
Overview of Programming Techniques
Covered so Far

Tim Capes

February 11, 2011



Defining a function

1. def is used to begin the definition
2. immediately after def is the name of the function
3. after that is () if the function has no input variables or a list

of input variables inside the same type of brackets if it
does.

4. lastly the function has its own block of code following which
we start by using :



Function Definitions Example

def aPixelFunction(pixel):
1. def is used to begin the definition
2. this function is called aPixelFunction
3. it can take any variable from the command area in and will

use the name pixel for it.
4. by using this name we are indicating we assume this

variable will be a pixel and if its not then the program may
have problems running.



Function Calls

1. First part, the name of the function you want to call
2. Second part, passing it any relevant variables
3. What it does is run whatever code is in the function



Function Calls Example function

We will call the function setRed, which takes a pixel and a
number between 0 and 255 and sets the pixels red component
to that value.

1. The first part of the call is the name of the function: setRed
2. The second part of the call is any relevant variables these

are:
2.1 the pixel: I will assume we will have a pixel called myPixel

available
2.2 the number: I want to set the red value to the constant 30

so I’ll put that directly into the call

3. the call ends up being setRed(myPixel,30)



JES pixel functions

Here is a list of the pixel functions we can call in JES:
1. Those take a pixel as input and return something: getRed,

getBlue, getGreen, getColor
2. Those that take a pixel and a value and set the component

to that value: setRed, setBlue, setGreen, setColor
3. Two get functions we haven’t made use of: getX, getY



JES picture functions

Here is a list of picture functions we can call in JES:
1. Those that get various information: getHeight, getWidth, ,

getPixels, getPixelAt = getPixel
2. Those that display the picture: show, repaint
3. We haven’t used any functions that change the picture on

a level above pixels.



JES data creation/manipulation

Here is a list of file manipulation functions we can call in JES:
1. Those that load files: pickAFile, getMediaPath
2. Those that configure: setMediaPath
3. Those that make objects out of files: makePicture,

makeSound
4. Those that make empty objects: makeEmptyPicture,

makeEmptySound



JES sample functions

Here is a list of sample functions we can call in JES:
1. to get information: getSampleValue, getSound
2. to change information: setSampleValue



JES sound functions

Here is a list of sound functions we can call in JES:
1. to get information: getSamples, getSampleObjectAt,

getSampleValueAt, getDuration, getLength,
getSamplingRate, getNumSamples

2. to set information we will manipulate sounds largely at the
sample level.

3. to play sounds we use: play, blockingPlay



Understanding JES functions

For all the JES functions we use there are examples in the
slides and text that should help make matters clear. The demo
video on the course webpage as well as a demonstration in
class covered how to go into the help in JES and look at these
functions. That is your best resource for looking at what they do.



An example help document

getNumSamples(sound): sound: the sound you want to find the
length of (how many samples it has) returns: the number of
samples in sound Takes a sound as input and returns the
number of samples in that sound. Example: def songLength():
sound = makeSound(r”C:
My Sounds
2secondsong.wav”) print getNumSamples(sound) This will print
out the number of samples in the sound. For a 2 second song
at 44kHz, it will print out 88000.



Figuring out what a function does from the help

What the help document will tell you is.. what the variables are
(sound should be a sound object) and what the function will
give you, in this case the number of samples you want to find.
There is an example of using the function that should help you
figure out how to call it.



for loops

For loops are the main tool we use for any repetitive operation
for instance, changing pixels one at a time, or changing
samples one at a time. A for loop consists of the following

1. the keyword for
2. the the variable which changes in each iteration of the loop
3. the keyword in
4. the array of things to iterate over
5. a : to start a new block of code
6. the contents of the actual loop



examples of empty for loops

1. for s in getSamples(sound):
2. for s in range(0,getNumSamples(sound)):

Here the block of code in the actual loop is omitted, there are a
large number of examples with the loop blocks included in the
slides. The first statement increments s over the contents of an
array of samples(so s is a sample) while the second statement
uses range to create an array of integers (so s is an integer).



range

1. the range function works by calling range with either two or
three parameters

2. the first parameter is the start value
3. the second parameter is the end value
4. the last(optional) parameter is how much you increment by

(if you don’t say it’s 1).



if statements

1. starts with the keyword if
2. then contains a conditional (true or false statement)
3. then has a : indicating the start of a block of code
4. it will execute this code only when the conditional is true



if statement examples, empty execution blocks

1. if 5 > 3 :
2. if 5 < 2 :
3. if myInteger > 5:

The first of these statements is always true so the code will
always execute, the second if never true so the code will never
execute. The third of these is a real use of an if statement, it
uses a variable in the conditional, and depends on the value of
that variable. If myInteger has a value which is greater than 5
then the code will execute if not it won’t. To see if statements
with blocks of code so the lecture slides.



max and min

The functions max and min take in a list of numbers (or some
number variables) and return the maximum number or
minimum number respectively.

1. max(3,5) will return the value 5
2. min(-2,4,8) will return the value -2
3. max(myVariable,myOtherVariable) will return whichever of

these variables has a bigger value



print

This keyword is sometimes used in programs in class. It is used
when we want to write something to the screen. I’ve avoided it
in A1 and will avoid it in A2 because I wanted to avoid dealing
with string manipulation extensively as you’ve already had to
learn how to manipulate pictures, pixels, samples, sounds and
integers.

1. print ”Hello” +”World” will output HelloWorld
2. print ”Hello” ,”World” will output Hello World

You won’t need to use this on assignment A2 or for the tests or
exams. But should be able to learn this should you need to for
your own use.



Putting things together

In writing code, we want to put these various blocks together in
a way that accomplishes a specific task. To manipulate a sound
for instance I want to figure out what I want to do to each
sample, and then set up a for loop which allows me to get at
each sample and do what I want. If the choice of what to do
doesn’t depend on where the sample is in the file I can just use
getSamples but if it does then I’m going to have to iterate over
the indices so I’d instead use something along the lines of
range(0,getSampleLength()) and then to get a sample in the
loop I’d use getSampleAt(sound,s) where sound is the sound
file I’m working on and s is my loop variable. When I choose
this method of iterating over the sounds I know where in the file
I am which is sometimes necessary (for instance when
mirorring).



Questions

This document is intended to help clarify some issues that
arose in a discussion with a student about some problems they
were having with the course. It’s not intended to answer all your
questions, but it hopefully clarifies some. Ideally you will have
more, as questions and discussion are a natural part of learning
and they are encouraged in this course. Feel free to make use
of office hours (mine and the TA’s) setting up appointments (if
you have conflicts with my office hours and would like to meet),
and my e-mail (capestim@cs.toronto.edu) to ask questions.


