Lid University of Toronto

Department of Computer Science

© Analysis

Lecture 22:
Moving into Design

vs. Design

% Why the distinction?

o Design Processes
% Logical vs. Physical Design
% System vs. Detailed Design

o Architectures
% System Architecture
% Software Architecture
& Architectural Patterns (next lecture)

o Useful Notation
% UML Packages and Dependencies

© Easterbrook 2004

Lid University of Toronto

Department of Computer Science

Refresher: Lifecycle models

perceived
need

Waterfall model V model

c
=
o
g
@
architecture G
high level design 5
°
Olq |\ [Prefiminaryl \....../..
o
-
analyse
and
design

requirements)

© Easterbrook 2004

time
- 5 1|
version 1 Spiral Evaluate
S5 & 7 alternatives
integ- model @ Sk
reqts |design| code | test ":E;g 0&M | o0 “a\“‘ﬁ’ 5 Q”ag,% and risks
ok
lessops
version 2 learn
reqts | design| code est itz 0&M | $
s lessops
Evolutionary ve(sion 3 lleamt l
development - N
(each version " integ- St
incorporates new reqts | design | code test | 50 Plan 2 De;/:éop

test

Lid University of Toronto Department of Computer Science

v Analysis vs. Design

o Analysis

% Asks “what is the problem?”
» what happens in the current system?
» what is required in the new system?

% Results in a detailed understanding of:
» Requirements
» Domain Properties

% Focuses on the way human activities are conducted

o Design

% Investigates “how to build a solution”

» How will the new system work?

» How can we solve the problem that the analysis identified?
% Results in a solution to the problem

» A working system that satisfies the requirements

» Hardware + Software + Peopleware

% Focuses on building technical solutions

o Separate activities, but not necessarily sequential

© Easterbrook 2004 3
Lid University of Toronto Department of Computer Science
= Refresher: different worlds
Analysis is all about Design is all about
studying this world building this world

Application Domain Machine Domain

But who builds the bridge?

© Easterbrook 2004 4

Lid University of Toronto

Department of Computer Science

Four design philosophies

Decomposition & Synthesis

% Drivers:
» Managing complexity
» Reuse
% Example:
» Design a car by designing
separately the chassis, engine,
drivetrain, etc. Use existing

Search ‘Cac\ J
9r—=0
% Drivers

» Transformation
» Heuristic Evaluation @ —0
% Example:
» Design a car by transforming an
initial rough design to get closer
and closer to what is desired

components where possible

Negotiation

Situated Design e

% Drivers X

» Errors in existing designs
» Evolutionary Change
& Example:

» Design a car by observing what's
wrong with existing cars as they
are used, and identifying
improvements

% Drivers

[\ —

» Stakeholder Conflicts

» Dialogue Process

% Example:

» Design a car by getting each
stakeholder to suggest (partial)
designs, and them compare and
discuss them

© Easterbrook 2004 5

Lid University of Toronto Department of Computer Science

Logical vs. Physical Design

Choose
Platform

Logical Physical

Design Design

o Logical Design concerns:

% Anything that is platform-independent:
» Interactions between objects
» Layouts of user interfaces
» Nature of commands/data passed between subsystems

% Logical designs are usually portable to different platforms

o Physical Design concerns:

% Anything that depends on the choice of platform:
» Distribution of objects/services over networked nodes
» Choice of programming language and development environment
» Use of specialized device drivers
» Choice of database and server technology
» Services provided by middleware

© Easterbrook 2004 6

Lid University of Toronto Department of Computer Science

= System Design vs. Detailed Design

o System Design

% Choose a System Architecture

» Networking infrastructure

» Major computing platforms

» Roles of each node (e.g. client-server; clients-broker-servers; peer-to-peer,..)
% Choose a Software Architecture

» (see next lecture for details)

% Identify the subsystems
% Identify the components and connectors between them

» Design for modularity to maximize testability and evolveability
» E.g. Aim for low coupling and high cohesion

o Detailed Design
% Decide on the formats for data storage
» E.g. design a data management layer
% Design the control functions for each component
» E.g. design an application logic layer

% Design the user interfaces
» E.g. design a presentation layer

© Easterbrook 2004 7
Lid University of Toronto Department of Computer Science
L Global System Architecture
o Choices:

% Allocates users and other external systems to each node
% Identify appropriate network topology and technologies
% Identify appropriate computing platform for each node

> Example:
% See next slide...

© Easterbrook 2004 8

Lid University of Toronto Department of Computer Science

- norih caroiina
BUFERCOMPUTING = n:‘l:::-
" en-t # n
Habaork Diagoem - 1101

INTERMET ==

ERAY TH Ridie

T

Traming Room

Bachug Baivices

M R e
g aide Libiarp
FH0 Vi D
2 TE [k G

B P L L 75 e

© Easterbrook 2004 9

Lid University of Toronto Department of Computer Science

= System Architecture Questions

o Key questions for choosing platforms:

& What hardware resources are needed?
» CPU, memory size, memory bandwidth, 1/0, disk space, etc.
& What software/OS resources are needed?
» application availability, OS scalability
% What networking resources are needed?
» network bandwidth, latency, remote access.
% What human resources are needed?
» OS expertise, hardware expertise,
» system administration requirements,
» user training/help desk requirements.
% What other needs are there?
» security, reliability, disaster recovery, uptime requirements.

o Key questions constraining the choice:
% What funding is available?

% What resources are already available?
» Existing hardware, software, networking
» Existing staff and their expertise
» Existing relationships with vendors, resellers, etc.

© Easterbrook 2004 10

Lid University of Toronto Department of Computer Science

= Data Management Questions

© How is data entry performed?
% E.g. Keyless Data entry
» bar codes; Optical Character Recognition (OCR)

% E.g. Import from other systems
» Electronic Data Interchange (EDI), Data interchange languages,...

> What kinds of data persistence is needed?
% Is the operating system’s basic file management sufficient?
% Is object persistence important?
% Can we isolate persistence mechanisms from the applications?

° Is a Database Management System (DBMS) needed?
% Is data accessed at a fine level of detail
» E.g. do users need a query language?
% Is sophisticated indexing required?

% Is there a need to move complex data across multiple platforms?
» Will a data interchange language suffice?
> E.g. HTML, SGML, XML..

% Is there a need to access the data from multiple platforms?

© Easterbrook 2004

11

Lid University of Toronto Department of Computer Science

- Software Architecture

o A software architecture defines:
% the components of the software system
% how the components use each other’s functionality and data
% How control is managed between the components

2 An example: client-server
% Servers provide some kind of service; clients request and use services
% applications are located with clients
» E.g. running on PCs and workstations;
% data storage is treated as a server
» E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
» Consistency checking is located with the server
% Advantages:
» Breaks the system into manageable components
» Makes the control and data persistence mechanisms clearer
% Variants:
» Thick clients have their own services, thin ones get everything from servers
% Note: This is a SOFTWARE architecture
» Clients and server could be on the same machine or different machines...

© Easterbrook 2004

12

University of Toronto

Department of Computer Science

©»

Form

Data coupling

Coupling

Given two units (e.g. methods, classes, modules, ..), A and B:

Features

A & B communicate by
simple data o nly

Desirability

High (use parameter passing &
only pass necessary info)

Stamp coupling

A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call

Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling

A changes B’s data, or
passes control to the

Extremely Foolish (almost
impossible to debug!)

© Easterbrook 2004

middle of B
© Easterbrook 2004
? University of Toronto Department of Computer Science
L4 Cohesion
How well do the contents of an object (module, package,..) go together?
Form Features Desirability
. all part of a well defined data .
Data cohesion abstraction Very High
. . all part of a single problem solvin .
Functional cohesion = g e High
task
. . outputs of one part form inputs to
Sequential cohesion the next
Communicational operations that use the same input Mod t
cohesion or output data LLiElE i
e oy a set of operations that must be L
executed in a particular order ow
el GG elements must be active around the L
p same time (e.g. at startup) ey
. . elements perform logically similar
- A . Il
Logical cohesion operations (e.g. printing things) No way!
Coincidental elements have no conceptual link N I
cohesion other than repeated code LR

Lid University of Toronto

Department of Computer Science

» models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

UML Packages

2 We need to represent our architectures
% UML elements can be grouped together in packages

% Elements of a package may be:
» other packages (representing subsystems or modules);
> classes;

% Each element of a UML model is owned by a single package

% Packages need not correspond to elements of the analysis or the design

» they are a convenient way of grouping other elements together

o Criteria for decomposing a system into packages:

% Ownership
» who is responsible for working on which diagrams
% Application
» each problem has its own obvious partitions;
% Clusters of classes with strong cohesion
» e.g., course, course description, instructor, student,..
% Or use an architectural pattern to help find a suitable decomposition

© Easterbrook 2004

15

Lid University of Toronto

Department of Computer Science

Package notation

1

I 1
Use Cases Campaign I'H
Management
A A
! 1
Package Sub-system

Pas
Use Case
Model

A

Model

o 2 alternatives for showing package containment:

Agate
—/ 1)
Campaigns Ii1 Staff fll

1

Agate IJ'I

e

Campaigns IJT

Staff

© Easterbrook 2004

16

Lid University of Toronto

Department of Computer Science

Package Diagrams

1

Persons
A
1 1]
1 .
I Constraints
| >

-
11 _ ’»."
Meetings [*
deﬁendency
(read as

“depends on”)

o Dependencies:
% Similar to compilation dependencies
% Captures a high-level view of coupling
between packages:
> 1T you change a class in one package,

you may have to change something in
packages that depend on it

> A good architecture minimizes

dependencies
% Fewer dependencies means lower
coupling
% Dependency cycles are especially
undesirable

© Easterbrook 2004

17

Lid University of Toronto

Department of Computer Science

1

«client»

Sub-system A

[1

«servemn

Sub-system B

The server sub-system does

not depend on the client sub-system
and is not affected by changes

to the client’s interface.

..Dependency Cycles

1]

«peen

Sub-system C

1

«peemn

Sub-system D

Each peer sub-system depends on
the other and each is affected by

changes in the other’s interface.

© Easterbrook 2004

18

?
v

E.
architecture:

University of Toronto

Department of Computer Science

g. 3 layer

Presentation
Layer
Application
Logic Layer
Storage
Layer

Architectural Patterns

1
Presentation Layer Package
—
Application
1 Windows .,
Java AWT | . %
= .,
1
Storage Layer Package
—
JDBC Object to
Relational |4
. —
*~...| Java SQL

I

., —

*] Application Logic Layer Package

Object:

* Control

s |,
O s |

~,] Business
Objects

© Easterbrook 2004

19

