Lecturer: Christina Christara, ccc@cs
Tutor: Kirill Ignatiev, kirill@cs

Lectures: Tuesday 1-3 PM, Room BA B024
Office Hours: Monday 3:30-4:30 PM, or by appointment, Room BA 4226

Tutorial: Thursday 1-2 PM, Room BA B024

Bulletin board: https://csc.cdf.toronto.edu/csc350h1f

Aims of course
- Introduce numerical methods for solving linear and nonlinear algebraic equations and systems.
- Evaluate numerical methods with respect to their accuracy, time and memory complexity.
- Develop and practice computer skills in implementing numerical methods efficiently on the computer.
- Use high level software for studying numerical methods.

Skills / Knowledge testing in the course
- Apply basic principles, not recall lecture notes in detail
- Problem recognition
- Method recognition
- Apply a given method correctly
- Solve a numerical problem efficiently and reliably using numerical software.

Prerequisite Mathematics
- Ability to handle notation and to do algebraic manipulation
- Induction
- Calculus including:
 - Differentiation and integration of polynomial, trigonometric, exponential, logarithmic and rational functions, continuity, limits, graphs of functions, Taylor series, Rolle’s theorem, mean-value theorem, de l’ Hospital’s rule, etc. Basic multivariate calculus.
- Elementary Linear Algebra including:
 - Matrix and vector addition and multiplication, elementary row operations, linear (in)dependence, inverse matrix, etc.
 - Programming: knowledge of basic programming constructs, such as for loops and if-then-else statements; manipulation of vectors and matrices; knowledge of (or will to learn) MATLAB, or knowledge of some conventional programming language, such as FORTRAN or C.

Computer accounts
You will get a computer account on the CDF Unix system. Consoles/workstations are located in the Bahen Center for Information Technology building. Most computer assignments must be run on that system. You must log-in frequently and read mail, news and other messages relating to the course through your account.

Marks distribution

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Due Date</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>Tuesday, October 8</td>
<td>12%</td>
</tr>
<tr>
<td>Term test</td>
<td>Thursday, October 24</td>
<td>24%</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>Thursday, November 7</td>
<td>12%</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>Tuesday, December 3</td>
<td>12%</td>
</tr>
<tr>
<td>Final exam</td>
<td></td>
<td>40%</td>
</tr>
</tbody>
</table>

- Must get at least 33% in the final exam.
- Must get at least 33% average in the computer assignments.

Midterm test and Final exam: Calculators are the only aids permitted.

Problem sets / Computer assignments
problem sets: please write as clearly as possible.

Indicate your last (family) name by capitalisation or underlining in the front page of your paper.
computer assignments: don’t leave it to the last minute - think of the following
- the machine being down, when you need it.
- the workstation room being crowded.
the printer being stuck, when you are just at the time to get your final listing.
– accidentally deleting an important file.
overcome this by using backup procedures (for the source and data files only).

The above are not good reasons for extension of the assignment due date.

Late assignment policy
Assignments are due the day posted, at lecture/tutorial time. Assignments submitted late have a reduction of marks based on the maximum total marks the assignment could get, had it been submitted on time (and not the total marks the assignment actually got). Each day costs 10%, to a maximum of 5 days. Assignments submitted later than 5 days after the due date do not receive any marks. Weekends and holidays count as regular days for the purpose of late assignment policy.

Topics to be covered
• Introduction (Ch. 1)
 Computer representation of numbers, computer arithmetic
 Round-off error, error propagation, conditioning and stability
• Square linear systems - direct methods (Ch. 2)
 Gauss elimination, LU factorisation, pivoting, scaling, forward and back substitution
 Symmetric and symmetric positive definite matrices, Choleski factorisation
 Special cases: tridiagonal, banded, general sparse systems
• More on matrices (Ch. 2 – §2.3, §2.4, Ch. 4 – §4.1)
 Vector and matrix norms
 Condition number of a matrix
 Iterative refinement
 Eigenvalues and eigenvectors
• Non-square linear systems – Linear least squares solution (Ch. 3)
 Least squares solution, normal equations
 QR factorisation, Gram-Schmidt method for matrices
• Computing eigenvalues and eigenvectors (Ch. 4)
 The power method; the QR iteration
• Nonlinear equations and systems (Ch. 5)
 Bisection; fixed point iteration, Newton’s method; secant
 Convergence, accuracy and efficiency
 Newton’s method for systems, Jacobian matrix
 Modifications to Newton’s method, approximations to Jacobian
 Quasi-Newton methods; Broyden’s method
• Unconstrained optimisation (Ch. 6, time permitting)
 one-dimensional: Golden section search; Newton’s method
 multi-dimensional: Steepest descent; Newton’s; BFGS; Gradient methods

Other references
William W. Hager
Applied Numerical Linear Algebra
Prentice Hall 1988

Conte, S. D. and Carl de Boor
Elementary Numerical Analysis
McGraw-Hill Inc.

Johnson, L. W. and R. D. Riess
Numerical Analysis
Addison Wesley

David Kincaid and Ward Cheney
Numerical Analysis
Brooks/Cole

Richard L. Burden and J. Douglas Faires
Numerical Analysis
Brooks/Cole