
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 21:
Software Evolution

Ü Basics of Software Evolution
Ä Laws of software evolution
Ä Requirements Growth
Ä Software Aging

Ü Basics of Change Management
Ä Baselines, Change Requests and Configuration Management

Ü Software Families - The product line approach
Ü Requirements Traceability

Ä Importance of traceability
Ä Traceability tools

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Program Types
Ü S-type Programs (“Specifiable”)

Ä problem can be stated formally and completely
Ä acceptance: Is the program correct according to its specification?
Ä This software does not evolve.

Ø A change to the specification defines a new problem, hence a new program

Ü P-type Programs (“Problem-solving”)
Ä imprecise statement of a real-world problem
Ä acceptance: Is the program an acceptable solution to the problem?
Ä This software is likely to evolve continuously

Ø because the solution is never perfect, and can be improved
Ø because the real-world changes and hence the problem changes

Ü E-type Programs (“Embedded”)
Ä A system that becomes part of the world that it models
Ä acceptance: depends entirely on opinion and judgement
Ä This software is inherently evolutionary

Ø changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 3

real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare

P-type

real world

PROGRAM

abstract
view of worldrequirements

specification

model

E-type

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to

change

change

change

S-type

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
Ü Continuing Change

Ä Any software that reflects some external reality undergoes continual change 
or becomes progressively less useful
Ø change continues until it is judged more cost effective to replace the system

Ü Increasing Complexity
Ä As software evolves, its complexity increases… 

Ø …unless steps are taken to control it.

Ü Fundamental Law of Program Evolution
Ä Software evolution is self-regulating

Ø …with statistically determinable trends and invariants

Ü Conservation of Organizational Stability
Ä During the active life of a software system, the work output of a 

development project is roughly constant (regardless of resources!)

Ü Conservation of Familiarity
Ä The amount of change in successive releases is roughly constant



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Requirements Growth
ÜDavis’s model:
ÄUser needs evolve continuously
ØImagine a graph showing growth 

of needs over time
ØMay not be linear or continuous 

(hence no scale shown)
ÄTraditional development always 
lags behind needs growth
Ø first release implements only 

part of the original requirements
Ø functional enhancement adds new 

functionality
Øeventually, further enhancement 

becomes too costly, and a 
replacement is planned
Ø the replacement also only 

implements part of its 
requirements,
Øand so on...

Time
Fu

nc
ti

on
al

it
y

User needs

ide
nti

fy 
req

uir
em

ent
s

fir
st 

rel
eas

e

enh
anc

em
ent

 ph
ase

fre
eze

 an
d r

epl
ace

rep
lac

em
ent

 de
live

red

enh
anc

em
ent

 ph
ase

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Evolutionary Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Incremental Development

Time

Fu
nc

ti
on

al
it
y

User needs

Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Software “maintenance”
Ü Maintenance philosophies

Ä “throw-it-over-the-wall” - someone else is responsible for maintenance
Ø investment in knowledge and experience is lost
Ø maintenance becomes a reverse engineering challenge

Ä “mission orientation” - development team make a long term commitment to 
maintaining/enhancing the software

Ü Basili’s maintenance process models:
ÄQuick-fix model

Ø changes made at the code level, as easily as possible
Ø rapidly degrades the structure of the software

Ä Iterative enhancement model
Ø Changes made based on an analysis of the existing system
Ø attempts to control complexity and maintain good design

Ä Full-reuse model
Ø Starts with requirements for the new system, reusing as much as possible
Ø Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Software Aging
Ü Causes of Software Aging

Ä Failure to update the software to meet changing needs
Ø Customers switch to a new product if benefits outweigh switching costs

Ä Changes to software tend to reduce its coherence

Ü Costs of Software Aging
Ä Owners of aging software find it hard to keep up with the marketplace
Ä Deterioration in space/time performance due to deteriorating structure
Ä Aging software gets more buggy

Ø Each “bug fix” introduces more errors than it fixes

ÜWays of Increasing Longevity
Ä Design for change
Ä Document the software carefully
Ä Requirements and designs should be reviewed by those responsible for its 

maintenance
Ä Software Rejuvenation…

Source: Adapted from Parnas, 1994



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Managing Requirements Change
Ü Managers need to respond to requirements change

Ä Add new requirements during development
Ø But not succumbing to feature creep

ÄModify requirements during development
Ø Because development is a learning process

Ä Remove requirements during development
Ø requirements “scrub” for handling cost/schedule slippage

Ü Key techniques
Ä Change Management Process
Ä Release Planning
Ä Requirements Prioritization (previous lecture!)
Ä Requirements Traceability
Ä Architectural Stability (next week’s lecture)

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Change Management
Ü Configuration Management

Ä Each distinct product is a Configuration Item (CI)
Ä Each configuration item is placed under version control
Ä Control which version of each CI belongs in which build of the system

Ü Baselines
Ä A baseline is a stable version of a document or system

Ø Safe to share among the team
Ä Formal approval process for changes to be incorporated into the next 

baseline

Ü Change Management Process
Ä All proposed changes are submitted formally as change requests
Ä A review board reviews these periodically and decides which to accept

Ø Review board also considers interaction between change requests

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Towards Software Families
Ü Libraries of Reusable Components

Ä domain specific libraries (e.g. Math libraries)
Ä program development libraries (e.g. Java AWT, C libraries)

Ü Domain Engineering
Ä Divides software development into two parts:

Ø domain analysis - identifies generic reusable components for a problem domain
Ø application development - uses the domain components for specific applications.

Ü Software Families
ÄMany companies offer a range of related software systems

Ø Choose a stable architecture for the software family
Ø identify variations for different members of the family

Ä Represents a strategic business decision about what software to develop
Ä Vertical families

Ø e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
Ä Horizontal families

Ø similar systems used in related domains

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Requirements Traceability
Ü From IEEE-STD-830:

Ä Backward traceability
Ø i.e. to previous stages of development.
Ø the origin of each requirement should be clear 

Ä Forward traceability
Ø i.e., to all documents spawned by the SRS.
Ø Facilitation of referencing of each requirement in future documentation
Ø depends upon each requirement having a unique name or reference number.

Ü From DOD-STD-2167A:
Ä A requirements specification is traceable if:

Ø “(1) it contains or implements all applicable stipulations in predecessor document
Ø (2) a given term, acronym, or abbreviation means the same thing in all documents
Ø (3) a given item or concept is referred to by the same name in the documents
Ø (4) all material in the successor document has its basis in the predecessor 

document, that is, no untraceable material has been introduced
Ø (5) the two documents do not contradict one another”



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Importance of Traceability
Ü Verification and Validation

Ä assessing adequacy of test suite
Ä assessing conformance to 

requirements
Ä assessing completeness, consistency, 

impact analysis
Ä assessing over- and under-design
Ä investigating high level behavior 

impact on detailed specifications
Ä detecting requirements conflicts
Ä checking consistency of decision 

making across the lifecycle

Ü Maintenance
Ä Assessing change requests
Ä Tracing design rationale

Ü Document access
Ä ability to find information quickly in 

large documents

Ü Process visibility
Ä ability to see how the software was 

developed
Ä provides an audit trail

Ü Management
Ä change management
Ä risk management
Ä control of the development process 

Source: Adapted from Palmer, 1996, p365

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Traceability Difficulties
Ü Cost

Ä very little automated support
Ä full traceability is very expensive and time-consuming

Ü Delayed gratification
Ä the people defining traceability links are not the people who benefit from it

Ø development vs. V&V
Ä much of the benefit comes late in the lifecycle

Ø testing, integration, maintenance

Ü Size and diversity
Ä Huge range of different document types, tools, decisions, responsibilities,…
ÄNo common schema exists for classifying and cataloging these
Ä In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Current Practice
Ü Coverage:

Ä links from requirements forward to designs, code, test cases,
Ä links back from designs, code, test cases to requirements
Ä links between requirements at different levels

Ü Traceability process
Ä Assign each sentence or paragraph a unique id number
ÄManually identify linkages
Ä Use manual tables to record linkages in a document
Ä Use a traceability tool (database) for project wide traceability
Ä Tool then offers ability to

Ø follow links
Ø find missing links
Ø measure overall traceability

Source: Adapted from Palmer, 1996, p367-8

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Limitations of Current Tools
Ü Informational Problems

Ä Tools fail to track useful traceability information
Ø e.g cannot answer queries such as “who is responsible for this piece of 

information?”
Ä inadequate pre-requirements traceability 

Ø “where did this requirement come from?”

Ü Lack of agreement…
Ä …over the quantity and type of information to trace

Ü Informal Communication
Ä People attach great importance to personal contact and informal 

communication
Ø These always supplement what is recorded in a traceability database

Ä But then the traceability database only tells part of the story!
Ø Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100



5

University of Toronto Department of Computer Science

© Easterbrook 2004 17Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
Ü Involvement

ÄWho has been involved in the production of this requirement and how?

Ü Responsibility & Remit
ÄWho is responsible for this requirement?

Ø who is currently responsible for it?
Ø at what points in its life has this responsibility changed hands?

ÄWithin which group’s remit are decisions about this requirement?

Ü Change
Ä At what points in the life of this requirements has working arrangements of 

all involved been changed?

Ü Notification
ÄWho needs to be involved in, or informed of, any changes proposed to this 

requirement?

Ü Loss of knowledge
ÄWhat are the ramifications regarding the loss of project knowledge if a 

specific individual or group leaves?


