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Decision Making under Uncertainty

Craig Boutilier; cebly@cs; 946-5714; PT398C

Course details
• Web page: ~cebly/2534
• Tuesdays: 1:00-3:00PM;   Room BA B024

Evaluation
• Three assignments: 45%
• Class participation: 10%
• Project, incl. proposal, (possibly) presentation: 45%
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Rough Overview
Decision making under uncertainty (DMUU) of all forms

• one-shot, sequential; single-agent, multi-agent
• largely probabilistic models of uncertainty

Main topics
• Beliefs: probabilistic inference, computation (Bayes nets)*
• Single-agent decision making

 preferences, utilities: foundations, representations, elicitation
 sequential decision making: MDPs and POMDPs, maybe RL

• Multiagent decision making
 basics of game theory, including equilibrium concepts
 coordination, stochastic games, mechanism design, auctions
 social choice: voting, stable matchings

Combination: lectures and readings
• emphasis on perspective, discussion
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A Planning Problem
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Take actions to
bring about changes

in the state of
the world

NB: Physical vs. digital or virtual
worlds an irrelevant distinction
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Value/Cost of Information
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Take actions to
discover state of

the world (and make
better decisions)
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A Multiagent Planning Problem
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Account for
actions of others
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Lessons of Decision Making

Robbie’s goal: “tidy lab”
• classical plan: goto(lab), kickout(students), pickup(cup17),...
• what if I ask for coffee in middle of plan? fire alarm? broken wheel? 

goes to lab and finds it tidy?
Lesson #1: appropriate courses of action contingent on 

current state of affairs
• state can change exogenously (uncertainty)
• effects of actions can be uncertain (endogenous uncertainty)
• program structure should be conditional (policy, not plan) 
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Lessons of Decision Making

Why should Robbie stop tidying when coffeereq? 

Lesson #2: decisions depend on relative importance of 
conflicting/competing objectives: preferences
 <coffee@10AM, tidy@11AM> preferred to <coffee@11AM, tidy@10AM>
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Lessons of Decision Making

Whose preferences? 

Lesson #3: decisions should reflect preferences of user on 
whose behalf agent is acting 

• agents act on behalf of users; so “preprogramming” impossible 
(e.g., shopping agent, medical decision aid (or doctor!), scheduler, 
bargaining/bidding agent, etc…)

• preference elicitation/assessment needed if agent decides itself
Consider:

• price of coffee skyrockets, you like tea almost as much ???
• Treatment1: faster cure, more expensive/painful; 

Treatment2: much slower, but cheaper/more tolerable
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Lessons of Decision Making

Robbie hears rumor of surprise NSERC Site visit, but Craig 
unaware: keep tidying or coffee? (If untidy at visit, funding 
will be cut!)

Lesson #4: decisions reflect tradeoffs between likelihood of 
outcomes and preferences over them
Consider:

• Robbie has $2: coffee or lottery ticket? highodds lott? coffee $50?
• Prob successful coffee delivery: 0.3? 0.1? 0.0001? 0.7? 0.9999?
• Trtmt1: 0.99 odds of success, $100,000 vs. Trtmt2: 0.95 and $5000
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Lessons of Decision Making

I prefer more money to less: so Robbie goes to Starbucks, 
punches a guy, takes $100, and brings me a coffee and 
$98!
Lesson #5: decisions reflect both immediate and long-term 

consequences of actions (and long-term objectives)
Consider:

• smoking if prob of lung cancer was 0.17 in six months (not 30yrs)?
• why write an NSERC Grant proposal: some actions enable others

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



11

Lessons of Decision Making

Two robots, I need coffee and Amazon package, each robot 
equidistant from coffee, mailroom: who does what?

• one slightly closer to the coffee? one slightly better at coffee 
delivery? red robot got the coffee yesterday?

One robot yours, one robot mine: one cup left (lots of tea)
• both of us like tea (how much)? I hate tea?

Lesson #6: decisions reflect (anticipated) behavior of other 
agents

• coordination, cooperation, inherent competition
• equilibrium (multiple, mixed), side payments/transferable utility
• elicitation and incentives: mechanism design and social choice
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Summary of Key Issues

Actions change state of the world, enable other actions
Forms of uncertainty:

• action effects, exogenous events
• knowledge of world state
• behavior of others (different from exogenous events)

Actions change your state of knowledge:
• provide info, but not certainty: value of information

Action effects, preferences not known in advance
• preference elicitation (more generally preference assessment)
• learning (especially reinforcement learning)

Other actors in the world pursuing their own interests
• cooperative settings: key is coordination of activities
• competitive (fully, partially) settings: key is strategic/equilibrium effects
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In more depth

 The components rational action. 
 Probabilistic semantics for belief.*

• Representation of probabilities, 
Bayesian networks (briefly) 

• Inference in Bayes nets (briefly) 

 Preferences and utilities. 
• Rational decision-making. 
• Foundations of utility theory. 
• Multi-attribute utility theory. 
• Preference elicitation. 

Multi-stage decision making. 
• Markov decision processes. 
• Structured computation for MDPs. 
• Function approximation
• Partially-observable MDPs.
• Reinforcement learning (if time/interest)

Multiagent DM: Game theory 
• Basics of game theory. 
• Refinements of Nash equilibria
• Stochastic and Markov games.
• Cooperation.
• Games of incomplete information 

(Bayesian games) 
• Mechanism design (and computational 

approaches to MD). 
• Auction theory.

Multiagent DM: Social choice
• Elements of social choice and voting. 
• Voting rules. 
• Computational considerations. 
• Manipulation and control. 
• Voting with partial information. 
• Matching problems. 
• Other forms of “MD without money". 
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Probabilistic Inference: Very Brief Review

As discussed, beliefs about world form a critical 
component in decision making. And these beliefs should 
must quantify our degree of uncertainty, so appropriate 
tradeoffs can be made.
We’ll quantify our beliefs using probabilities

• denotes probability that you believe  is true
• we take subjectivist viewpoint (cf. frequentist)

Note: statistics/data influence degrees of belief
Let’s formalize things just so we’re on the same page

• This particular perspective will be valuable for decision making, 
MDPs and POMDPs, Bayesian games, etc.

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



15

Random Variables

Assume set V of random variables: X, Y, etc.
• Each RV X has a domain of values Dom(X)
• X can take on any value from Dom(X)
• Assume V and Dom(X) finite

Examples (finite)
• Dom(X) = {x1, x2, x3}
• Dom(Weather)  = {sunny, cloudy, rainy}
• Dom(Stdnts) = {tyler, joanna, xin, amirali, joel, victoria, andrew} 
• Dom(CraigHasCoffee) = {T,F}   (boolean var)
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Random Variables/Possible Worlds

A formula is a logical combination of variable 
assignments:

• X = x1;  (X = x2 ∨ X = x3) ∧ Y = y2 ;    (x2 ∨ x3) ∧ y2

• chc ∧ ~cm,  etc…

• let L denote the set of formulae (our language)

A possible world (or a state) is an assignment of values to 
each variable

• these are analogous to truth assts (models)
• Let W be the set of worlds

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



17

Probability Distributions

A probability distribution Pr : L → [0,1] s.t.
• 0 ≤ Pr(α) ≤ 1
• Pr(α) = Pr(β) if α is logically equivalent to β
• Pr(α) = 1 if α is a tautology
• Pr(α∨ β) = Pr(α)  + Pr(β) - Pr(α∧β)

Pr(α) denotes our degree of belief in α; e.g.
• Pr(X = x1) = Pr(x1) = 0.9
• Pr((x2 ∧ x3) ∨ y2) = 0.9
• Pr(loc(craig) = off) = 0.6
• Pr( loc(craig) = off ∨ loc(craig) = lab ) = 1.0
• Pr(loc(craig) = lounge) = 0.0
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Semantics of Prob. Distributions

A probability measure μ: W → [0,1] s.t.

Intuitively, μ(w) measures the probability that the actual 
world is w (your belief in w). Thus, the relative likelihood 
of any world you consider possible is specified. If w has 
measure 0, you consider it to be impossible!

Our focus is on discrete joint distributions, but analogous concepts apply to 
continuous (and mixed): use density functions (reflecting “relative” 
likelihood), CDFs, integrals over measurable sets, etc. 

∑
∈

=
Ww

w 1)(µ
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Semantics of Distributions

Given measure μ, we can readily determine degree of 
belief in formula Pr(α)

• simply sum the measures of all worlds satisfying the formula of 
interest

}|:)({)Pr( αµα == ∑
∈

ww
Ww
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Toy Example Distribution

t c p a   0.162
t c p a   0.018
t c p a   0.016
t c p a   0.004
t c p a   0.432
t c p a   0.288
t c p a   0.008
t c p a   0.072

t c p a   0.0
t c p a   0.0
t c p a   0.0
t c p a   0.0
t c p a   0.0
t c p a   0.0
t c p a   0.0
t c p a   0.0

T – Fedex truck outside      
P – purchase from Amazon waiting
C – craig wants coffee     
A – craig is angry

Pr(t) =1
Pr(-t) = 0
Pr(c) = .2
Pr( -c) = .8
Pr(p) = .9
Pr(a) = .618
Pr(c & p) = .18
Pr(c v p) = .92
Pr(a -> p) 

= Pr(-a v p)
= 1 – Pr(a & -p) 
= .976
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distribution (*can’t 
construct all terms)
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Relationship

For any measure μ the induced mapping Pr is a 
distribution.

For any distribution Pr there is a corresponding measure 
μ that induces Pr.

Thus, the syntactic and semantic restrictions correspond 
(soundness and completeness)
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Some Important Properties

 Pr(α) = 1 – Pr(-α), α can be a “generalized” formula



• “marginal over X” :  <P(x1), P(x2), …, P(xn)>

 Pr(α∨ β) =1  if  α ⊃ -β



• this is called the summing out property: holds for sets Y as well
• e.g., Pr(a) = Pr(a & p) + Pr(a & -p)

∑ =∈ 1)}(:){Pr( XDomxx

∑
∈

∧=
)(

)Pr()Pr(
YDomy

yxx
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Conditional Probability

Conditional probability critical in inference

• if Pr(a) = 0, we often treat Pr(b|a)=1 by convention

)Pr(
)Pr()|Pr(

a
abab ∧

=
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Semantics of Conditional Probability

Semantics of Pr(b|a):
• denotes relative weight/measure of b-worlds among a-worlds
• ~a-worlds play no role

∑
∑

=
∧=

=
}|:)({

}|:)({
)|Pr(

aww
baww

ab
µ

µ
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Intuitive Meaning of Conditional Prob.
Intuitively, if you learned a, you would change your 

degree of belief in b from Pr(b) to Pr(b|a)
In our example:

• Pr(p|c) = 0.9
• Pr(p| ~c) = 0.9
• Pr(a) = 0.618
• Pr(a|~p) = 0.27
• Pr(a|~p & c) = 0.8

Notice the nonmonotonicity in the last three cases when 
additional evidence is added

• contrast this with logical inference
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Some Important Properties

Product Rule: Pr(ab) = Pr(a|b)Pr(b)

Summing Out Rule:

Chain Rule:
Pr(abcd)  = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)

• holds for any number of variables

)Pr()|Pr()Pr(
)(

bbaa
BDomb

∑
∈

=
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Bayes Rule

Bayes Rule: 

Bayes rule follows by simple algebraic manipulation of 
the definition of conditional probability

• why is it so important? why significant?
• usually, one “direction” easier to assess than other

)Pr(
)Pr()|Pr()|Pr(

b
aabba =
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Example of Use of Bayes Rule
Disease ∈ {malaria, cold, flu}; Symptom = fever

• Must compute Pr(D|fever) to prescribe treatment
Why not assess this quantity directly?

• Pr(mal | fever) is not natural to assess; Pr(fever | mal) reflects 
the underlying “causal” mechanism

• Pr(mal | fever) is not “stable”: a malaria epidemic changes this 
quantity (for example)

So we use Bayes rule:
• Pr(mal | fever) = Pr(fever | mal) Pr(mal) / Pr(fever)
• note that Pr(fe) = Pr(fe|m)Pr(m) + Pr(fe|c)Pr(c) + Pr(fe|fl)Pr(fl)
• so if we compute Pr of each disease given fever using Bayes 

rule, normalizing constant is “free”
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Probabilistic Inference

By probabilistic inference, we mean
• given a prior distribution Pr over variables of interest, 

representing degrees of belief
• and given new evidence E=e for some var E
• Revise your degrees of belief: posterior Pre
• (Many other forms of “inference”/types of queries)

How do your degrees of belief change as a result of 
learning E=e (or more generally E=e, for set E)
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Conditioning

We define Pre(α) = Pr(α | e)
That is, we produce Pre by conditioning the prior 

distribution on the observed evidence e
Semantically, we take original measure μ

• we set μ(w) = 0 for any world falsifying e
• we set μ(w) = μ(w) / Pr(e) for any e-world
• last step known as normalization (ensures that the new measure 

sums to 1)
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Semantics of Conditioning

p1

p2

E=e

p1

p2

p3

p4

E=e E=e

Pr

αp1

αp2

E=e

Pre

α = 1/(p1+p2)
normalizing constant
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Inference: Computational Bottleneck

Semantically/conceptually, picture is clear; but several 
issues must be addressed
Issue 1: How do we specify the full joint distribution over 

X1, X2,…, Xn ?
• exponential number of possible worlds

 e.g., if the Xi are boolean, then 2n numbers (or 2n -1
parameters/degrees of freedom, since they sum to 1)

• these numbers are not robust/stable
• these numbers are not natural to assess (what is probability that 

“Craig wants coffee; it’s raining in Orangeville; robot charge level 
is low; …”?)
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Inference: Computational Bottleneck

Issue 2: Inference in this representation frightfully slow
• Must sum over exponential number of worlds to answer query 

Pr(α) or to condition on evidence e to determine Pre(α) 

How do we avoid these two problems?
• no solution in general
• but in practice there is structure we can exploit

We’ll use conditional independence
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Independence
Recall that x and y are independent iff:

• Pr(x) = Pr(x|y) iff Pr(y) = Pr(y|x) iff Pr(xy) = Pr(x)Pr(y)
• intuitively, learning y doesn’t influence beliefs about x

We say x and y are conditionally independent given z iff:
• Pr(x|z) = Pr(x|yz) iff Pr(y|z) = Pr(y|xz) iff

Pr(xy|z) = Pr(x|z)Pr(y|z) iff … 
• intuitively, learning y doesn’t influence your beliefs about x if you 

already know z
• e.g., learning someone’s mark on an exam can influence the 

probability you assign to a specific GPA; but if you already knew 
final class grade, learning the exam mark would not influence 
your GPA assessment
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Variable Independence
Two variables X and Y are conditionally independent 

given variable Z iff x, y are conditionally independent 
given z for all x∈ Dom(X), y∈ Dom(Y), z∈ Dom(Z)

• Also applies to sets of variables X, Y, Z
• Also to unconditional case (X,Y independent)

If you know the value of Z (whatever it is), nothing you 
learn about Y will influence your beliefs about X

• these definitions differ from earlier ones (which talk about 
events, not variables)
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What does independence buys us?

Suppose (say, boolean) variables X1, X2,…, Xn are 
mutually independent

• we can specify full joint distribution using only n parameters 
(linear) instead of 2n -1 (exponential)

How? Simply specify Pr(X1), … Pr(Xn)
• from this I can recover probability of any world or any 

(conjunctive) query easily
• e.g. Pr(x1~x2x3x4) = Pr(x1) (1-Pr(x2)) Pr(x3) Pr(x4) 
• we can condition on observed value Xk = xk trivially by changing 

Pr(xk) to 1, leaving Pr(xi) untouched for i≠k
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The Value of Independence

Complete independence reduces both representation of 
joint and inference from O(2n) to O(n): pretty significant!

Unfortunately, such complete mutual independence is 
very rare. Most realistic domains do not exhibit this 
property.

Fortunately, most domains do exhibit a fair amount of 
conditional independence. And we can exploit conditional 
independence for representation and inference as well.

Bayesian networks do just this
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An Aside on Notation

Pr(X) for variable X (or set of variables) refers to the 
(marginal) distribution over X. Pr(X|Y) refers to family of 
conditional distributions over X, one for each y∈ Dom(Y).

Distinguish between Pr(X) – which is a distribution – and 
Pr(xi) – which is a number. Think of Pr(X) as a function 
that accepts any  xi ∈ Dom(X) as an argument and 
returns Pr(xi).

Similarly, think of Pr(X|Y) as a function that accepts any xi
and yk and returns Pr(xi | yk). Note that Pr(X|Y) is not a 
single distribution; rather it denotes the family of 
distributions (over X) induced by the different yk∈ Dom(Y)
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Exploiting Conditional Independence

Let’s see what conditional independence buys us
Consider a story:

• If Craig woke up too early E, Craig probably needs coffee C; if C, 
Craig needs coffee, he's likely angry A. If A, there is an 
increased chance of an aneurysm (burst blood vessel) B. If B, 
Craig is quite likely to be hospitalized H.

E C B HA

E – Craig woke too early     A – Craig is angry      H – Craig hospitalized
C – Craig needs coffee     B – Craig burst a blood vessel
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Cond’l Independence in our Story

If you learned any of E, C, A, or B, your assessment of 
Pr(H) would change. 

• e.g., if any of these are seen to be true, you would increase Pr(h) 
and decrease Pr(~h). 

• So H is not independent of E, or C, or A, or B.
But if you knew value of B (true or false), learning value 

of E, C, or A, would not influence Pr(H). Influence these 
factors have on H is mediated by their influence on B.

• Craig doesn't get sent to the hospital because he's angry, he 
gets sent because he's had an aneurysm.

• So H is independent of E, and C, and A, given B

E C B HA
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Cond’l Independence in our Story

So H is independent of E, and C, and A, given B
Similarly:

• B is independent of E, and C, given A
• A is independent of E, given C

This means that:
• Pr(H | B, {A,C,E} )  =  Pr(H|B)

 i.e., for any subset of {A,C,E}, this relation holds
• Pr(B | A, {C,E} ) = Pr(B | A)
• Pr(A | C, {E} ) = Pr(A | C)
• Pr(C | E)    and    Pr(E) don’t “simplify”

E C B HA
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Cond’l Independence in our Story

By the chain rule (for any instantiation of H,B,A,C,E):
• Pr(H,B,A,C,E) = 

Pr(H|B,A,C,E) Pr(B|A,C,E) Pr(A|C,E) Pr(C|E) Pr(E)

By our independence assumptions:
• Pr(H,B,A,C,E) = 

Pr(H|B) Pr(B|A) Pr(A|C) Pr(C|E) Pr(E)

We can specify the full joint by specifying five local 
conditional distributions: Pr(H|B); Pr(B|A); Pr(A|C); 
Pr(C|E); and Pr(E)

E C B HA

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



43

Example Quantification

Specifying the joint requires only 9 parameters (if we note that half of 
these are “1 minus” the others), instead of 31 for explicit 
representation

• linear in number of variables instead of exponential!
• linear generally if dependence has a chain structure

E C B HA

Pr(c|e)     = 0.9
Pr(~c|e)   = 0.1
Pr(c|~e)   = 0.5
Pr(~c|~e) = 0.5

Pr(e)   = 0.7
Pr(~e) = 0.3

Pr(a|c)     = 0.3
Pr(~a|c)   = 0.7
Pr(a|~c)   = 1.0
Pr(~a|~c) = 0.0

Pr(h|b)     = 0.9
Pr(~h|b)   = 0.1
Pr(h|~b)   = 0.1
Pr(~h|~b) = 0.9

Pr(b|a)     = 0.2
Pr(~b|a)   = 0.8
Pr(b|~a)   = 0.1
Pr(~b|~a) = 0.9
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Recovering Joint is Easy

Use chain rule and multiply parameters provided
• Pr(h b ~a c ~e)

= Pr(h|b)P(b|~a)P(~a|c)P(c|~e)P(~e)
= 0.9 * 0.1 * 0.3 * 0.5 * 0.3
= 0.00405

E C B HA

Pr(c|e)     = 0.9
Pr(~c|e)   = 0.1
Pr(c|~e)   = 0.5
Pr(~c|~e) = 0.5

Pr(e)   = 0.7
Pr(~e) = 0.3

Pr(a|c)     = 0.3
Pr(~a|c)   = 0.7
Pr(a|~c)   = 1.0
Pr(~a|~c) = 0.0

Pr(h|b)     = 0.9
Pr(~h|b)   = 0.1
Pr(h|~b)   = 0.1
Pr(~h|~b) = 0.9

Pr(b|a)     = 0.2
Pr(~b|a)   = 0.8
Pr(b|~a)   = 0.1
Pr(~b|~a) = 0.9
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Inference is Easy

Want to know P(a)? Use summing out rule:

E C B HA

)Pr()|Pr()|Pr(

)Pr()|Pr()(

)()(

)(

i
EDom

ii
CDomc

i

i
CDomc

i

eecca

ccaaP

iei

i

∑∑

∑

∈∈

∈

=

=
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Inference is Easy

Computing P(a) in more concrete terms:
• P(c) = P(c|e)P(e) + P(c|~e)P(~e) 

= 0.8 * 0.7 + 0.5 * 0.3  = 0.78
• P(~c) = P(~c|e)P(e) + P(~c|~e)P(~e) = 0.22

P(~c) = 1 – P(c), as well
• P(a) = P(a|c)P(c) + P(a|~c)P(~c) 

= 0.7 * 0.78 + 0.0 * 0.22 = 0.546
• P(~a) = 1 – P(a) = 0.454 

E C B HA
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Bayesian Networks
The structure above is a Bayesian network. A BN is a 

graphical representation of the direct dependencies over 
a set of variables, together with a set of conditional 
probability tables quantifying the strength of those 
influences.

A BN over variables {X1, X2,…, Xn}  consists of:
• a DAG whose nodes are the variables
• a set of CPTs   Pr(Xi | Par(Xi) )   for each  Xi

Key notions: parent, child, descendent, ancestor (all very 
intuitive)
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An Example Bayes Net
A couple CPTS are 

“shown”

Explict joint requires 
211 -1 =2047 
parameters (assuming 
binary vars)

BN requires only 27 
parameters (the 
number of entries for 
each CPT is listed)
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Semantics of a Bayes Net

The structure of the BN means: every Xi is conditionally 
independent of all of its non-descendants given it parents:

Pr(Xi | S ∪ Par(Xi)) = Pr(Xi | Par(Xi))

for any subset S ⊆ NonDescendents(Xi)
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Semantics of Bayes Nets (2)

If we ask for Pr(x1, x2,…, xn) we obtain
• assuming an ordering consistent with network 

Pr(x1, x2,…, xn) 
= Pr(xn | xn-1,…,x1) Pr(xn-1 | xn-2,…,x1)… Pr(x1)
= Pr(xn | Par(Xn)) Pr(xn-1 | Par(Xn-1))… Pr(x1)

Thus, any element of the joint is easily computable using 
the parameters specified in an arbitrary BN
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Constructing a Bayes Net
Given any distribution over variables X1, X2,…, Xn, we 

can construct a Bayes net that faithfully represents that 
distribution.

(Some other formal requirements must hold.)

Take any ordering of the variables (say, the order given), and go 
through the following procedure for Xn down to X1. Let Par(Xn) be any 
subset S ⊆ {X1,…, Xn-1} such that Xn is independent of {X1,…, Xn-1} -
S given S. Such a subset must exist (convince yourself).
Then determine the parents of Xn-1 the same way, finding a similar S ⊆
{X1,…, Xn-2} , and so on.
In the end, a DAG is produced and the BN semantics must hold by 
construction.
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Causal Intuitions

The construction of a BN is simple
• works with arbitrary orderings of variable set
• but some orderings much better than others!
• generally, if ordering/dependence structure reflects causal intuitions, 

a more natural, compact BN results

In this BN, we’ve used the 
ordering Mal, Cold, Flu, 
Aches to build BN for 
distribution P

• Variable can only have 
parents that come earlier in 
the ordering
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Causal Intuitions
Suppose we build the BN for distribution P using the 

opposite ordering
• i.e., we use ordering Aches, Cold, Flu, Malaria
• resulting network is more complicated!

Mal depends on Aches; 
but it also depends on 
Cold, Flu given Aches

• Cold, Flu explain away Mal
given Aches

Flu depends on Aches; but 
also on Cold given Aches
Cold depends on Aches
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Testing Independence

Given BN, how do we determine if two variables X, Y are 
independent (given evidence E)?

• we use a (simple) graphical property

D-separation: A set of variables E d-separates X and Y if 
it blocks every undirected path in the BN between X and 
Y. (We'll define blocks next.)

X and Y are conditionally independent given evidence if E
d-separates X and Y

• thus BN gives us an easy way to tell if two variables are 
independent (set E = ∅) or cond. independent given E
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Blocking in D-Separation

Let P be an undirected path from X to Y in a BN. Let E be 
an evidence set. We say E blocks path P iff there is some 
node Z on the path such that:

• Case 1: one arc on P goes into Z and one goes out, and Z∈ E; or

• Case 2: both arcs on P leave Z, and Z∈ E; or

• Case 3: both arcs on P enter Z and neither Z, nor any of its 
descendents, are in E.
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Blocking: Graphical View
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D-Separation: Intuitions
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D-Separation: Intuitions
Subway and Therm are dependent; but are independent given Flu 

(since Flu blocks the only path)

Aches and Fever are dependent; but are independent given Flu (since 
Flu blocks the only path). Similarly for Aches and Therm (dependent, 
but indep. given Flu).

Flu and Mal are indep. (given no evidence): Fever blocks the path, 
since it is not in evidence, nor is its decsendant Therm.  Flu,Mal are 
dependent given Fever (or given Therm): nothing blocks path now.

Subway,ExoticTrip are indep.; they are dependent given Therm; they 
are indep. given Therm and Malaria. This for exactly the same reasons 
for Flu/Mal above.
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Inference in Bayes Nets

The independence sanctioned by d-separation allows us 
to compute prior and posterior probabilities quite 
effectively.

We'll look at a couple simple examples to illustrate. We'll 
focus on networks without loops. (A loop is a cycle in the 
underlying undirected graph. Recall the directed graph 
has no cycles.)
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Simple Forward Inference (Chain)

Computing prior require simple forward “propagation” of 
probabilities (using Subway net)

P(J) = ΣM,ET P(J|M,ET) P(M,ET)
= ΣM,ET P(J|M) P(M|ET) P(ET)
= ΣM P(J|M) ΣET P(M|ET) P(ET)

(1) follows by summing out rule; (2) by chain rule and 
independence; (3) by distribution of sum
Note: only ancestors of J considered
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Simple Forward Inference (Chain)

Same idea applies when we have “upstream” evidence

P(J | et) = ΣM P(J | M,et) P(M | et)
= ΣM P(J | M) P(M | et)
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Simple Forward Inference (Pooling)

Same idea applies with multiple parents

P(Fev) = ΣFlu,M P(Fev|Flu,M) P(Flu,M)
= ΣFlu,M P(Fev|Flu,M) P(Flu) P(M)
= ΣFlu,M P(Fev|Flu,M) ΣTS P(Flu|TS) P(TS)          

ΣET P(M|ET) P(ET)

(1) follows by summing out rule; (2)  by independence of 
Flu, M; (3) by summing out

• note: all terms are CPTs in the Bayes net
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Simple Forward Inference (Pooling)

Same idea applies with evidence

P(Fev|ts,~m) = ΣFlu P(Fev |Flu,ts,~m) P(Flu| ts,~m)
= ΣFlu P(Fev|Flu,~m) P(Flu|ts,~m)
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Simple Backward Inference
When evidence is downstream of query variable, we must 

reason “backwards.” This requires the use of Bayes rule:

P(ET | j) = α P(j | ET) P(ET)
= α ΣM P(j | M,ET) P(M|ET) P(ET)
= α ΣM P(j | M) P(M|ET) P(ET)

First step is just Bayes rule
• normalizing constant α is 1/P(j); but we needn’t compute it 

explicitly if we compute P(ET | j) for each value of ET: we just 
add up terms P(j | ET) P(ET) for all values of ET (they sum to 
P(j))
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Backward Inference (Pooling)
Same ideas when several pieces of evidence lie 

“downstream”

P(ET | j,fev) = α P(j,fev | ET) P(ET)
= α ΣM P(j,fev | M,ET) P(M|ET) P(ET)
= α ΣM P(j,fev | M) P(M|ET) P(ET)
= α ΣM P(j | M) P(fev | M) P(M|ET) P(ET)

Same steps as before; but now we compute prob of both 
pieces of evidence given hypothesis ET and combine 
them. Note: they are independent given M; but not given 
ET.
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Variable Elimination
The intuitions in the above examples give us a simple 

inference algorithm for networks without loops: the 
polytree algorithm. We won't discuss it further. But be 
comfortable with the intuitions.

Instead we'll look at a more general algorithm that works 
for general BNs; but the propagation algorithm will more 
or less be a special case.

The algorithm, variable elimination, simply applies the 
summing out rule repeatedly. But to keep computation 
simple, it exploits the independence in the network and 
the ability to distribute sums inward.
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Factors

A function f(X1, X2,…, Xk) is also called a factor. We can 
view this as table of numbers, one for each instantiation 
of the variables X1, X2,…, Xk.
A tabular rep’n of a factor is exponential in k
Each CPT in a Bayes net is a factor:

• e.g., Pr(C|A,B) is a function of three variables, A, B, C

Notation: f(X,Y) denotes a factor over the variables X ∪
Y. (Here X, Y are sets of variables.)
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The Product of Two Factors
Let f(X,Y) and g(Y,Z) be two factors with variables Y in 

common
The product of f and g, denoted h = f x g  (or sometimes 

just h = fg), is defined:
h(X,Y,Z) = f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)

ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02

~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12
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Summing a Variable Out of a Factor
Let f(X,Y) be a factor with variable X (Y is a set)
We sum out variable X from  f to produce a new factor h 

= ΣX f,  which is defined:

h(Y) = Σx∊Dom(X) f(x,Y)

f(A,B) h(B)

ab 0.9 b 1.3

a~b 0.1 ~b 0.7

~ab 0.4

~a~b 0.6
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Restricting a Factor
Let f(X,Y) be a factor with variable X (Y is a set)
We restrict factor  f  to X=x by setting X to the value  x

and “deleting”. Define  h = fX=x as:
h(Y) = f(x,Y)

f(A,B) h(B) = fA=a

ab 0.9 b 0.9

a~b 0.1 ~b 0.1

~ab 0.4

~a~b 0.6
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Variable Elimination: No Evidence
Computing prior probability of query var X  can be seen 

as applying these operations on factors

P(C) = ΣA,B P(C|B) P(B|A) P(A)

= ΣB P(C|B) ΣA P(B|A) P(A)

= ΣB f3(B,C) ΣA f2(A,B) f1(A) 

= ΣB f3(B,C) f4(B)
= f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and  f5(C)= ΣB f3(B,C) f4(B)

B CA
f1(A) f2(A,B) f3(B,C)
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Variable Elimination: No Evidence
Here’s the example with some numbers

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)

a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



73

VE: No Evidence (Example 2)

P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)
= ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)
= ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A) 
= ΣC f4(C,D) ΣB f2(B) f5(B,C)
= ΣC f4(C,D) f6(C)
= f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Variable Elimination: One View

One way to think of variable elimination:
• write out desired computation using the chain rule, exploiting the 

independence relations in the network
• arrange the terms in a convenient fashion
• distribute each sum (over each variable) in as far as it will go

 i.e., the sum over variable X can be “pushed in” as far as the 
“first” factor mentioning X

• apply operations “inside out”, repeatedly eliminating and creating 
new factors (note that each step/removal of a sum eliminates 
one variable)
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Variable Elimination Algorithm
 Given query var Q, remaining vars Z. Let F be set of 

factors corresponding to CPTs for {Q} ∪ Z.

1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj -- in the order given -- eliminate Zj ∊ Z

as follows:
(a)  Compute new factor  gj = ΣZj f1 x f2 x … x fk,  

where the fi are the factors in F that include Zj
(b) Remove the factors  fi (that mention Zj ) from F 

and add new factor  gj to  F
3. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)
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VE: Example 2 again

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A) 
Remove: f1(A), f3(A,B,C) 

Step 2: Add f6(C)= ΣB f2(B) f5(B,C)
Remove: f2(B) , f5(B,C) 

Step 3: Add f7(D) = ΣC f4(C,D) f6(C) 
Remove: f4(C,D), f6(C) 

Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(D)?  
Elim. Order: A, B, C

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Variable Elimination: Evidence
Computing posterior of query variable given evidence is 

similar; suppose we observe C=c:

P(A|c) = α P(A) P(c|A)
= α P(A) ΣB P(c|B) P(B|A)
= α f1(A) ΣB f3(B,c) f2(A,B) 
= α f1(A) ΣB f4(B) f2(A,B)
= α f1(A) f5(A)
= α f6(A)

New factors:  f4(B)= f3(B,c);   f5(A)= ΣB f2(A,B) f4(B); f6(A)= f1(A) f5(A) 

B CA
f1(A) f2(A,B) f3(B,C)
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Variable Elimination with Evidence
Given query var Q, evidence vars E (observed to be e), 

remaining vars Z. Let F be set of factors involving CPTs 
for {Q} ∪ Z.

1. Replace each factor f∊F that mentions a variable(s) in E
with its restriction fE=e (somewhat abusing notation) 

2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)
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VE: Example 2 again with Evidence

Restriction: replace f4(C,D) with f5(C) = f4(C,d) 
Step 1: Add f6(A,B)= ΣC f5(C) f3(A,B,C)

Remove: f3(A,B,C), f5(C) 
Step 2: Add f7(A) = ΣB f6(A,B) f2(B) 

Remove: f6(A,B), f2(B) 
Last factors: f7(A), f1(A). The product f1(A) x f7(A) is (possibly 

unnormalized) posterior. So… P(A|d) = α f1(A) x f7(A).

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(A)?  
Evidence: D = d
Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Some Notes on the VE Algorithm

After iteration j (elimination of Zj), factors remaining in set 
F refer only to variables Xj+1, … Zn and Q. No factor 
mentions an evidence variable E after the initial restriction.

Number of iterations: linear in number of variables

Complexity is linear in number of vars and exponential in 
size of the largest factor. (Recall each factor has 
exponential size in its number of variables.) Can't do any 
better than size of BN (since its original factors are part of 
the factor set). When we create new factors, we might 
make a set of variables larger.
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Some Notes on the VE Algorithm

The size of the resulting factors is determined by 
elimination ordering! (We’ll see this in detail)
For polytrees, easy to find good ordering (e.g., work 

outside in).
For general BNs, sometimes good orderings exist, 

sometimes they don't (then inference is exponential in 
number of vars). 

• Simply finding the optimal elimination ordering for general BNs is 
NP-hard.

• Inference in general is NP-hard in general BNs
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Elimination Ordering: Polytrees

Inference is linear in size of 
network

• ordering: eliminate only “singly-
connected” nodes

• e.g., in this network, eliminate D, A, 
C, X1,…; or eliminate X1,… Xk, D, 
A, C

• result: no factor ever larger than 
original CPTs

• eliminating B before these gives 
large factors!
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Effect of Different Orderings

Suppose query variable is D. 
Consider different orderings 
for this network

• A,F,H,G,B,C,E:
 good: why?

• E,C,A,B,G,H,F:
 bad: why?

Which ordering creates 
smallest factors?

• either max size or total
• which creates largest?
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Complexity of VE

Given BN, elim. ordering. Let induced graph be the 
undirected graph obtained by joining any two variables 
that occur is some factor that occurs during VE.
Each (maximal) clique in induced graph corresponds to a 

factor, and each factor is a subset of some clique.
Hence: complexity is exponential in size of largest clique.
Induced graph: moralized and triangulated
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Relevance
Certain variables have no impact on the query. In ABC 

network above, computing Pr(A given no evidence 
requires elimination of B and C. But when you sum out 
these vars, you compute a trivial factor (whose value are 
all ones).
Can restrict attention to relevant variables. Given query 

Q, evidence E:
• Q is relevant
• if any node Z is relevant, its parents are relevant
• if E∊E is a descendent of a relevant node, then E is relevant
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