
CSC104 Chapter 5 and Chapter 8 Lecture

Tim Capes

October 25, 2011



Course Work

I Finalized Assignment 2 is up.

I Practice Midterm and solutions are posted.
I Midterm next week; Assignment Due in Two weeks



Course Work

I Finalized Assignment 2 is up.
I Practice Midterm and solutions are posted.

I Midterm next week; Assignment Due in Two weeks



Course Work

I Finalized Assignment 2 is up.
I Practice Midterm and solutions are posted.
I Midterm next week; Assignment Due in Two weeks



This weeks tutorial

I Sepia Tones

I Echoing a sound



This weeks tutorial

I Sepia Tones
I Echoing a sound



Using if statements

I if condition : code block

I elif condition: code block
I else code block
I example in lecture code



Using if statements

I if condition : code block
I elif condition: code block

I else code block
I example in lecture code



Using if statements

I if condition : code block
I elif condition: code block
I else code block

I example in lecture code



Using if statements

I if condition : code block
I elif condition: code block
I else code block
I example in lecture code



Targeted Colour Reduction

I Designing a colour replacement.

I Most typical example is red-eye removal which we will go
through in detail



Targeted Colour Reduction

I Designing a colour replacement.
I Most typical example is red-eye removal which we will go

through in detail



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 1

I def removeRedEye(pic,startX,startY,endX,endY,
replacementColor)

I 6 inputs: a picture, the box (4 inputs), and the color to
replace with.

I Why do we apply the algorithm to only a small part of the
picture?

I Being close to red in an eye is a reasonable context for
changing the red.

I Being close to red on clothing probably wouldn’t work as
well.



Reduce Red Eye: Line 2

I red = makeColor(255,0,0)

I We build a pure red colour. We will use this later for
comparisons.



Reduce Red Eye: Line 2

I red = makeColor(255,0,0)
I We build a pure red colour. We will use this later for

comparisons.



Reduce Red Eye: Line 3

I for x in range(startX,endX):

I Sets up our loop over the x-coordinate for values in the
box.



Reduce Red Eye: Line 3

I for x in range(startX,endX):
I Sets up our loop over the x-coordinate for values in the

box.



Reduce Red Eye: Line 4

I for y in range(startY,endY):

I Sets up our loop over the y-coordinate for values in the
box.



Reduce Red Eye: Line 4

I for y in range(startY,endY):
I Sets up our loop over the y-coordinate for values in the

box.



Reduce Red Eye: Line 5

I currentPixel = getPixel(pic,x,y)

I Fetch the pixel at the current co-ordinates selected based
on the loops.



Reduce Red Eye: Line 5

I currentPixel = getPixel(pic,x,y)
I Fetch the pixel at the current co-ordinates selected based

on the loops.



Reduce Red Eye: Line 6 part 1

I distance(red,getColor(currentPixel))

I How far is our earlier defined red colour from the colour of
our current pixel?

I Distance returns that value and we have to decide what to
do with it.



Reduce Red Eye: Line 6 part 1

I distance(red,getColor(currentPixel))
I How far is our earlier defined red colour from the colour of

our current pixel?

I Distance returns that value and we have to decide what to
do with it.



Reduce Red Eye: Line 6 part 1

I distance(red,getColor(currentPixel))
I How far is our earlier defined red colour from the colour of

our current pixel?
I Distance returns that value and we have to decide what to

do with it.



Reduce Red Eye: Line 6 part 2

I distance (red, getColor(currentPixel)) < 165

I We will compare it to the number 165. Why 165? This
comparison is either true or false and this makes up the
conditional part of the if statement.

I We find a value that works by trial and error. Too high and
we’ll select non-red colours. Too low and we won’t get all
the red.

I Later we will run examples.



Reduce Red Eye: Line 6 part 2

I distance (red, getColor(currentPixel)) < 165
I We will compare it to the number 165. Why 165? This

comparison is either true or false and this makes up the
conditional part of the if statement.

I We find a value that works by trial and error. Too high and
we’ll select non-red colours. Too low and we won’t get all
the red.

I Later we will run examples.



Reduce Red Eye: Line 6 part 2

I distance (red, getColor(currentPixel)) < 165
I We will compare it to the number 165. Why 165? This

comparison is either true or false and this makes up the
conditional part of the if statement.

I We find a value that works by trial and error. Too high and
we’ll select non-red colours. Too low and we won’t get all
the red.

I Later we will run examples.



Reduce Red Eye: Line 6 part 2

I distance (red, getColor(currentPixel)) < 165
I We will compare it to the number 165. Why 165? This

comparison is either true or false and this makes up the
conditional part of the if statement.

I We find a value that works by trial and error. Too high and
we’ll select non-red colours. Too low and we won’t get all
the red.

I Later we will run examples.



Reduce Red Eye: Line 6 part 3

I if distance(red,getColor(currentPixel))< 165:

I We tell the computer when this condition holds we want to
execute specific code and when it doesn’t we don’t.

I What specific code? The block following the : determined
by indentation



Reduce Red Eye: Line 6 part 3

I if distance(red,getColor(currentPixel))< 165:
I We tell the computer when this condition holds we want to

execute specific code and when it doesn’t we don’t.

I What specific code? The block following the : determined
by indentation



Reduce Red Eye: Line 6 part 3

I if distance(red,getColor(currentPixel))< 165:
I We tell the computer when this condition holds we want to

execute specific code and when it doesn’t we don’t.
I What specific code? The block following the : determined

by indentation



Reducing Red Eye: Inside the if statement, Line 7

I setColor(currentPixel, replacementColor)

I We are inside the if block so we are close enough to red.
I If the color is close enough to red use the replacement

color.



Reducing Red Eye: Inside the if statement, Line 7

I setColor(currentPixel, replacementColor)
I We are inside the if block so we are close enough to red.

I If the color is close enough to red use the replacement
color.



Reducing Red Eye: Inside the if statement, Line 7

I setColor(currentPixel, replacementColor)
I We are inside the if block so we are close enough to red.
I If the color is close enough to red use the replacement

color.



The absence of a line 8

I There is no line 8

I Why do we not need to return anything?
I This function works by side-effects; the original picture is

changed.



The absence of a line 8

I There is no line 8
I Why do we not need to return anything?

I This function works by side-effects; the original picture is
changed.



The absence of a line 8

I There is no line 8
I Why do we not need to return anything?
I This function works by side-effects; the original picture is

changed.



Running the function

I Once we have a hypothesis about how it works.

I Run it to see if we are correct.
I Also experiment and fit parameters (change values of

distance)



Running the function

I Once we have a hypothesis about how it works.
I Run it to see if we are correct.

I Also experiment and fit parameters (change values of
distance)



Running the function

I Once we have a hypothesis about how it works.
I Run it to see if we are correct.
I Also experiment and fit parameters (change values of

distance)



Possible Variations 1

I How many inputs should this function really have?

I There is a lot of merit to adding one (which)?
I 165 should be a variable not a constant, allow the user to

test red eye by repeatedly calling the function with different
values.



Possible Variations 1

I How many inputs should this function really have?
I There is a lot of merit to adding one (which)?

I 165 should be a variable not a constant, allow the user to
test red eye by repeatedly calling the function with different
values.



Possible Variations 1

I How many inputs should this function really have?
I There is a lot of merit to adding one (which)?
I 165 should be a variable not a constant, allow the user to

test red eye by repeatedly calling the function with different
values.



Possible Variations 2

I Alternatively can use fewer inputs (5) (which 5)?

I Hard-code the replacement color rather than expecting the
user to provide it.



Possible Variations 2

I Alternatively can use fewer inputs (5) (which 5)?
I Hard-code the replacement color rather than expecting the

user to provide it.



So why 6 inputs?

I If we think the user should specify parameters we should
have 7; If not we should have 5.

I So why do we have 6 is it reasonable design to want the
user to specify only half of the parameters?

I Perhaps. There is a case to be made that distance is
something the program is responsible for, while
replacementColor is something the user should specify.

I Might have a function based on AI called
calculateBestDistance(picture,startX,startY,endX,endY,red)
to determine what value to use for changing the picture.
Could call this function in the location where you need the
distance.



So why 6 inputs?

I If we think the user should specify parameters we should
have 7; If not we should have 5.

I So why do we have 6 is it reasonable design to want the
user to specify only half of the parameters?

I Perhaps. There is a case to be made that distance is
something the program is responsible for, while
replacementColor is something the user should specify.

I Might have a function based on AI called
calculateBestDistance(picture,startX,startY,endX,endY,red)
to determine what value to use for changing the picture.
Could call this function in the location where you need the
distance.



So why 6 inputs?

I If we think the user should specify parameters we should
have 7; If not we should have 5.

I So why do we have 6 is it reasonable design to want the
user to specify only half of the parameters?

I Perhaps. There is a case to be made that distance is
something the program is responsible for, while
replacementColor is something the user should specify.

I Might have a function based on AI called
calculateBestDistance(picture,startX,startY,endX,endY,red)
to determine what value to use for changing the picture.
Could call this function in the location where you need the
distance.



So why 6 inputs?

I If we think the user should specify parameters we should
have 7; If not we should have 5.

I So why do we have 6 is it reasonable design to want the
user to specify only half of the parameters?

I Perhaps. There is a case to be made that distance is
something the program is responsible for, while
replacementColor is something the user should specify.

I Might have a function based on AI called
calculateBestDistance(picture,startX,startY,endX,endY,red)
to determine what value to use for changing the picture.
Could call this function in the location where you need the
distance.



Analyzing complicated blocks of code

1. Figure out how to break each line into individual pieces to
understand.

2. Work from the smallest pieces outwards
3. Understand what the line is doing.
4. For loops: think about it first in the context of a single

iteration.
5. For loops: build up to multiple iterations and then what it

does for the whole loop.



Analyzing complicated blocks of code

1. Figure out how to break each line into individual pieces to
understand.

2. Work from the smallest pieces outwards

3. Understand what the line is doing.
4. For loops: think about it first in the context of a single

iteration.
5. For loops: build up to multiple iterations and then what it

does for the whole loop.



Analyzing complicated blocks of code

1. Figure out how to break each line into individual pieces to
understand.

2. Work from the smallest pieces outwards
3. Understand what the line is doing.

4. For loops: think about it first in the context of a single
iteration.

5. For loops: build up to multiple iterations and then what it
does for the whole loop.



Analyzing complicated blocks of code

1. Figure out how to break each line into individual pieces to
understand.

2. Work from the smallest pieces outwards
3. Understand what the line is doing.
4. For loops: think about it first in the context of a single

iteration.

5. For loops: build up to multiple iterations and then what it
does for the whole loop.



Analyzing complicated blocks of code

1. Figure out how to break each line into individual pieces to
understand.

2. Work from the smallest pieces outwards
3. Understand what the line is doing.
4. For loops: think about it first in the context of a single

iteration.
5. For loops: build up to multiple iterations and then what it

does for the whole loop.



Exercises

1. Rewrite this function as a 7 input function.

2. Rewrite this function as a 5 input function. Assume
computeBestDistance(pic,startX,startY,endX,endY) is
computed for you.

3. Write a specification for the 7 input version



Exercises

1. Rewrite this function as a 7 input function.
2. Rewrite this function as a 5 input function. Assume

computeBestDistance(pic,startX,startY,endX,endY) is
computed for you.

3. Write a specification for the 7 input version



Exercises

1. Rewrite this function as a 7 input function.
2. Rewrite this function as a 5 input function. Assume

computeBestDistance(pic,startX,startY,endX,endY) is
computed for you.

3. Write a specification for the 7 input version



Sound Examples in Detail (8.4)

I We will be covering frequency shifts from 8.4

I First doubling, then halving



Sound Examples in Detail (8.4)

I We will be covering frequency shifts from 8.4
I First doubling, then halving



doubleFrequency: Line 1 Change

I def double(source):

I Replace with def doubleFrequency(source):
I What are we doubling? -¿ Be clear



doubleFrequency: Line 1 Change

I def double(source):
I Replace with def doubleFrequency(source):

I What are we doubling? -¿ Be clear



doubleFrequency: Line 1 Change

I def double(source):
I Replace with def doubleFrequency(source):
I What are we doubling? -¿ Be clear



doubleFrequency: Line 1 Details

I def doubleFrequency(source):

I Only input is a source sound.



doubleFrequency: Line 1 Details

I def doubleFrequency(source):
I Only input is a source sound.



doubleFrequency: Line 2 Details

I len = getLength(source)/2 + 1

I recall getLength(source)/2 rounds down. Why do we want
to add 1?

I Consider a 3 sample sound: We will later want to sample 0
and 2 but 3/2 is 1. More later.



doubleFrequency: Line 2 Details

I len = getLength(source)/2 + 1
I recall getLength(source)/2 rounds down. Why do we want

to add 1?

I Consider a 3 sample sound: We will later want to sample 0
and 2 but 3/2 is 1. More later.



doubleFrequency: Line 2 Details

I len = getLength(source)/2 + 1
I recall getLength(source)/2 rounds down. Why do we want

to add 1?
I Consider a 3 sample sound: We will later want to sample 0

and 2 but 3/2 is 1. More later.



doubleFrequency: Line 3 Details

I target = makeEmptySound(len)

I We make the target sound with length len.



doubleFrequency: Line 3 Details

I target = makeEmptySound(len)
I We make the target sound with length len.



doubleFrequency: Line 4 Details

I targetIndex = 0

I Initialize the targetIndex in preparation to have different
source and target indices.



doubleFrequency: Line 4 Details

I targetIndex = 0
I Initialize the targetIndex in preparation to have different

source and target indices.



doubleFrequency: Line 5 part 1

I range(0, getLength(source), 2):

I Note range has 3 parameters.
I The 3rd parameter is the rate at which we move through

indices



doubleFrequency: Line 5 part 1

I range(0, getLength(source), 2):
I Note range has 3 parameters.

I The 3rd parameter is the rate at which we move through
indices



doubleFrequency: Line 5 part 1

I range(0, getLength(source), 2):
I Note range has 3 parameters.
I The 3rd parameter is the rate at which we move through

indices



doubleFrequency: Line 5 part 2

I for sourceIndex in range(0,getLength(source),2):

I Make note of the fact we are increasing our source by 2
each iteration. Ignoring all samples with odd indices.

I As predicted earlier we have a sourceIndex to go with our
targetIndex



doubleFrequency: Line 5 part 2

I for sourceIndex in range(0,getLength(source),2):
I Make note of the fact we are increasing our source by 2

each iteration. Ignoring all samples with odd indices.

I As predicted earlier we have a sourceIndex to go with our
targetIndex



doubleFrequency: Line 5 part 2

I for sourceIndex in range(0,getLength(source),2):
I Make note of the fact we are increasing our source by 2

each iteration. Ignoring all samples with odd indices.
I As predicted earlier we have a sourceIndex to go with our

targetIndex



doubleFrequency: Line 6

I sourceValue = getSampleValueAt(source,sourceIndex)

I We use getSampleValueAt because we have a numerical
index rather than a sample.

I sourceValue is a number containing a sample



doubleFrequency: Line 6

I sourceValue = getSampleValueAt(source,sourceIndex)
I We use getSampleValueAt because we have a numerical

index rather than a sample.

I sourceValue is a number containing a sample



doubleFrequency: Line 6

I sourceValue = getSampleValueAt(source,sourceIndex)
I We use getSampleValueAt because we have a numerical

index rather than a sample.
I sourceValue is a number containing a sample



doubleFrequency: Line 7

I setSampleValueAt(target, targetIndex, sourceValue)

I We use setSampleValueAt because we have a numerical
index rather than a sample.

I We use targetIndex in the target. The value we copy over
is the sourceValue. Fairly standard loop stuff.



doubleFrequency: Line 7

I setSampleValueAt(target, targetIndex, sourceValue)
I We use setSampleValueAt because we have a numerical

index rather than a sample.

I We use targetIndex in the target. The value we copy over
is the sourceValue. Fairly standard loop stuff.



doubleFrequency: Line 7

I setSampleValueAt(target, targetIndex, sourceValue)
I We use setSampleValueAt because we have a numerical

index rather than a sample.
I We use targetIndex in the target. The value we copy over

is the sourceValue. Fairly standard loop stuff.



doubleFrequency: Line 8

I targetIndex = targetIndex + 1

I A standard index increment, nothing unusual here.
I Wait! There is something important to notice. Take stock of

all the loop indices



doubleFrequency: Line 8

I targetIndex = targetIndex + 1
I A standard index increment, nothing unusual here.

I Wait! There is something important to notice. Take stock of
all the loop indices



doubleFrequency: Line 8

I targetIndex = targetIndex + 1
I A standard index increment, nothing unusual here.
I Wait! There is something important to notice. Take stock of

all the loop indices



doubleFrequency: Line 8 to Line 9 interlude

I targetIndex starts at 0 and goes up by 1’s.

I sourceIndex starts at 0 and goes by 2’s.
I This loop will copy every second sample from the source to

the target.



doubleFrequency: Line 8 to Line 9 interlude

I targetIndex starts at 0 and goes up by 1’s.
I sourceIndex starts at 0 and goes by 2’s.

I This loop will copy every second sample from the source to
the target.



doubleFrequency: Line 8 to Line 9 interlude

I targetIndex starts at 0 and goes up by 1’s.
I sourceIndex starts at 0 and goes by 2’s.
I This loop will copy every second sample from the source to

the target.



doubleFrequency: Line 9

I play(target)

I Plays the sound target
I What does the target look like? Do we have any special

insight?



doubleFrequency: Line 9

I play(target)
I Plays the sound target

I What does the target look like? Do we have any special
insight?



doubleFrequency: Line 9

I play(target)
I Plays the sound target
I What does the target look like? Do we have any special

insight?



doubleFrequency: Line 10

I return target

I returns the target sound.



doubleFrequency: Line 10

I return target
I returns the target sound.



doubleFrequency: Take stock of whole function

I Why does the target have double frequency?

I Could we have done this function in a natural way by side
effects?

I No. Target is half the length so want a new sound.
I Unnaturally we could take the target as input and modify it

but requiring the user to build the target sound outside is a
bad idea.



doubleFrequency: Take stock of whole function

I Why does the target have double frequency?
I Could we have done this function in a natural way by side

effects?

I No. Target is half the length so want a new sound.
I Unnaturally we could take the target as input and modify it

but requiring the user to build the target sound outside is a
bad idea.



doubleFrequency: Take stock of whole function

I Why does the target have double frequency?
I Could we have done this function in a natural way by side

effects?
I No. Target is half the length so want a new sound.

I Unnaturally we could take the target as input and modify it
but requiring the user to build the target sound outside is a
bad idea.



doubleFrequency: Take stock of whole function

I Why does the target have double frequency?
I Could we have done this function in a natural way by side

effects?
I No. Target is half the length so want a new sound.
I Unnaturally we could take the target as input and modify it

but requiring the user to build the target sound outside is a
bad idea.



halveFrequency

I We next analyze halving the frequency. As before we
change the function name.



halveFrequency: line 1

I def halveFrequency(source):

I takes a source sound as input



halveFrequency: line 1

I def halveFrequency(source):
I takes a source sound as input



halveFrequency: line 2 part 1

I getLength(source) ∗2

I Does doubling the length of the sound make sense?
I Yes, each cycle needs to be twice the length. Same

number of cycles.



halveFrequency: line 2 part 1

I getLength(source) ∗2
I Does doubling the length of the sound make sense?

I Yes, each cycle needs to be twice the length. Same
number of cycles.



halveFrequency: line 2 part 1

I getLength(source) ∗2
I Does doubling the length of the sound make sense?
I Yes, each cycle needs to be twice the length. Same

number of cycles.



halveFrequency: line 2 part 2

I target = makeEmptySound(getLength(source)∗2)

I So we use this length to make a sound of the correct
length.



halveFrequency: line 2 part 2

I target = makeEmptySound(getLength(source)∗2)
I So we use this length to make a sound of the correct

length.



halveFrequency:line 3

I sourceIndex = 0

I Our loop will run over the target, so we should be careful
since this is opposite to what we usually do.



halveFrequency:line 3

I sourceIndex = 0
I Our loop will run over the target, so we should be careful

since this is opposite to what we usually do.



halveFrequency:line 4

I for targetIndex in range(0,getLength(target)):

I The loop runs over the target from 0 to end by 1’s



halveFrequency:line 4

I for targetIndex in range(0,getLength(target)):
I The loop runs over the target from 0 to end by 1’s



halveFrequency:line 5

I value = getSampleValueAt(source, int(sourceIndex))

I So we use get sampleValueAt because we have indices
I int! We will likely be incrementing the source by a

non-integer value later.



halveFrequency:line 5

I value = getSampleValueAt(source, int(sourceIndex))
I So we use get sampleValueAt because we have indices

I int! We will likely be incrementing the source by a
non-integer value later.



halveFrequency:line 5

I value = getSampleValueAt(source, int(sourceIndex))
I So we use get sampleValueAt because we have indices
I int! We will likely be incrementing the source by a

non-integer value later.



halveFrequency:line 6

I setSampleValueAt(target, targetIndex, value)

I A standard target assingment using the targetIndex and At



halveFrequency:line 6

I setSampleValueAt(target, targetIndex, value)
I A standard target assingment using the targetIndex and At



halveFrequency: line 7

I sourceIndex = sourceIndex + 0.5

I Our predicted non-integer increment.



halveFrequency: line 7

I sourceIndex = sourceIndex + 0.5
I Our predicted non-integer increment.



halveFrequency: line 7 to line 8 interlude

I What does this loop do?

I Copy sample 0 to 0, Copy sample 0 to 1, Copy sample 1 to
2, Copy sample 1 to 3, etc.



halveFrequency: line 7 to line 8 interlude

I What does this loop do?
I Copy sample 0 to 0, Copy sample 0 to 1, Copy sample 1 to

2, Copy sample 1 to 3, etc.



halveFrequency: line 8

I play(target)

I plays the target. We will analyze the target after.



halveFrequency: line 8

I play(target)
I plays the target. We will analyze the target after.



halveFrequency: line 9

I return target

I returns the target sound
I Why does the target have half the frequency?
I It takes twice as long per cycle.



halveFrequency: line 9

I return target
I returns the target sound

I Why does the target have half the frequency?
I It takes twice as long per cycle.



halveFrequency: line 9

I return target
I returns the target sound
I Why does the target have half the frequency?

I It takes twice as long per cycle.



halveFrequency: line 9

I return target
I returns the target sound
I Why does the target have half the frequency?
I It takes twice as long per cycle.



Demo time

I Have a hypothesis about what our function will do time to
run it.


