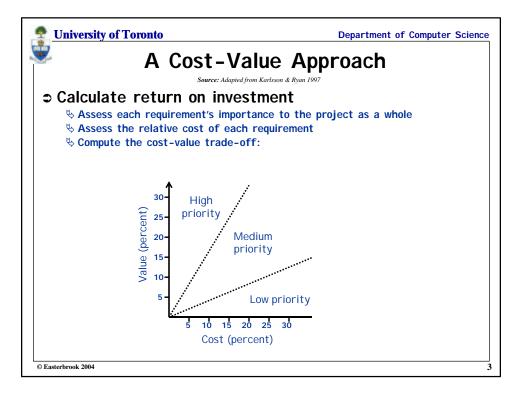


Lecture 20: Requirements Prioritization

- Why Prioritization is needed
 - **♥ Basic Trade-offs**
- ⇒ Cost-Value Approach
 - **♦ Sorting Requirements by cost/value**
 - **♥ Estimating Relative Costs/Values using AHP**
- ⇒ What if stakeholders disagree?
 - **♥ Visualizing differences in priority**
 - **♦ Resolving Disagreements**

© Easterbrook 2004

University of Toronto


Department of Computer Science

Basics of Prioritization

- ⇒ Need to select what to implement
- ♥ Customers (usually) ask for way too much
 - ♦ Balance time-to-market with amount of functionality
 - **♥** Decide which features go into the next release
- ⇒ For each requirement/feature, ask:
 - ♦ How important is this to the customer?
 - **♦ How much will it cost to implement?**
 - ♦ How risky will it be to attempt to build it?
- ⇒ Perform Triage:
 - ♦ Some requirements *must* be included
 - **♦ Some requirements should definitely be excluded**
 - ♦ That leaves a pool of "nice-to-haves", which we must select from.

© Easterbrook 2004

2

Estimating Cost & Value

- ⇒ Two approaches:
 - ♦ Absolute scale (e.g. dollar values)
 - > Requires much domain experience
 - ♥ Relative values (e.g. less/more; a little, somewhat, very)
 - Much easier to elicit
 - > Prioritization becomes a sorting problem
- ⇒ Comparison Process options
 - ♥ Basic sorting for every pair of requirements (i,j), ask if i>j?
 - > E.g. bubblesort start in random order, and swap each pair if out of order
 - > requires n*(n-1)/2 comparisons
 - **♦** Construct a Binary Sort Tree
 - Requires O(n log n) comparisons
 - **♦ Contruct a Minimal Spanning Tree**
 - > for each pair (Ri, Ri+1) get the distance between them
 - ➤ Requires n-1 comparisons

© Easterbrook 2004

Some complications

⇒ Hard to quantify differences

⋄...than to estimate by how much.

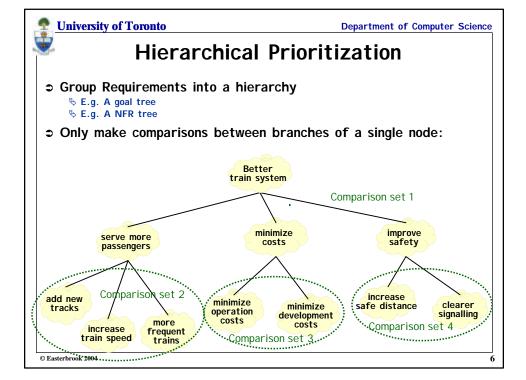
⇒ Not all requirements comparable

♥ E.g. different level of abstraction

♥ E.g. core functionality vs. customer enhancements

⇒ Requirements may not be independent

♥ No point selecting between X and Y if they are mutually dependent


⇒ Stakeholders may not be consistent

 \S E.g. If X > Y, and Y > Z, then presumably X > Z?

Stakeholders might not agree

♥ Different cost/value assessments for different types of stakeholder

© Easterbrook 2004

Analytic Hierarchy Process (AHP)

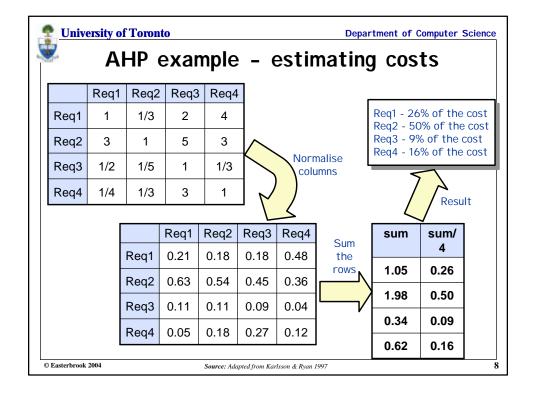
Source: Adapted from Karlsson & Ryan 1997

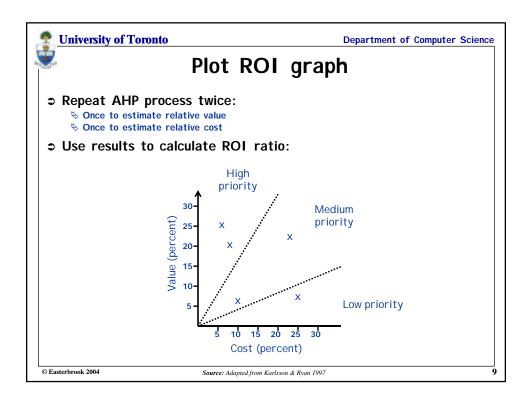
⇒ Create n x n matrix (for n requirements)

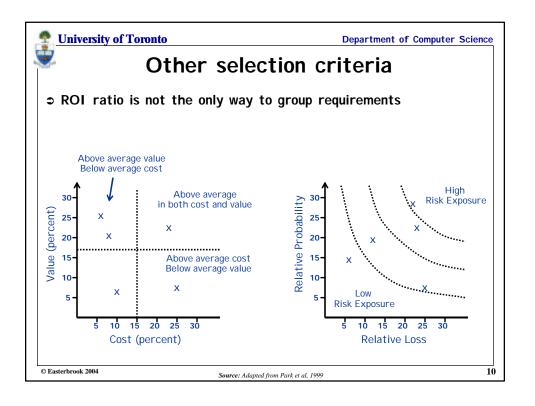
 $\$ For element (x,y) in the matrix enter:

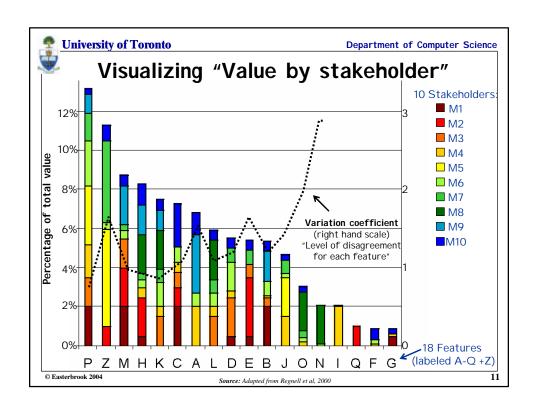
- > 1 if x and y are of equal value
- > 3 if x is slightly more preferred than y
- > 5 if x is strongly more preferred than y
- > 7 if x is very strongly more preferred than y
- > 9 if x is extremely more preferred than y
- > (use the intermediate values, 2,4,6,8 if compromise needed) \$\infty\$...and for (y,x) enter the reciprocal.
- \$...and for (\$7,x) enter the reciprocal

⇒ Estimate the eigenvalues:

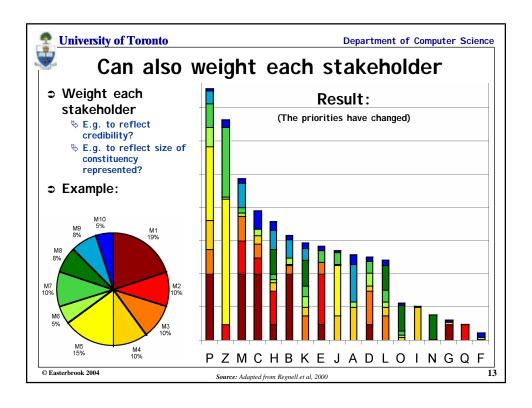

- \S E.g. "averaging over normalized columns"
 - > Calculate the sum of each column
 - > Divide each element in the matrix by the sum of it's column
 - > Calculate the sum of each row
 - > Divide each row sum by the number of rows

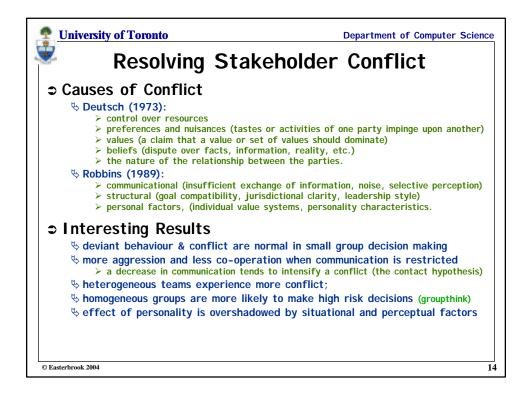

⇒ This gives a value for each reqt:


♥ ...giving the estimated percentage of total value of the project


© Easterbrook 2004

Source: Adapted from Karlsson & Ryan 1997





Conflict Resolution - basics

⇒ Defining Conflict

♦ In Social psychology, focus is on interdependence and perception:

"the interaction of interdependent people who perceive opposition of goals, aims, and values, and who see the other party as potentially interfering with the realization of these goals" [Putnam & Poole, 1987]

♦ In RE, focus typically is on logical inconsistency:

E.g. conflict is a divergence between goals - there is a feasible boundary condition that makes the goals inconsistent [van Lamsweerde et al. 1998]

♦ Note:

conflict may occur between individuals, groups, organizations, or different roles played by one person

⇒ Resolution Method:

♦ The approach used to settle a conflict

- Methods include negotiation, competition, arbitration, coercion, and education
- > Not all conflicts need a resolution method: not all conflicts need to be resolved.

\$\text{Three broad types of resolution method can be distinguished:}

- > Co-operative (or collaborative) methods, which include negotiation and education;
- Competitive methods, which include combat, coercion and competition;
- > Third Party methods, which include arbitration and appeals to authority.

© Easterbrook 2004

University of Toronto

Department of Computer Science

Basic approaches to conflict resolution

Negotiation

>participants attempt to find a settlement that satisfies all parties as much as possible.

⋄ also known as:

- >integrative behaviour
- >constructive negotiation
- **७** distinct from:

>distributive/competitive negotiation

⇒ Competition

⋄ is maximizing your own gain:

>no regard for the degree of satisfaction of other parties. >but not necessarily hostile!

⋄ Extreme form:

>when all gains by one party are at the expense of others

>1.e a zero-sum game.

⇒ Third Party Resolution

by participants appeal to outside source

➤ the rule-book, a figure of authority, or the toss of a coin.
➤ can occur with the breakdown of either negotiation or competition as resolution methods.

⋄ types of third party resolution

>judicial: cases presented by each participant are taken into account >extra-judicial: a decision is determined by factors other than the cases presented (e.g. relative status of participants). >arbitrary: e.g. toss of a coin

© Easterbrook 2004

16