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1. [30 points]

There are several ways to justify the optimal poliies and value functions (e.g., just running policy or
value iteration). Finding the indifference probabilities, however, requires that you compute an explicit
expression for the value of the two policies, a or b. For this reason, the way I would have done this
is simply to write out the value equations for the two policies and compare their actual values at state
s1 when the stickiness and risky probabilities are set as required. This is very simple, since this MDP
only has two (deterministic) policies, and each policy has only three or four reachable states. The
equations are as follows:

For policy a:

v1 = 0.95(0.1v1 + 0.9v2) (1)

v2 = 0.95(pSv2 + (1− pS)v4) (2)

v4 = 10 + 0.95(0.1v4 + 0.9v1) (3)

For policy b:

v1 = 0.95(0.1v1 + 0.9v3) (4)

v3 = 0.95(0.1v3 + pRv5 + (0.9− pR)v4) (5)

v4 = 10 + 0.95(0.1v4 + 0.9v1) (6)

v5 = −10 + 0.95(0.1v5 + 0.9v1) (7)

(a) Fix pS = 0.2.

With pR = 0.01, we solve the policy a equations and obtain: v1 = 60.26, v2 = 63.78, v4 =

67.98. The policy b equations give: v1 = 61.52, v3 = 65.12, v5 = 47.07, v4 = 69.17. The
optimal policy is b (take the risky path).

With pR = 0.03, the policy a equations are the same as above. The b equations give:
v1 = 58.72, v3 = 62.16, v5 = 44.43, v4 = 66.52. The optimal policy is a (take the sticky
path).

To find the indifference level for pR, we simply leave pR variable in the b equations,



and add the constraint that v1 = 60.26 (it’s value under a). Solving for pR gives pR =

0.018989.

(b) We do the same as above with pS = 0.6.

With pR = 0.1, policy a gives: v1 = 43.67, v2 = 46.23, v4 = 52.31. Policy b gives:
v1 = 48.93, v3 = 51.80, v5 = 35.18, v4 = 57.28. The optimal policy is b (take the risky
path).

With pR = 0.2, the policy a equations are the same as above. The b equations give:
v1 = 34.95, v3 = 37.00, v5 = 21.97, v4 = 44.07. The optimal policy is a (take the sticky
path).

The indifference level for pR is 0.13762.

2. [40 points (adds up to 42, so possible 2pt “bonus”]

(a) [4] One stage is insufficient since it prevents one form using a conditional plan/policy in
which one first does a test and then determines a treatment based on the result of the test.
This would require at least two stages, and such policies are optimal in belief states in
which testing has not been done and their is sufficient uncertainty regarding the patient’s
disease.

Three (or more) stages are not necessary because: (i) once testing is completed, any further
testing adds negative value to a policy; and (ii) once a treatment is applied, any further
treatment add negative value to a policy.

(b) [0] To be ignored (as instructed).

(c) [8] There are six one-stage plans, one for each possible action: Null, M1, M2, M3, T1, T2.
Plans M1, M2, M3 and Null are all useful:

• M1 is optimal in any state where Y holds (i.e., belief state where X is true with prob-
ability 1) or any belief state where Y is quite likely.

• M2 is optimal in any state where X holds (i.e., belief state where X is true with prob-
ability 1) or any belief state where X is quite likely.

• M3 is optimal in belief states where X and Y are each reasonably likley.

• Null is optimal in any state where Tr (treated) holds or belief state where is it quite
likely.

The two test plans (T1 and T2) are pointwise dominated by the Null action: in any state
s the Null action has a cost of zero and leads to the same terminal state s (receiving the
terminal reward at s). In any state s a test action has a cost of -2 and leads to the same
terminal state s (again with the same terminal reward). So the each test action has a total
reward that is 2 less than that of Null, at ant state s, with one stage to go.

(d) [10] Recall that you were to assume that Pr(T1 = H|Tr) = 1.0 and Pr(T2 = Y |Tr) =
1.0. The ten α-vectors (over the first four states) are as follows:



• α1: [16, 14.4, 3, -102]

• α2: [16.3, 0.8, 5, -102]

• α3: [17.2, 8, 4, -102]

• α4: [-1.1, 14.6, 7.6, -102]

• α5: [12.9, 0.2, 7.4, -102]

• α6: [7.3, 8.2, 7.8, -102]

• α7: [0, 3.6, 3, -102]

• α8: [-2, 18, 4, -102]

• α9: [0, 20, 6, -100]

• α10: [12, 12, 8, -100]

(e) [3] Vector α6 is pointwise dominated by α10. Vector α7 is pointwise dominated by α1 (or
α3 or α10 or α6). Vector α8 is pointwise dominated by α9.

(f) [14] Here are some example belief states (yours may not be the same, but should have
similar “structure” or approximate ratios over the three states s1, s2, s3. Belief state b1 is
one in which vector αi is optimal. The table shows the expected value of each of the seven
plans/vectors at each of the seven belief states

Belief State Pr(s1) Pr(s2) Pr(s3) α1 α1 α1 α1 α1 α1 α10

b1 0.5 0.5 0 15.2 8.55 12.6 6.75 6.55 10 12
b2 0.5 0 0.5 9.5 10.65 10.6 3.25 10.15 3 10
b3 1 0 0 16 16.3 17.2 -1.1 12.9 0 12
b4 0 0.2 0.8 5.28 4.16 4.8 9 5.96 8.8 8.8
b5 0.41 0 0.59 8.33 9.633 9.412 4.033 9.655 3.54 9.64
b9 0 1 0 14.4 0.8 8 14.6 0.2 20 12
b10 0.25 0.25 0.5 9.1 6.775 8.3 7.175 6.975 8 10

(g) [3] The optimal plan for s4 is “Null; Null.”

3. [30 points]

(a) We need to set depth

d ≥ logβ(
(1− β)ε
R+

)− 1

This can be derived by observing that the error is bounded by

βd+1 R+

1− β

which we prove inductively (an somewhat less rigorous, but intuitive, convincing justifica-
tion would suffice).



That this relation holds for depth d = 0 is seen by observing that V 0(s) = R(s), while

V ∗(s) = max
a

R(s) + β
∑
t

Pr(s, a, t)V ∗(t)

Since V ∗(t) is bounded by R+

1−β , the relation holds.

Assume it holds for depth d− 1. Then

V d(s) = max
a

Qd(s, a) = max
a

R(s) + β
∑
t

Pr(s, a, t)V d−1(t)

By the inductive hypothesis, the error in the Q-estimates, Q∗(a) − Qd(a), is less than
ββd R

+

1−β . The only other source of error is if some action ad maximizes Qd(s, a) while a
different action a∗ maximizes Q∗(s, a) (so that V ∗(s) = Q∗(s, a)). But if this is the case,

Q∗(s, a∗) ≤ Qd(s, a∗) + βd+1 R+

1− β

≤ Qd(s, ad) + βd+1 R+

1− β

≤ V d(s) + βd+1 R+

1− β

Thus V ∗(s) ≤ V d(s) + βd+1 R+

1−β (and by definition must at least as great as V d(s).

(b) We need to set depth
d ≥ logβ

ε

δ

This can be derived by observing that the error is bounded by

βdδ

using an inductive argument similar to the one above. The difference in the βd vs. βd+1

terms has to do with the fact that in part (a) we estimate value at the leaves using R. This
means that the error at the leaves in this w.r.t. to the true value function is discounted by β,
since they must agree on the initial term R(t) (for leaf state t).

(c) One simple way to prune the search tree in a way that exploits the heuristic function,
specifically, its accuracy parameter δ is as follows. As we build the tree, we evaluate the
Q-values of each action using its immediate successors and Ṽ . We know that this value
Q̃(s, a) is within δ of Q(s, a) (this is for any interior node of the tree, not just the start
state). If Q̃(s, a) + δ is less than the lower bound on the values of any other action a′ at
state s, we need not expand the tree below the immediate successors of action a.

Note that this lower bound can be Q̃(s, a′) for each a′ whose successors haven’t ye been
evaluated, or could be a more refined estimate of Q(s, a′), if we;ve expanded the tree
below a′. The precise mechanism will depend on how one expands the tree (e.g., depth-



first, breadth-first, in a heuristically chosen order, etc.)


