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1. [35 points]

(a) [15]

(i) [2] While the initial ordering doesn’t indicate strict preference among the outcomes,
the fact that any lottery is strictly preferred to some other lottery (as indicated in each
of the constraints) is sufficient to conlcude that some strict preference exists among
outcomes (hence that the best is strictly better than the worst).

(ii) [11] There are five outcomes to consider, which we analyze in an order so that each
bound can build on the others:
• z1: u(z1) = 1 (since it is best, and by normalization).
• z5: u(z5) = 0 (since it is worst, and by normalization).
• z2: u(z2) ∈ (0.8, 0.9). This holds by the second preference constraint, since
u(z1) = 1, u(z5) = 0, EU (〈0.9, z1; 0.1, z5〉) = 0.9 and EU (〈0.8, z1; 0.2, z5〉) =
0.8.
• z4: u(z4) ∈ (0.2, 0.3). We use the third preference constraint to derive its bound:

notice that each of the three lotteries in this constraint is a mixture of z4 and a
standard gamble EU (p) that selects outcome z1 with probability p and z5 with
probability 1− p, hence whose expected utility is p. Specficially, we have:

x = EU (〈0.42, z1; 0.2, z4; 0.38, z5〉) = EU (〈0.2, z4; 0.8,EU (
42

80
)〉) = 0.2u(z4) + 0.42

y = EU (〈0.3, z1; 0.6, z4; 0.1, z5〉) = EU (〈0.6, z4; 0.4,EU (
3

4
)〉) = 0.6u(z4) + 0.3

z = EU (〈0.38, z1; 0.2, z4; 0.42, z5〉) = EU (〈0.2, z4; 0.8,EU (
38

80
)〉) = 0.2u(z4) + 0.38

The third preference constraint tells us x > y: solving for u(z4) gives 0.3 >
u(z4). It also tells us y > z: solving for u(z4) gives 0.2 < u(z4).
• z3: u(z3) ∈ (0.5, 0.7). We use the fourth preference constraint to derive its

bound. The first lottery is a standard gamble, 〈0.7, z1; 0.3, z5〉 with expected util-
ity 0.7, hence 0.7 > u(z3). The third lottery, 〈0.5, z2; 0.5, z4〉, has expected utility
0.5u(z2) + 0.5u(z4). If we plug in the lower bounds for z2 and z4 derived above,
we have u(z3) > 0.5(0.8) + 0.5(0.2) = 0.5.

(iii) [2] The utilities for these five outcomes cannot be set independently anywhere within
their upper and lower bounds. Specifically, the lower bound on u(z3) depends on the
values of both u(z2) and u(z4) via the inequality: u(z3) > 0.5u(z2) + 0.5u(z4).

(b) [10] In each case, I’ll call the first lottery/outcome A and the second B.

(i) [2] Yes, it is easy to see B is preferred to A, by monotonicity: B is equivalent to A
with one outcome z4 replaced by a strictly preferred outcome z2.



(ii) [2] Yes, A is preferred to B. A has its lowest utility relative to z3 if we set outcomes
z2 and z4 to have their lowest possible utility (recall z1 has utility 1), so EU (A) ≥
0.3 + 0.08 + 0.02 + 0.5u(z3), so A is preferred to B if 0.4 > 0.5u(z3). For any
possible value u(z3) ∈ (0.5, 0.7), this inequality holds. (Note: the constraint that
u(z3) > 0.5u(z2) + 0.5u(z4) holds in addition to the bounds derived above hold
trivially when we set z2, z4 to their lower bounds.)

(iii) [2] Yes, it is easy to see B is preferred to A, again by monotonicity: B is equivalent
to A with the exception that the probability of a preferred outcome z3 is higher than
in A, and the probability of a less preferred outcome z4 is lower than in A.

(iv) [4] We can’t prove that either of A or B is preferred to the other. First: By setting the
outcome z4 within A to its upper bound, we obtain EU (A) = 0.65. (I’m being loose
here because the bounds are actually open intervals, but all equalities hold within an
arbitrarily small ε. It’s OK if you are similarly “loose.”) With u(z4) = 0.3 (its upper
bound), we can’t set z3 in B to its lower bound because of the constraint u(z3) >
0.5u(z2) + 0.5u(z4) (see above). But u(z3) can be as low as 0.55 with this inequality
holding (set z2 to its lower bound and z4, as above to its upper bound). So EU (B) =
0.55 in this case. So it is possible that A is preferred to B.
Second: By setting z4 to its lower bound and z3 to its upper bound (the constraint on
z3 is trivially satisfied then) we have EU (A) = 0.6 and EU (B) = 0.62, so it is also
possible that B is preferred to A.

(c) [10]
(i) [3] PMR of A relative to B is the worst case difference EU (B) − EU (A) which is

0.7 − 0.65 = 0.05 (setting z3 to its upper bound in B (there is no uncertainty in A’s
utility).
PMR of B relative to A is the worst case difference EU (A) − EU (B) which is
0.65 − 0.5 = 0.15 (setting z3 to its lower bound in B. A has minimax regret (with
max regret 0.05).

(ii) [5] PMR of C relative to D is the worst case difference EU (D) − EU (C) which
is 0.82 − 0.68 = 0.14 (setting z3 to its upper bound in D, and z2, z4 to their lower
bounds in C.
PMR of D relative to C is the worst case difference EU (C) − EU (D). This is less
straightforward because of the constraint u(z3) > 0.5u(z2) + 0.5u(z4), so we can’t
simply set z2, z4 to their upper bounds in C without impacting the minimum value z3
can take in D. However, it’s not hard to see that the maximum advantage of C over D
is attained by setting z2 to its upper bound, z4 to its lower bound, and then setting z3
as low as permitted by the constraint. A simple justification: every δ increase in the
value of z2 causes an increase of 0.5δ in z3 by the constraint; because of the lottery
probabilities, it induces an increase of 0.4δ in the utility of C and 0.35δ in the utility
of D (so advantage is maximized by maximizing z2). Conversely, every δ increase in
the value of z4 also causes an increase of 0.5δ in z3 by the constraint; because of the
lottery probabilities, it induces an increase of 0.3δ in the utility of C and 0.35δ in the
utility of D (so advantage is maximized by minimizing z4).
Setting u(z2) = 0.9, u(z4) = 0.2, and u(z3) = 0.55 has required by the constraint
gives a PMR of EU (C) − EU(D) = 0.72 − 0.785 = −0.065. Hence D is always
better than C no matter what the utilities: so D has minimax regret (and max regret
of 0).



(iii) [2] A single bound query asking the decision maker whether B (i.e., z3) is preferred
to the standard lottery correponding to A (i.e., best outcome with probability 0.65 and
worst with 0.35) trivially determines which of A or B is better.

2. [25 points] Let � be a preference function over lotteries satisfying the axioms. For any outcome
s ∈ S, the “preference” for s refers to the preference for the degenerate lottery that gives s with
probability 1.0.

We first note that by orderability, transitivity, and the finiteness of S, we must have a best and worst
outcome; that is, there is some s> ∈ S s.t. s> � s for all s ∈ S, and some s⊥ ∈ S s.t. s⊥ � s for all
s ∈ S. Let S = {s1, . . . , sn}.
By continuity, for any si ∈ S, there exists a probability ui s.t. si ∼ 〈ui, s>; 1− ui, s⊥〉. Furthermore,
this ui is unique, since—due to monontonicity and nontriviality—increasing or decreasing ui results
in a more or less preferred lottery. So let the u be the utility function u : S → [0, 1] where u(si) = ui.
(Note that u(s>) = 1 and u(s⊥) = 0.) We now show that u satisfies the requirements of the theorem.

Suppose l1 � l2 for two lotteries:

l1 = 〈p11, s1; p21, s2; . . . ; pn1 , sn〉 and l2 = 〈p12, s1; p22, s2; . . . ; pn2 , sn〉

We then have

l1 ∼ 〈p11, 〈u1, s>; 1− u1, s⊥〉; p21, s2; . . . ; pn1 , sn〉
∼ 〈p11, 〈u1, s>; 1− u1, s⊥〉; p21, 〈u2, s>; 1− u2, s⊥〉; . . . ; pn1 , sn〉
· · ·
∼ 〈p11, 〈u1, s>; 1− u1, s⊥〉; p21, 〈u2, s>; 1− u2, s⊥〉; . . . ; pn1 , 〈un, s>; 1− un, s⊥〉〉

In other words, we replace each outcome si in sequence by its corresponding “standard gamble.” The
sequence of indifference statements is valid due to substitutability and transitivity. By decomposabil-
ity (reduction of compound lotteries), we then have

l1 ∼
〈
(
∑

pi1ui), s>; 1− (
∑

pi1ui), s⊥

〉
By identical reasoning

l2 ∼
〈
(
∑

pi2ui), s>; 1− (
∑

pi2ui), s⊥

〉
Thus l1 � l2 iff〈

(
∑

pi1ui), s>; 1− (
∑

pi1ui), s⊥

〉
�

〈
(
∑

pi2ui), s>; 1− (
∑

pi2ui), s⊥

〉
But by monotonicity, this holds iff

∑
pi1ui >

∑
pi2ui, which is equivalent to stating that EU(l1) >

EU(l2).

3. [25 points] The proof is straightforward. We’ll call the first condition AX1 and the second AX2. Let c
be a choice function satisfying AX1 and AX2. We’ll define the following preference relation� based
on c: for any x, y ∈ X , let x � y iff x ∈ c({x, y}). First we show that � is a preference relation, i.e.,
connected and transitive.

By definition of a choice function, either x ∈ c({x, y}) or y ∈ c({x, y}); so we have either x � y or
y � x, hence � is connected.



To show transitivity, suppose x � y (which means x ∈ c({x, y})) and y � z (which means y ∈
c({y, z})). We just need to show that x ∈ c({x, z}) to prove transitivity. We will show that, in
fact, x ∈ c({x, y, z}), which implies x ∈ c({x, z}) by AX1. By way of contradiction, suppose
x 6∈ c({x, y, z}). First we show y must be in c({x, y, z}). If y 6∈ c({x, y, z}), then c({x, y, z}) = z,
which by AX1 implies z ∈ c({y, z}). But since y ∈ c({y, z}), by AX2 we must have y ∈ c({x, y, z}).
So we know y ∈ c({x, y, z}). But this means y ∈ c({x, y}) by AX1. And together with the fact that
x ∈ c({x, y}), AX2 implies that x ∈ c({x, y, z}). Hence � is transitive.

Second we must show that the choice function c� induced by � (i.e., the choice function induced by
selecting the best elements in any set according to �) is identical to c. Let A be a non-empty subset
of X . Suppose x ∈ c(A). By AX1, we know x ∈ c({x, y}) for any y ∈ A. By definition, x � y for
any y ∈ A, so x ∈ c�(A). Now suppose x ∈ c�(A). This implies x � y for any y ∈ A, which by
definition means x ∈ c({x, y}) for any y ∈ A. Let z be some element of c(A). If z = x, then clearly
x ∈ c(A), so suppose z 6= x. By AX1, z ∈ c({x, z}), so c({x, z}) = {x, z}. This fact, together with
the fact that z ∈ c(A) implies by AX2 that x ∈ c(A). This means x ∈ c(A) iff x ∈ c�(A).

4. [15 points]

(i) Note that the expected monetary value of the investment for both Ali and Barb is $5200.

(ii) Ali’s expected utility for his current investment is given by

0.6ua(10000) + 0.4ua(−2000) = 0.6 ln(
10000

500
+ 6) + 0.4 ln(

−2000
500

+ 6) = 2.232117.

His certainty Ca equivalent must satisfy ua(Ca) = 2.232117, or equivalently

Ca = (e2.232117 − 6)/500 = 1659.79.

So Ali requires at least $1659.79 to sell his investment. Since this is less than the EMV, Ali is clearly
risk averse (like much of the investment community in Toronto).

(iii) Barb’s expected utility for her current investment is given by

0.6ub(10000) + 0.4ub(−2000) = 0.6 exp(
x

10000
− 2) + 0.4 exp(

−2000
3000

− 2) = 2.303994.

Her certainty Cb equivalent must satisfy ua(Cb) = 2.303994, or equivalently

Cb = ln(2.303994) + 2) · 3000 = 8503.93.

So Barb requires at least $8503.93 to sell her investment. Since this is more than the EMV, Barb is
clearly risk seeking.

5. [30 points]

(a) [18 – 2 pts each] For each you can either give an intuitive argument or simply appeal to the
definition of d-separation. In the latter case, the hope is you will understand the underlying
intuition of the formal, “graph-theoretic” criterion.

(i) True (node I cuts the path from G to H , since it is a head-to-head node with no
descendents as evidence)

(ii) False (the path H → I → J is not blocked: there is no evidence and there are no
head-to-head nodes to block it)



(iii) True (node M cuts the path from H to L, since it is a head-to-head node with no
descendents as evidence)

(iv) False (the path is not cut as in the previous question, since N–a descendent of M–is
evidence)

(v) True (node I blocks all paths from E to H , since it is a head-to-head node with no
descendents as evidence)

(vi) False (node I is now in evidence, and no longer blocks any of the paths between E
and H)

(vii) False (node C blocks the path E ← C ← G → I ← H , as well as the similar paths
E ← D ← C . . . and E → F ← D ← C . . .. But the path E ← D ← B ← A →
C ← G→ I ← H becomes unblocked because C (and I) is in evidence)

(viii) False (the paths G→ C → E → F , G→ C → D → F , and G→ C → D → E →
F , are all unblocked)

(ix) False (C blocks the paths above, but now the path G → C ← A . . . is unblocked,
since C (head-to-head) is in evidence)

(x) True (node D blocks all of the paths from A to F rendered active by the presence of
C)

(b) [12] I’ll just give the answers and some comments, not derivations.

(i) [2] 0.418
(ii) [2] 0.8 (directly from the CPT)

(iii) [3] 0.4
(iv) [3] 0.8977
(v) [2] 0.8977. This follows from the previous question, since A is independent of E

given C and D


