
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 19:
Verification and Validation

Ü Some Refreshers:
Ä Summary of Modelling Techniques seen so far
Ä Recap on definitions for V&V

Ü Validation Techniques
Ä Inspection (see lecture 6)
ÄModel Checking (see lecture 16)
Ä Prototyping

Ü Verification Techniques
Ä Consistency Checking
ÄMaking Specifications Traceable (see lecture 21)

Ü Independent V&V

University of Toronto Department of Computer Science

© Easterbrook 2004 2

The story so far
Ü We’ve looked at the following UML diagrams:

Ä Activity diagrams 
Ø capture business processes involving concurrency and synchronization
Ø good for analyzing dependencies between tasks

Ä Class Diagrams
Ø capture the structure of the information used by the system
Ø good for analysing the relationships between data items used by the system
Ø good for helping you identify a modular structure for the system

Ä Statecharts
Ø capture all possible responses of an object to all uses cases in which it is involved
Ø good for modeling the dynamic behavior of a class of objects
Ø good for analyzing event ordering, reachability, deadlock, etc.

Ä Use Cases
Ø capture the view of the system from the view of its users
Ø good starting point for specification of functionality
Ø good visual overview of the main functional requirements

Ä Sequence Diagrams (collaboration diagrams are similar)
Ø capture an individual scenario (one path through a use case)
Ø good for modelling dialog structure for a user interface or a business process
Ø good for identifying which objects (classes) participate in each use case
Ø helps you check that you identified all the necessary classes and operations

University of Toronto Department of Computer Science

© Easterbrook 2004 3

The story so far (part 2)
Ü We’ve looked at the following non-UML diagrams

Ä Goal Models
Ø Capture strategic goals of stakeholders
Ø Good for exploring ‘how’ and ‘why’ questions with stakeholders
Ø Good for analysing trade-offs, especially over design choices

Ä Fault Tree Models (as an example risk analysis technique)
Ø Capture potential failures of a system and their root causes
Ø Good for analysing risk, especially in safety-critical applications

Ä Strategic Dependency Models (i*)
Ø Capture relationships between actors in an organisational setting
Ø Helps to relate goal models to organisational setting
Ø Good for understanding how the organisation will be changed

Ä Entity-Relationship Models
Ø Capture the relational structure of information to be stored
Ø Good for understanding constraints and assumptions about the subject domain
Ø Good basis for database design

ÄMode Class Tables, Event Tables and Condition Tables (SCR)
Ø Capture the dynamic behaviour of a real-time reactive system
Ø Good for representing functional mapping of inputs to outputs
Ø Good for making behavioural models precise, for automated reasoning

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Verification and Validation

Problem
Statement

Implementation
Statement

System

V
al

id
at

io
n

V
er

if
ic

at
io

n

Ü Validation:
Ä “Are we building the right 

system?”
Ä Does our problem statement 

accurately capture the real 
problem?

Ä Did we account for the needs of 
all the stakeholders?

Ü Verification:
Ä “Are we building the system 

right?”
Ä Does our design meet the spec?
Ä Does our implementation meet the 

spec?
Ä Does the delivered system do 

what we said it would do?
Ä Are our requirements models 

consistent with one another?

Problem
Situation



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Refresher: V&V Criteria

Ü Some distinctions:
Ä Domain Properties: things in the application domain that are true anyway
Ä Requirements: things in the application domain that we wish to be made true 
Ä Specification: a description of the behaviours the program must have in 

order to meet the requirements

Ü Two verification criteria:
Ä The Program running on a particular Computer satisfies the Specification
Ä The Specification, given the Domain properties, satisfies the Requirements

Ü Two validation criteria:
Ä Did we discover (and understand) all the important Requirements?
Ä Did we discover (and understand) all the relevant Domain properties?

Source: Adapted from Jackson, 1995, p170-171

Application Domain Machine Domain

University of Toronto Department of Computer Science

© Easterbrook 2004 6

V&V Example
Ü Example:

Ä Requirement R:
Ø “Reverse thrust shall only be enabled when the aircraft is moving on the runway”

Ä Domain Properties D:
Ø Wheel pulses on if and only if wheels turning
Ø Wheels turning if and only if moving on runway

Ä Specification S:
Ø Reverse thrust enabled if and only if wheel pulses on

Ü Verification
Ä Does the flight software, P, running on the aircraft flight computer, C, 

correctly implement S?
Ä Does S, in the context of assumptions D, satisfy R? 

Ü Validation
Ä Are our assumptions, D, about the domain correct? Did we miss any?
Ä Are the requirements, R, what is really needed? Did we miss any?

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are 
theories about the world; 
Designs are tests of those 

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the 
experiments
(manipulate 

the variables)

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Shortcuts in the inquiry cycle
Prior Knowledge

(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Build a
Prototype
Build a

Prototype

Get users
to try it

Get users
to try it

(what is wrong with
the prototype?)

Analyze
the model
Analyze

the model

Check properties
of the model

Check properties
of the model

(what is wrong with
the model?)



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Prototyping
“A software prototype is a partial implementation constructed primarily to 

enable customers, users, or developers to learn more about a problem or its 
solution.” [Davis 1990]

“Prototyping is the process of building a working model of the system” 
[Agresti 1986]

Ü Approaches to prototyping
Ä Presentation Prototypes

Ø explain, demonstrate and inform – then throw away
Ø e.g. used for proof of concept; explaining design features; etc.

Ä Exploratory Prototypes
Ø used to determine problems, elicit needs, clarify goals, compare design options
Ø informal, unstructured and thrown away.

Ä Breadboards or Experimental Prototypes
Ø explore technical feasibility; test suitability of a technology
Ø Typically no user/customer involvement

Ä Evolutionary (e.g. “operational prototypes”, “pilot systems”):
Ø development seen as continuous process of adapting the system
Ø “prototype” is an early deliverable, to be continually improved.

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Throwaway or Evolve?
Ü Throwaway Prototyping

ÄPurpose:
Ø to learn more about the problem or its 

solution…
Ø discard after desired knowledge is gained.

ÄUse:
Ø early or late

ÄApproach:
Ø horizontal - build only one layer (e.g. UI)
Ø “quick and dirty”

ÄAdvantages:
Ø Learning medium for better convergence
Ø Early delivery → early testing → less cost
Ø Successful even if it fails!

ÄDisadvantages:
Ø Wasted effort if reqts change rapidly
Ø Often replaces proper documentation of the 

requirements
Ø May set customers’ expectations too high
Ø Can get developed into final product

Ü Evolutionary Prototyping
ÄPurpose

Ø to learn more about the problem or its 
solution…

Ø …and reduce risk by building parts early
ÄUse:

Ø incremental; evolutionary
ÄApproach:

Ø vertical - partial impl. of all layers; 
Ø designed to be extended/adapted

ÄAdvantages:
Ø Requirements not frozen
Ø Return to last increment if error is found
Ø Flexible(?)

ÄDisadvantages:
Ø Can end up with complex, unstructured 

system which is hard to maintain
Ø early architectural choice may be poor
Ø Optimal solutions not guaranteed
Ø Lacks control and direction

Brooks: “Plan to throw one away - you will anyway!”

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Model Analysis
Ü Verification

Ä “Is the model well-formed?”
Ä Are the parts of the model consistent with one another?

Ü Validation:
Ä Animation of the model on small examples
Ä Formal challenges:

Ø “if the model is correct then the following property should hold...”
Ä ‘What if’ questions:

Ø reasoning about the consequences of particular requirements;
Ø reasoning about the effect of possible changes
Ø “will the system ever do the following...” 

Ä State exploration 
Ø E.g. use a model checking to find traces that satisfy some property

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Basic Cross-Checks for UML
Use Case Diagrams
ÄDoes each use case have a user?

Ø Does each user have at least one use case?
ÄIs each use case documented?

Ø Using sequence diagrams or equivalent

Class Diagrams
ÄDoes the class diagram capture all the 

classes mentioned in other diagrams?
ÄDoes every class have methods to get/set 

its attributes?

Sequence Diagrams
ÄIs each class in the class diagram?
ÄCan each message be sent?

Ø Is there an association connecting sender and 
receiver classes on the class diagram?

Ø Is there a method call in the sending class for 
each sent message?

Ø Is there a method call in the receiving class 
for each received message?

StateChart Diagrams
ÄDoes each statechart diagram capture (the 

states of) a single class?
Ø Is that class in the class diagram?

ÄDoes each transition have a trigger event?
Ø Is it clear which object initiates each event?
Ø Is each event listed as an operation for that 

object’s class in the class diagram?
ÄDoes each state represent a distinct 

combination of attribute values?
Ø Is it clear which combination of attribute 

values?
Ø Are all those attributes shown on the class 

diagram?
ÄAre there method calls in the class 

diagram for each transition?
Ø …a method call that will update attribute 

values for the new state?
Ø …method calls that will test any conditions on 

the transition?
Ø …method calls that will carry out any actions 

on the transition?



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Independent V&V
Ü V&V performed by a separate contractor

Ä Independent V&V fulfills the need for an independent technical opinion.
Ä Cost between 5% and 15% of development costs
Ä Studies show up to fivefold return on investment:

Ø Errors found earlier, cheaper to fix, cheaper to re-test
Ø Clearer specifications
Ø Developer more likely to use best practices

Ü Three types of independence:
ÄManagerial Independence:

Ø separate responsibility from that of developing the software
Ø can decide when and where to focus the V&V effort

Ä Financial Independence:
Ø Costed and funded separately
Ø No risk of diverting resources when the going gets tough

Ä Technical Independence:
Ø Different personnel, to avoid analyst bias
Ø Use of different tools and techniques

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Some philosophical views of validation
Ü logical positivist view:

Ø “there is an objective world that can be modeled by building a consistent body of 
knowledge grounded in empirical observation”

Ä In RE, assumes there is an objective problem that exists in the world
Ø Build a consistent model; make sufficient empirical observations to check validity
Ø Use tools that test consistency and completeness of the model
Ø Use reviews, prototyping, etc to demonstrate the model is “valid”

Ü Popper’s modification to logical positivism:
Ø “theories can’t be proven correct, they can only be refuted by finding exceptions”

Ä In RE, design your requirements models to be refutable
Ø Look for evidence that the model is wrong
Ø E.g. collect scenarios and check the model supports them

Ü post-modernist view:
Ø “there is no privileged viewpoint; all observation is value-laden; scientific 

investigation is culturally embedded”
Ø E.g. Kuhn: science moves through paradigms
Ø E.g. Toulmin: scientific theories are judged with respect to a weltanschauung

Ä In RE, validation is always subjective and contextualised
Ø Use stakeholder involvement so that they ‘own’ the requirements models
Ø Use ethnographic techniques to understand the weltanschauungen


