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Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 2
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I We build a pure red colour. We will use this later for
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I Sets up our loop over the x-coordinate for values in the
box.



Reduce Red Eye: Line 3

I for x in range(startX,endX):
I Sets up our loop over the x-coordinate for values in the

box.



Reduce Red Eye: Line 4

I for y in range(startY,endY):

I Sets up our loop over the y-coordinate for values in the
box.



Reduce Red Eye: Line 4

I for y in range(startY,endY):
I Sets up our loop over the y-coordinate for values in the

box.



Reduce Red Eye: Line 5

I currentPixel = getPixel(pic,x,y)

I Fetch the pixel at the current co-ordinates selected based
on the loops.



Reduce Red Eye: Line 5

I currentPixel = getPixel(pic,x,y)
I Fetch the pixel at the current co-ordinates selected based

on the loops.



Reduce Red Eye: Line 6 part 1

I distance(red,getColor(currentPixel))
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Reduce Red Eye: Line 6 part 2

I distance (red, getColor(currentPixel)) < 165

I We will compare it to the number 165. Why 165? This
comparison is either true or false and this makes up the
conditional part of the if statement.

I We find a value that works by trial and error. Too high and
we’ll select non-red colours. Too low and we won’t get all
the red.

I Later we will run examples.
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Reduce Red Eye: Line 6 part 3

I if distance(red,getColor(currentPixel))< 165:

I We tell the computer when this condition holds we want to
execute specific code and when it doesn’t we don’t.

I What specific code? The block following the : determined
by indentation
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I setColor(currentPixel, replacementColor)

I We are inside the if block so we are close enough to red.
I If the color is close enough to red use the replacement
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Possible Variations 1

I How many inputs should this function really have?

I There is a lot of merit to adding one (which)?
I 165 should be a variable not a constant, allow the user to

test red eye by repeatedly calling the function with different
values.
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So why 6 inputs?

I If we think the user should specify parameters we should
have 7; If not we should have 5.

I So why do we have 6 is it reasonable design to want the
user to specify only half of the parameters?

I Perhaps. There is a case to be made that distance is
something the program is responsible for, while
replacementColor is something the user should specify.

I Might have a function based on AI called
calculateBestDistance(picture,startX,startY,endX,endY,red)
to determine what value to use for changing the picture.
Could call this function in the location where you need the
distance.
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Analyzing complicated blocks of code

1. Figure out how to break each line into individual pieces to
understand.

2. Work from the smallest pieces outwards
3. Understand what the line is doing.
4. For loops: think about it first in the context of a single

iteration.
5. For loops: build up to multiple iterations and then what it

does for the whole loop.
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1. Rewrite this function as a 7 input function.

2. Rewrite this function as a 5 input function. Assume
computeBestDistance(pic,startX,startY,endX,endY) is
computed for you.

3. Write a specification for the 7 input version
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I recall getLength(source)/2 rounds down. Why do we want
to add 1?

I Consider a 3 sample sound: We will later want to sample 0
and 2 but 3/2 is 1. More later.
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I for sourceIndex in range(0,getLength(source),2):

I Make note of the fact we are increasing our source by 2
each iteration. Ignoring all samples with odd indices.

I As predicted earlier we have a sourceIndex to go with our
targetIndex
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I setSampleValueAt(target, targetIndex, sourceValue)

I We use setSampleValueAt because we have a numerical
index rather than a sample.

I We use targetIndex in the target. The value we copy over
is the sourceValue. Fairly standard loop stuff.
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doubleFrequency: Take stock of whole function

I Why does the target have double frequency?

I Could we have done this function in a natural way by side
effects?

I No. Target is half the length so want a new sound.
I Unnaturally we could take the target as input and modify it

but requiring the user to build the target sound outside is a
bad idea.
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halveFrequency

I We next analyze halving the frequency. As before we
change the function name.
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Demo time

I Have a hypothesis about what our function will do time to
run it.


