: types: values; outcomes: winner-price; SCF: SWM

A Mechanism

- A mechanism $\left(\left(A_{k}\right), M\right)$ consists of:
- $\left(A_{1}, \ldots, A_{n}\right)$: action (strategy) sets (one per player)
- an outcome function $M: A \rightarrow \Delta(O) \quad$ (or $M: A \rightarrow O$)
- intuitively, players given actions to choose from; based on choice, outcome is selected (stochastically or deterministically)
- for many mechanisms, we'll break up outcomes into core outcome plus monetary transfer (but for now, glom together)
- Second-price auction:
- A_{k} is the set of bids: $[0,1]$
- M selects winner-price in obvious way
- Given a mechanism design setup (players, types, utility functions, prior), the mechanism induces a Bayesian game in the obvious way

Implementation

- What makes a mechanism useful?
- it should implement the social choice function C
- i.e., if agents act "rationally" in the Bayesian game, outcome proposed by C will result
- of course, rationality depends on the equilibrium concept
- A mechanism (A,M) S-implements C iff for (some/all) S-solutions σ of the induced Bayesian game we have, for any $\theta \in \Theta, M(\sigma(\theta))=C(\theta)$
- here S may refer to DSE, ex post equilibrium, or Bayes-Nash equilibrium
- in other words, when agents play an equilibrium in the induced game, whenever the type profile is θ, then the game will give the same outcome as prescribed for θ by the social choice function
- notice some indeterminacy (in case of multiple equilibria)
- For SCF C = "maximize social welfare" (including seller as a player, and assuming additive utility in price/value), the SPA implements SCF in dominant strategies

Revelation Principle

- Given SCF C, how could one even begin to explore space of mechanisms?
- actions can be arbitrary, mappings can be arbitrary, ...
- Notice that SPA keeps actions simple: "state your value"
- it's a direct mechanism: $A_{k}=\theta_{k}$ (i.e., actions are "declare your type")
- ...and stating values truthfully is a DSE
- Turns out this is an instance of a broad principle
- Revelation principle: if there is an S-implementation of SCF C, then there exists a direct, mechanism that S-implements C and is truthful
- intuition: design new outcome function M^{\prime} so that when agents report truthfully, the mechanism makes the choice that the original M would have realized in the S -solution
- Consequence: much work in mechanism design focuses on direct mechanisms and truthful implementation

Revelation Principle

Fig from Multiagent Systems, Shoham and Leyton-Brown, 2009

(a) Revelation principle: original mechanism

(b) Revelation principle: new mechanism

Gibbard-Satterthwaite Theorem

- Dominant strategy implementation a frequent goal
- agents needn't rely on any strategic reasoning, beliefs about types
- unfortunately, DS implementation not possible for general SCFs
- Thm (Gibbard73, Sattherwaite75): Let C (over N, O) be s.t.:
(i) $|O|>2$;
(ii) C is onto (every outcome is selected for some profile θ);
(iii) C is non-dictatorial (there is no agent whose preferences "dictate" the outcome, i.e., who always gets max utility outcome);
(iv) all preferences are possible.

Then C cannot be implemented in dominant strategies.

- Proof (and result) similar to Arrow's Thm (which we'll see shortly)
- Ways around this:
- use weaker forms of implementation
- restrict the setting (especially: consider special classes of preferences)

Groves Mechanisms

- Despite GS theorem, truthful implementation in DS is possible for an important class of problems
- assume outcomes allow for transfer of utility between players
- assume agent preferences over such transfers are additive
- auctions are an example (utility function in SPA)
- Quasi-linear mechanism design problem (QLMD)
- extend outcome space with "monetary" transfers
- outcomes: $O \times T$, where T is set of vectors of form $\left(t_{1}, \ldots t_{n}\right)$
- quasi-linear utility: $u_{k}\left((0, t), \theta_{k}\right)=v_{k}\left(0, \theta_{k}\right)+t_{k}$
- SCF is SWM (i.e., maximization of social welfare $\operatorname{SW}(o, t, \theta)$)
- Assumptions:
- value for "concrete" outcomes is commensurate with transfer
- players are risk neutral
- In SPA, utility is valuation less price paid (negative transfer to winner), or price paid (positive transfer to seller) (see formalization on slide 3)

Groves Mechanisms

- A Groves mechanism (A, M) for a QLMD problem is:
- $A_{k}=\theta_{k}=V_{k}$: agent k announces values $v^{*} k$ for outcomes
- $M\left(v^{*}\right)=\left(0, t_{1}, \ldots t_{n}\right)$ where:
- $0=\operatorname{argmax}_{0 \in O} \sum_{k} v^{\star}{ }_{k}(0)$
- $t_{k}\left(v^{*}\right)=\sum_{j \neq k} v^{\star}(0)-h_{k}\left(v^{*}{ }_{-k}\right)$, where h_{k} is an arbitrary function
- Intuition is simple:
- choose SWM-outcome based on declared values v^{*}
- then transfer to k : the declared welfare of chosen outcome to the other agents, less some "social cost" function h_{k} which depends on what others said (but critically, not on what k reports)
- Some notes:
- in fact, this is a family of mechanisms, for various choices of h_{k}
- if agents reveal true values, i.e., $v^{\star}{ }_{k}=v_{k}$ for all k, then it maximizes SW
- SPA: is an instance of this

Truthfulness of Groves

-Thm: Any Groves mechanism is truthful in dominant strategies (strategyproof) and efficient. Proof easy to see:

- outcome is: $0=\operatorname{argmax}_{o \in O} \sum_{k} v^{*}{ }_{k}(0)$
- k receives: $t_{k}\left(V^{\star}\right)=\sum_{j \neq k} V_{j}^{*}(0)-h_{k}\left(V^{*}{ }_{-k}\right)$
- k 's utility for report v_{k}^{*} is: $v_{k}(0)+\sum_{j \neq k} v^{*}{ }_{j}(0)-h_{k}\left(v^{*}{ }_{-k}\right)$,
- here o depends on the report $v^{*}{ }_{k}$
- k wants to report $v^{*}{ }_{k}$ that maximizes $v_{k}(0)+\sum_{j \neq k} v^{*}{ }_{j}(0)$
- this is just k's utility plus reported SW of others
- notice k's report has no impact on third term $h_{k}\left(v^{*}-k\right)$
- but mechanism chooses o to max reported SW, so no report by k can lead to a better outcome for k than v_{k}
- efficiency (SWM) follows immediately
-This is why SPA is truthful (and efficient)

Other Properties of Groves

- Famous theorem of Green and Laffont: The Groves mechanism is unique in the following sense---any mechanism for a QLMD problem that is truthful, efficient is a Groves mechanism (i.e., must have payments of the Groves form)
- see proof sketch in S\&LB
- Famous theorem of Roberts: the only SCFs that can be implemented truthfully (with no restrictions on preferences) are affine maximizers (basically, SWM but with weights/biases for different agents' valuations)
- Together, these show the real centrality of Groves mechanisms

Participation in the mechanism

- While agents participating will declare truthfully, why would agent participate? What if $h_{k}=-L A R G E V A L U E$?
- Individual rationality: no agent loses by participating in mechanism
- basic idea: your expected utility positive (non-negative), i.e., the value of outcome. should be greater than your payment
- Ex interim IR: your expected utility is positive for every one of your types/valuations (taking expectation over $\operatorname{Pr}\left(v_{-k} \mid v_{k}\right)$):
- $E\left[v_{k}\left(M\left(\sigma_{k}\left(v_{k}\right), \sigma_{-k}\left(v_{-k}\right)\right)\right)-t_{k}\left(\sigma_{k}\left(v_{k}\right), \sigma_{-k}\left(v_{-k}\right)\right)\right] \geq 0$ for all k, v_{k}
- where σ is the (DS, EP, BN) equilibrium strategy profile
- Ex post IR: your utility is positive for every type/valuation (even if you learn valuations of others):
- $v_{k}(M(\sigma(v)))-t_{k}(\sigma(v)) \geq 0$ for all k, v
- where σ is the (DS, EP, BN) equilibrium strategy profile
- Ex ante IR can be defined too (a bit less useful, but has a role in places)

VCG Mechanisms

- Clarke tax is a specific social cost function h
- $h_{k}\left(v^{*}-k\right)=\max _{o \in O[-k]} \sum_{j \neq k} v_{j}^{*}(0)$
- assumes subspace of outcomes $O[-k]$ that don't involve k
- $h_{k}\left(V^{*}-k\right)$: how well-off others would have been had k not participated
- total transfer is value others received with k 's participation less value that they would have received without k (i.e., "externality" imposed by k)
- With Clarke tax, called Vickrey-Clarke-Groves (VCG) mechanism
- Thm: VCG mechanism is strategyproof, efficient and ex interim individually rational (IR).
- It should be easy to see why SPA (aka Vickrey auction) is a VCG mechanism
- what is externality winner imposes?
- valuation of second-highest bidder (who doesn't win because of presence)

Other Issues

- Budget balance: transfers sum to zero
- transfers in VCG need not be balanced (might be OK to run a surplus; but mechanism may need to subsidize its operation)
- general impossibility result: if type space is rich enough (all valuations over O), can't generally attain efficiency, strategyproofness, and budget balance
- some special cases can be achieved (e.g., see "no single-agent effect", which is why VCG works for very general single-sided auctions), or the dAGVA mechanism (BNE, ex ante IR, budget-balanced)
- Implementing other choice functions
- we'll see this when we discuss social choice (e.g., maxmin fairness)
- Ex post or BN implementation
- e.g., the dAGVA mechanism

Issues with VCG

- Type revelation
- revealing utility functions difficult; e.g., large (combinatorial) outcomes
- privacy, communication complexity, computation
- can incremental elicitation work?
- sometimes: e.g., descending (Dutch auction)
- can approximation work?
- in general, no; but sometime yes... we'll discuss more in a bit...
- Computational approximation
- VCG requires computing optimal (SWM) outcomes
- not just one optimization, but $n+1$ (for all n "subeconomies")
- often problematic (e.g., combinatorial auctions)
- focus of algorithmic mechanism design
- But approximation can destroy incentives and other properties of VCG

Issues with VCG

- Frugality

- VCG transfers may be more extreme than seems necessary
- e.g., seller revenue, total cost to buyer
- we'll see an example in combinatorial auctions
- a fair amount of study on design of mechanisms that are "frugal" (e.g., that try to minimize cost to a buyer) in specific settings (e.g., network and graph problems)
- Collusion
- many mechanisms are susceptible to collusion, but VCG is largely viewed as being especially susceptible (we'll return to this: auctions)
- Returning revenue to agents
- an issue studied to some extent: if VCG extracts payments over and above true costs (e.g., Clarke tax for public projects), can some of this be returned to bidders (in a way that doesn't impact truthfulness)?

Combinatorial Auctions

- Already discussed $2^{\text {nd }}$ price auctions in depth, $1^{\text {st }}$ price auctions a bit (and will return in a few slides to auctions in general)
- Often sellers offer multiple (distinct) items, buyers need multiple items
- buyer's value may depend on the collection of items obtained
- Complements: items whose value increase when combined
- e.g., a cheap flight to Siena less valuable if you don't have a hotel room
- Substitutes: items whose value decrease when combined
- e.g., you'd like the 10AM flight or the 7AM flight; but not both
- If items are sold separately, knowing how to bid is difficult
- bidders run an "exposure" risk: might win item whose value is unpredictable because unsure of what other items they might win

Simultaneous Auctions: Substitutes

Flight1 (7AM, no airmiles, 1 stopover) Value: \$750

Flight2 (10AM, get airmiles, direct)

Value: \$950

Bidder can only use one of the flights: Value of receiving both flights is $\$ 950$

- If both flights auctioned simultaneously, how should he bid?
- Bid for both? runs the risk of winning both (and would need to hedge against that risk by underbidding, reducing odds of winning either)
- Bid for one? runs the risk of losing the flight he bids for, and he might have won the other had he bid
- If items auctioned in sequence, it can mitigate risk a bit; but still difficult to determine how much to bid first time

Simultaneous Auctions: Complements

Flight1

Hotel Room

Bidder doesn't want flight without hotel room, or hotel without flight; but together, value is $\$ 1250$

- If flight, hotel auctioned simultaneously, how should he bid?
- Useless to bid for only one; but if he bids for both, he runs the risk of winning only one (which is worthless in isolation). Requires severe hedging/underbidding to account for this risk.
- If items auctioned in sequence, it can mitigates risk only a little bit. If he loses first item, fine. If he wins, will need to bid very aggressively in second (first item a "sunk cost") and can end up overpaying for pair

Combinatorial Auction

Bidder expresses value for combinations of items:

- Value(flight2, hotel1) = \$1250
- Value(flight1, hotel1) = \$1050
- Don't want any other package
- Combinatorial auctions allow bidders to express package bids
- for any combination of items can say what you are willing to pay for that combination or package
- do not pay unless you get exactly that package
- outcome of auction: assign (at most) one package to each bidder
- can use $1^{\text {stt-price (}}$ (pay what you bid) or VCG

Combinatorial and Expressive Auctions

- Expressive bidding in auctions becoming common
- expressive languages allow: combinatorial bids, side-constraints, discount schedules, etc.
- direct expression of utility/cost: economic efficiency
- Advances in winner determination
- determine least-cost allocation of business to bidders
- new optimization methods key to acceptance
- applied to large-scale problems (e.g., sourcing)

Reverse Combinatorial Auctions

-Buyer: desires collection of items G
-Sellers: offer "bundle" bids $\left\langle b_{i}, p_{i}\right\rangle$, where $b \subseteq G$

- possibly side constraints (seller, buyer)
-Feasible allocation: subset $B^{\prime} \subseteq B$ covering G
- let X denote the set of feasible allocations
-Winner determination: find the least-cost allocation
- formulate this as an integer program
- variable q_{i} indicates acceptance of bid b_{i}

$$
\min p_{i} q_{i} \text { s.t. } \sum_{i: g \in b_{i}} q_{i} \geq 1, \forall g \in G
$$

- can add all sorts of side constraints, discounts, etc.
- NP-hard, inapproximable, but lots of research on "practically effective" algorithms, special cases, ...

Incentives in Combinatorial Auctions

-How could you get bidders to reveal their true costs?
-Use VCG

- collect bundle bids $\left\langle b_{k}, p_{k}\right\rangle$ from each bidder
- find optimal allocation a (min cost set of bundles covering requirements): has cost c
- for each winning (accepted) bidder k, compute the optimal allocation without his bid: has higher $\operatorname{cost} c_{k}$
- accept bids in optimal allocation a, and pay (receive from) each winning bidder using VCG: $b_{k}+\left(c_{k}-c\right)$

Potential Problems with VCG for CAs

- Winner determination is NP-complete and inapproximable
- yet we don't just solve it once, we solve it m times (m winning bidders)
- in practice, VCG is seldom used in CAs
- sealed-bid: uses first-pricing; but ascending auctions sometimes used which can have VCG-like properties
- It would be nice to use an approximation algorithm
- but truthfulness and IR guarantees go away (in practice, not a problem)
- Can overpay severely (reverse auction example, Conitzer-Sandholm)
- n items: two bidders offer to supply all n, A at price p, B at price $q<p$
- B wins and is paid $p=q+(p-q)$
- now add n bidders $\mathrm{C}_{1} \ldots \mathrm{C}_{n}$, each offering one good for free
- the C's win and are paid q each: total payment is $n^{*} q$
- adding bidders increased the total price paid significantly (and not frugal with respect to true cost)
- note also how susceptible to collusion

Auctions

- Auctions widely used (to both sell, buy things)
- our SPA was a one-sided, sell-side auctions: that is, we have a single seller, and multiple buyers
- examples: rights to use public resources (timber, mineral, oil, wireless spectrum), fine art/collectibles, Ebay, online ads (Google, Yahoo!, Microsoft, ...), ...
- Variations:
- multi-item auctions: one seller, multiple items at once
- e.g., wireless spectrum, online ads
- interesting due to substitution, complementarities (see CAs)
- procurement (reverse) auctions: one buyer, multiple sellers
- common in business for dealing with suppliers
- government contracts tendered this way
- aim: purchase items from cheapest bidder (meeting requirements)
- double-sided auctions: multiple sellers and buyers
- stock markets a prime example, matching is the critical problem

Single-item Auctions (Sell-side)

- Assume seller with one item for sale
- Several different formats
- Ascending-bid (open-cry) auctions (aka English auctions)
- price rises over time, bidders drop out when price exceeds their "comfort level"; final bidder left wins item at last drop-out price
- Descending-bid (open-cry) auctions (aka Dutch auctions)
- price drops over time, bidders indicate willingness to buy when price drops to their "comfort level"; first bidder to indicate willingness to buy wins at that price
- First-price (sealed bid) auctions
- bidders submit "private" bids; highest bidder wins, pays price he bid
- Second-price (sealed bid) auctions
- bidders submit "private" bids; highest bidder wins, pays price bid by the second-highest bidder

The First-Price Auction Game

- n players (bidders)
- Types: each player k has value $v_{k} \in[0,1]$ for item
- Prior: assume all valuations are distributed uniformly on [0,1]
- unlike SPA, prior will be critical here (of course, other priors possible)
- strategies/actions for player k : any bid b_{k} between $[0,1]$
- outcomes: player k wins, pays price p (her own highest bid)
- outcomes are pairs (k,p), i.e., (winner, price)
- payoff for player k :
- if k loses: payoff is 0
- if k wins, payoff depends on price p : payoff is $v_{k}-p$
- Like SPA, the FPA mechanism induces a Bayesian game among the bidders

First-Price Auction: No dominant strategy

- Notice that there is no dominant strategy for any bidder k
- Suppose other players bid: highest bid from others is $b_{(1)}$
- If value v_{k} is greater than $b_{(1)}$ then k 's best bid is b_{k} that is just a "shade" greater than $b_{(1)}$ (depends on how ties are broken)
- This gives k a payoff of (just shade under) $v_{k}-b_{(1)}>0$
- If k bids less than $b_{(1)}$: k loses item (payoff 0)
- If k bids more than $b_{(1)}$: pays more than necessary (so k 's payoff is reduced)
- Notice k should never bid more than v_{k}
- So k 's optimal bid depends on what others do
- Thus k needs some prediction of how others will bid
- requires genuine equilibrium analysis in the Bayes-Nash sense
- must predict others' strategies (mapping from types to bid) and use beliefs about others' types (to predict actual bids)

Bid Shading in First-Price Auction

- Consider actions of bidder 2
- ignore values of other bidders, consider only bids.
- assume "bid increment" \$1and that ties broken against bidder 2
- If bidder 1 bids \$95:
- bidder 2 should bid \$96
- wins (payoff 9)
- if 2 bids $\$ 94$, loses (0)
- if 2 bids $\$ 97$, payoff 8
- If bidder 1 bids $\$ 100$
- bidder 2 should bid \$101
- wins (payoff 4)
- If bidder 1 bids $\$ 110$
- bidder 2 should bid "less"
- loses (payoff 0)

Bid Shading in First-Price Auction

What bid b_{k} should bidder k offer?

What bid b_{k} should bidder k offer?

What bid b_{k} should bidder k offer?

Equilibrium: First-Price Auction

-Let's run through simple analysis

- Game of incomplete information
- k 's strategy s depends on value $v_{k}: s_{k}\left(v_{k}\right)$ selects a bid b_{k} in $[0,1]$
- other players have strategies too: s_{j}
- k 's payoff depends on its strategy and the strategy of others (as in Nash equilibrium), but also on its value and the value of others
- i.e., it's a "true" Bayesian game: priors influence bids
-Let's look at game with two bidders k and j
- Assume that their values are drawn randomly (uniformly) from the interval [0,1] and that they both know this
- Let's see what strategies are in equilibrium...

BNE: 2-bidder $1^{\text {st }}$ Price Auction

- Bidding strategy for k : function $s_{k}\left(v_{k}\right)=b_{k}$:
- it tells you what bid to submit taking your value for the item as input
- e.g., truthful strategy: $s(0)=0 ; s(0.1)=0.1 ; s(1)=1$; etc...
- e.g., $s(v)=1 / 2 v$ says "bid half your value": $s(0)=0 ; s(0.1)=0.05 ; s(1)=0.5 ; \ldots$
- Some simplifying assumptions
- strategy is strictly increasing (if value is higher, bid is also higher) - intuitively makes sense, but some sensible strategies might not
- strategy is differentiable
- makes analysis easier, but not a critical in general
- strategy cannot bid higher than value: $s(v) \leq v$
- an obvious requirement for rational bidders
- strategies are symmetric: k and j use same function, s_{k} same as s_{j}
- not necessary: we derive only a symmetric equilibrium (non-symmetric equilibria may also exist)

BNE: 2-bidder $1^{\text {st }}$ Price Auction

- By symmetric assumption, k never wants to bid more than $s(1)$ (since this is the maximum j will bid)
- and obviously $s(0)=0$, so k can't bid less than $s(0)$
- We want to find a strategy s such that neither k nor j deviate from s
- But for any strategy s satisfying our assumptions (specifically, differentiability), k can produce any bid b_{k} between $s(0)$ and $s(1)$ by plugging in some "pretend" valuation v (possibly different from true v_{k})
- like an internal version of the revelation principle
- So we can focus attention (reduce our search) to strategies where the payoff for bidding $s\left(v_{k}\right)$, when k 's true value is v_{k}, is greater than the payoff for bidding $s(v)$ for a different value v when k 's true value is v_{k}

Fixing a strategy and changing the bid

- Even with a fixed strategy s, bidder k can produce any bid between 0 and $s(1)$ by "pretending" to have a different value v ' than his true v
- ... and it's his bid that influences the outcome, not s per se

Bidder k

What is expected value of strategy s ?

-What is k 's expected payoff for playing s ?

- Payoff is zero if k loses
- Payoff is "value minus bid" if k wins: $v_{k}-s\left(v_{k}\right)$
- So if k wins with probability p, expected payoff is $p\left(v_{k}-s\left(v_{k}\right)\right)$
-What is probability k wins?
- Since strategies are symmetric, k wins just when $v_{k}>v_{j}$
- This happens with probability v_{k}
- So k 's expected payoff is $v_{k}\left(v_{k}-s\left(v_{k}\right)\right)$

$$
\begin{aligned}
& \operatorname{Prob}\left(v_{j}<0.8\right)=0.8 \\
& \operatorname{Prob}\left(v_{j}>0.8\right)=0.2
\end{aligned}
$$

What is optimal bidding strategy?

- Want a strategy s where expected value of bidding true valuation v_{k} is better than bidding any other valuation v
- If true valuation is v_{k} and bid is v : probability of winning is v, and payoff if bidder wins is $v_{k}-s(v)$
- So we want s satisfying: $v_{k}\left(v_{k}-s\left(v_{k}\right)\right) \geq v\left(v_{k}-s(v)\right)$ for all v
- i.e., payoff function $g(v)=v\left(v_{k}-s(v)\right)$ must be maximized by input v_{k}

$$
\begin{gathered}
g^{\prime}\left(v_{k}\right)=0 \\
v_{k}-\mathrm{s}\left(v_{k}\right)-v_{k} \mathrm{~s}^{\prime}\left(v_{k}\right)=0 \\
\mathrm{~s}^{\prime}\left(v_{k}\right)=1-\frac{s\left(v_{k}\right)}{v_{k}}
\end{gathered}
$$

- Result is: $s(v)=v / 2$
- In other words, the bidding strategy where both bidders bid half of their valuation is a Nash equilibrium

For More Than Two Bidders

- Same analysis can be applied (uniform valuations on any bounded interval) to give an intuitive result:
- If we have n bidders, the (unique) symmetric equilibrium strategy is for any bidder with valuation v_{i} to bid (n-1)/n v_{i}
- e.g., if 2 bidders, bid half of your value
- e.g, if 10 bidders, bid 9/10 of your value
- e.g, if 100 bidders, bid 99% of your value
- Each bidder: bids expectation of highest valuation excluding his own (conditioned on his valuation being highest)
- Intuition (again): more competing bidders means that there is a greater chance for higher bids: so you sacrifice some payoff $\left(v_{i}-b_{i}\right)$ to increase probability of winning in a more "competitive" situation

Symmetric Equilibria in General

- Analysis more involved for general CDF F over valuations
- each specific form requires its own analysis, but general picture is very similar to the uniform distribution case
- Still, general principle holds in symmetric equilibrium:

$$
s\left(v_{k}\right)=E_{V \sim F}\left[V_{(1)} \mid V_{(1)}<v_{k}\right]
$$

where $V_{(1)}$ is the highest value of n - 1 independent draws from F

Other Properties: First-Price Auction

- Bidders generally shade bids (as we've seen)
- Does seller lose revenue compared to second-price auction?
- If bidders all use same (increasing) strategy, item goes to bidder with highest value (will maximizes social welfare, like second-price)
- but note that our symmetric equilibrium needn't be only one
- Outcome is similar to Dutch auction (descending auction)
- lower prices until one bidder accepts the announced price
- until price drops below k 's value, k should not accept it
- jump in too soon: will pay more than necessary (equivalent to bid shading)
- jump in too late: you lose when you might have won
- first bidder jumping in pays the price she jumped in at (1 $1^{\text {st }}$ price)
- games are in fact "strategically equivalent"; seller gets same price
- with some "slop" due to bid decrement in Dutch auction

Revenue Equivalence

- Goal of auction may be to maximize revenue to seller
- this is just a different SCF
- do any of these auctions vary in expected revenue?
-First note that $1^{\text {st }}$ and $2^{\text {nd }}$ price net same expected revenue: expectation of $v_{(2)}$
-Revenue equivalence
- under a set of reasonable assumptions, all auctions (assuming symmetric equilibrium play) result in a bidder with a specific valuation v_{k} making the same expected payment, hence lead to the same expected revenue for the seller
- assumptions: IPV from bounded interval $\left[v_{\text {low }}, v_{\text {high }}\right], F$ is strictly increasing (atomless), auction is efficient, bidder with $v_{\text {low }}$ has expected utility (hence payment) zero

Reserve Prices and Optimal Auctions

- If SCF is revenue maximization, none of the auction formats implement this SCF
- Well-chosen reserve price r increases revenue to seller
- reserve prices also make sense when seller has value for item
- In $2^{\text {nd }}$ price (notice still dominant to bid truthfully):
- runs risks of not selling item (all bids below r)
- increases sale price if $v_{(1)}>r>v_{(2)}$
- no impact if $v_{(2)}>r$
- In $1^{\text {st }}$ price: bid "as before:" $E\left[\max \left(r, V_{(1)}\right) \mid V_{(1)}<v_{k}\right]$
- Revenue improves if r set carefully to balance probability of not selling against increased price when item is sold
- A rather simple optimization, but relies on CDF F over valuations
- hence used rarely in practice (but see discussion of AMD)

Optimal Reserve Price

- Suppose IPV, prior density f (with CDF F) over valuations
- let g be density (with CDF G) over highest value from $n-1$ draws from f
- Expected payment ($1^{\text {st }}$ or $2^{\text {nd }}$ price auction) of bidder k with val v_{k} :
- If k wins: pays r if $2^{\text {nd }}$ highest val less than r; $2^{\text {nd }}$ highest val otherwise

$$
r G(r)+\int_{r}^{v_{k}} y g(y) d y
$$

$$
\begin{aligned}
& \text { - Pay } r \text { with } \operatorname{Pr}\left(v_{(2)}<r\right) \\
& -\operatorname{Pay} y>r \text { with } \operatorname{Pr}\left(v_{(2)}=y\right)
\end{aligned}
$$

- Ex ante expected payment is then:

$$
r(1-F(r)) G(r)+\int_{r}^{v_{h i g h}} y(1-F(y)) g(y) d y \quad \begin{aligned}
& -\operatorname{Pay} \mathrm{r}: \operatorname{Pr}\left(v_{(2)}<r\right) * \operatorname{Pr}\left(v_{k} \geq r\right) \\
& -\operatorname{Pay} y>r: \operatorname{Pr}\left(v_{(2)}=\mathrm{y}\right) * \operatorname{Pr}\left(v_{k} \geq \mathrm{y}\right)
\end{aligned}
$$

- Expected revenue to seller is n times this (n bidders)
- Optimal reserve price r^{*} should satisfy (w/ mild assumptions of F, f):

$$
r^{*}-\frac{1-F\left(r^{*}\right)}{f\left(r^{*}\right)}=0
$$

Myerson Auction

- Myerson auction generalizes these insights, allowing for knowledge of each bidder's "personal" CDF F_{k}
- Does some bid shading for the bidder and sets "personalized reserve prices" for each bidder
- Bidder submits valuation v_{k}
- Compute virtual valuation ψ_{k}

$$
\psi_{k}\left(v_{k}\right)=v_{k}-\frac{1-F_{k}\left(v_{k}\right)}{f_{k}\left(v_{k}\right)}
$$

- Set reserve price r_{k} satisfying $\psi_{k}\left(r_{k}\right)=0$
- Award item to bidder k^{*} with highest virtual valuation (if above reserve)
- Price $p=$ smallest valuation that would have still allowed k^{*} to win
- Properties
- Bidding truthfully still dominant
- Can awards item to bidder with lower valuations (but higher virtual valuation): increases power of bidders with lower true valuations to put pressure on bidders with higher valuations (increases competition)
- Provably maximizes seller revenue

Common/Correlated Values

- Five companies bidding (1st-price) for oil drilling rights in area A
- ultimate value is pretty much the same for each: a certain amount of oil ($B \mathrm{bb} / \mathrm{s}$); each will sell it at market price (ignore technology differences)
- seller, companies don't know the value
- each produces its own (private) estimate of the reserves (quantity B)
- value is now random (probabilistic): bid based on your expected value
- Estimates are related to B, but noisy (error-prone):
- e.g., U estimates 50M bbl; V: 47M; W: 42M; X: 40M; Y: 38M
- once U wins, learns something about other's estimates: all lower than U's
- suggests U's estimate was too high: perhaps U overpaid!
- Phenomenon is known as winner's curse
- winning auction: implies value is less than you estimated
- may still profit (attain a surplus), but could even have negative (expected) surplus!
- occurs in any common/correlated value auction (e.g., buying items for resale)
- Bidding strategies must reflect this (and interesting information flow)

Automated Mechanism Design

- General view in MD
- hand-designed mechanisms proven to work for wide-class of problems
- prior independent (VCG), parameterized (Myerson, dAGVA), ...
- Drawbacks
- Gibbard-Satterthwaite: settings are still restrictive
- specific SCFs, specific preferences (quasi-linearity), etc...
- Automated mechanism design [Conitzer and Sandholm]
- hard work to handcraft mechanisms, so need these to be broad
- but this generality runs smack into impossibilities (GS, Roberts, etc.)
- if you have specific info about problem at hand, generality not needed
- e.g., suppose you have specific restrictions/priors on preferences
- but can't handcraft mechanisms for specific settings: hard work!
- what if we could create one-off mechanisms automatically?

AMD: Basic Setup

- Assume usual MD setup
- finite set of outcomes O, finite set of (joint) types Θ (restrictive), prior Pr over joint types, utility functions
- A direct (randomized) mechanism specified by parameters
- probability of outcome given report: $p(\theta, o)$ for all $0 \in O, \theta \in \Theta$
- payment (or transfer to) agent $\mathrm{k}: \pi_{k}(\theta)$ for all $\mathrm{k}, \theta \in \Theta$
- Given a social choice objective (rather than SCF), optimize choice of these parameters by setting up as a math program (LP or MIP)
- flexibility in objective (max social welfare, revenue, fairness, minimize transfers, etc...)
- Only complication: need to ensure that parameters are set so that appropriate incentive and participation constraints are satisfied
- these can be expressed as linear constraints on the parameters

MIP/LP Formulation

- Objective (example, expected social welfare):
- $\Sigma_{\theta_{1}, \ldots, \theta_{n}} \operatorname{Pr}\left(\theta_{1}, \ldots, \theta_{n}\right) \Sigma_{i}\left(\Sigma_{o} p\left(o / \theta_{1}, \ldots, \theta_{n}\right) u_{i}\left(\theta_{\dot{j}} o\right)+\pi_{i}\left(\theta_{1}, \ldots, \theta_{n}\right)\right)$
- many other objectives can be formulated
- Incentive compatibility constraints (example, dominant strategy):
- $\Sigma_{o} p\left(o / \theta_{1}, \ldots, \theta_{n}\right) u_{k}\left(o, \theta_{k}\right)+\pi_{k}\left(\theta_{1}, \ldots, \theta_{n}\right) \geq$ $\Sigma_{o} p\left(o / \theta_{1}, \ldots, \theta_{k}^{\prime}, \ldots, \theta_{n}\right) u_{k}\left(o, \theta_{k}\right)+\pi_{k}\left(\theta_{1}, \ldots, \theta_{k}^{\prime}, \ldots, \theta_{n}\right) ; \forall k, \theta_{-k}, \theta_{k}, \theta_{k}{ }^{\prime}$
- Bayes-Nash implementation formulated by taking expectation over θ_{-k}
- Individual rationality constraints (example, ex post IR):
- $\Sigma_{o} p\left(o / \theta_{1}, \ldots, \theta_{n}\right) u_{k}\left(o, \theta_{k}\right)+\pi_{k}\left(\theta_{1}, \ldots, \theta_{n}\right) \geq 0 ; \quad \forall k, \theta$
- ex interim IR formulated by taking expectation over θ_{-k}
- For randomized mechanisms, this is an LP (assuming linear objective)
- solvable in polytime (though size proportional to $\mid \theta\|O\|$)
- For deterministic mechanisms, this is a MIP (assuming linear objective)
- even for restricted cases, problem is NP-hard

Divorce Arbitration (Conitzer, Sandholm)

- Painting: who gets it
- five possible outcomes:

- Two types for husband/wife: high ($\operatorname{Pr}=0.8$), low ($\operatorname{Pr}=0.2$)
- Preferences of high type (art lover):
- $u($ get the painting $)=110$
- u (other gets the painting $)=10$
- $u($ museum $)=50$
- $u(g e t$ the pieces) $=1$
- u (other gets the pieces) $=0$
- Preferences of low type (art hater):
- $u(g e t$ the painting $)=12$
- u (other gets the painting) $=10$
- $u($ museum $)=11.5$
- $u(g e t$ the pieces) $=1$
- $u($ other gets the pieces) $=0$

Max Social Welfare (deterministic, no payments)

Max Social Welfare (randomized, no payments)

Max Social Welfare (randomized, including payments, excluding "center")

VCG (max social welfare ignoring payments)

AMD: Discussion/Issues to Consider

-Is use of priors in this way acceptable? useful in practice?
-Direct mechanisms:

- can we avoid full type revelation (especially for large combinatorial spaces, but even just relaxing precision required)
- Related: assumption of finite type space
- relax by discretization... how best to do this?
- finite outcome space less problematic (payments broken out)
- Sequential (multi-stage) mechanisms

Partial Type Revelation

- Direct mechanisms assume that preference (type) specification is not a problem for agents
- but as we saw earlier in course, preference elicitation very hard
- Some work addresses this by allowing agents to specify their valuations/types only partially or incrementally
- incremental auctions (English/Japanese, Dutch, CA versions)
- Blumrosen, Nisan, Segal (communication constraints)
- Grigorieva et al. (bisection auction)
- Hyafil and Boutilier (partial revelation VCG)
- Feigenbaum, Jaagard, Schapira; Sui and Boutilier (privacy)

Limited Communication Auctions

- BNS: limit number of bits bidders use to bid in an auction
- instead of arbitrary precision, k messages (log(k) bits)
- what is the best protocol for n agents, each with k messages?
- e.g., maximize (expected) social welfare, or revenue?
- Basic design parameters: choose winner, payments for each tuple of messages received (bid profile)
- Approach: begins abstractly, but proves that optimal auctions have a fairly natural structure (we'll work directly with that structure)
- Let's focus on two bidders, social welfare
- Optimal strategies: intuitively, bids correspond to intervals of valuation space, so you can view these as auctions with "limited precision" bids

Two-Bit, Two-Bidder Auction: Example

	$0 \quad 1 / 4{ }^{\text {Bidder B }} 1 / 2$			3/4
0	B, 0	B, 0	B, 0	B, 0
¢ 1/4	A, 1/4	B, 1/4	B, 1/4	B, 1/4
응 $1 / 2$	A, 1/4	A, 1/2	B, 1/2	B, 1/2
3/4	A, 1/4	A, 1/2	A, 3/4	B, 3/4

> *each cell shows [winner, price paid]

- Ask each bidder: "Is your valuation at least $0,1 / 4,1 / 2,3 / 4$?"
- Threshold strategies (BNS): but we pick thresholds by setting the prices
- We divide valuation space into intervals: $[0,1 / 4),[1 / 4,1 / 2),[1 / 2,3 / 4),[3 / 4,1]$
- Winner: A if bid is "higher" than B; B if higher or tied
- B has "priority" over A (priority game in the terminology of BNS)
- Payment: minimum bid needed to still win (lower bound of interval)
- Obviously incentive compatible (in dominant strategies)
- Can't guarantee maximization of social welfare
- if A, B tied, B wins; but A might have higher val (e.g., $A: 7 / 16, B: 6 / 16$)

Two-Bit, Two-Bidder Auction: Different Example

	- ${ }_{2 / 7}$ Bidder B			6/7
0	B, 0	B, 0	B, 0	B, 0
< 1/7	A, 1/7	B, 2/7	B, 2/7	B, 2/7
응 3/7	A, 1/7	A, 3/7	B, 4/7	B, 4/7
5/7	A, 1/7	A, 3/7	A, 5/7	B, 6/7

- Though we don't maximize social welfare, loss can be bounded
- e.g., if valuations are uniform 0,1, easy to determine expected loss at "ties"
- BNS show that to minimize welfare loss, thresholds should be mutually centered (as in the example above, for uniform [0,1] valuations)
- Also provide analysis of revenue maximization, multiple bidders, etc.

Discussion (Brief)

- Big picture:
- approach to "partial preference elicitation" in mechanism design
- derived from a very general "communication" framework
- trades off communication (cognitive, privacy) for outcome quality
- BNS are able to obtain DS implementation in SWM case (circumvents Roberts because of restricted valuation space: 1-dimensional)
- Value of partial elicitation more compelling in large outcome spaces (multidimensional)
- difficulties arise with DS implementation due to Roberts, etc.
- still there are things that can be done (e.g., by relaxing the equilibrium notions, and bounding incentive to misreport [HB06,07] using minimax regret)

