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Lecture 16:
Modelling “events”

Ü Focus on states or events?
Ä E.g. SCR table-based models
Ä Explicit event semantics

Ü Comparing notations for state transition models
Ä FSMs vs. Statecharts vs. SCR

Ü Checking properties of state transition models
Ä Consistency Checking
ÄModel Checking, using Temporal Logic

Ü When to use formal methods
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What are we modelling?

Ü Starting point:
Ä States of the environment
Ä Events that occur in the application domain (that change the state of the environment)

Ü Requirements expressed as:
Ä Constraints over states and events of the application domain

ØE.g. “When the aircraft is in the air, the pilot should be prevented from accidentally engaging 
the reverse thrust”

Ü To get to a specification:
Ä For each relevant application domain event, find a corresponding input event
Ä For each relevant state, ensure there is a way for the machine to detect it
Ä For each required action, find a corresponding output event

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

University of Toronto Department of Computer Science

© Easterbrook 2004 3

software
Monitored

Variables

Enviro-
ment

System

input
devices

input

data
items

data
items

output

devices

output Controlled

Variables

Enviro-
ment

Tabular Specifications: SCR

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Modes Events
NoFailure @T(INMODE) never
Blah @T(thingy) @T(other)
Doodah never always
ACFailure, HeatFailure never @T(INMODE)
ACpower = Off On

Modes Events
NoFailure false true
ACFailure, HeatFailure true false
Buzzer = Off On

Modes Events

NoFailure true false
ACFailure temp > temp0 temp <= temp0
HeatFailure false waterlevel =low
Warning light = Off On

Variable Type Initial Value Units

WarningFlag boolean false -
OtherFlag boolean true
Fudgelevel enumerated one -
Waterlevel real 0.0 m

temperature real 0.0 degrees C
BlipCounter integer 0 miles
TimeNow real 100.0 sec
AirBrakeAcc real 0.0 m/sec

Constant Type Value Units
LowTemp integer 15 degrees C
HighTemp integer 23 degrees C
MaxTimeOut integer 300 millisec
ReferenceSafetyLevel safetytype low -
TempMargin integer 5 degrees C

Type BaseType Values Units
WarningLevel enumerated low,med,high -

Temperature integer -100..100 degrees C
Waterlevel integer 0..100 meters
Flag enumerated on, off -

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

Timeout @F - - - No Failure
- f f @T ACFailure

Current
Mode
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Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Modes Events
NoFailure @T(INMODE) never
Blah @T(thingy) @T(other)
Doodah never always
ACFailure, HeatFailure never @T(INMODE)
Heater = Off On

Modes Events
NoFailure @T(INMODE) never
SensorFail @T(reset=on) @T(INMODE)
Timeout always never
ACFailure, HeatFailure never @T(INMODE)
Warning light = Off On

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

Four Variable Model:

SCR Specification
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SCR basics
Ü Modes and Mode classes

Ä A mode class is a finite state machine, with states called system modes
Ø Transitions in each mode class are triggered by events

Ä Complex systems described using several mode classes operating in parallel
Ä System State is defined as:

Ø the system is in exactly one mode from each mode class…
Ø …and each variable has a unique value

Ü Events
Ä Single input assumption - only one input event can occur at once
Ä An event occurs when any system entity changes value

Ø An input event occurs when an input variable changes value
ÄNotation:

Ø We may need to refer to both the old and new value of a variable:
Ø Used primed values to denote values after the event
Ø @T(c) ≡ ¬c ∧ c’ e.g. @T(y=1) ≡ y≠1 ∧ y’=1
Ø @F(c) ≡ c ∧ ¬c

Ä A conditioned event is an event with a predicate
Ø @T(c) WHEN d ≡ ¬c ∧ c’ ∧ d

Source: Adapted from Heitmeyer et. al. 1996.
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Ü Mode Class Tables
Ä Define a (disjoint) set of modes (states) that the software can be in.
Ä A complex system will have many different modes classes

Ø Each mode class has a mode table showing the events that cause transitions between modes
Ä A mode table defines a partial function from modes and events to modes

Ü Example:

Defining Mode Classes

Source: Adapted from Heitmeyer et. al. 1996.

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive
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Ü Event Tables
Ä defines how a controlled variable changes in response to input events
Ä Defines a partial function from modes and events to variable values
Ä Example:

Ü Condition Tables
Ä defines the value of a controlled variable under every possible condition
Ä Defines a total function from modes and conditions to variable values
Ä Example:

Defining Controlled Variables

Source: Adapted from Heitmeyer et. al. 1996.

Modes
Heat target - temp ² 5 target - temp >5
AC temp - target ² 5 temp - target >5
Inactive, Off true never
Warning light = Off On

Modes
Heat, AC @C(target) never
Inactive, Off never @C(target)
Ack_tone = Beep Clang

University of Toronto Department of Computer Science

© Easterbrook 2004 7

offhook

idle connectedringtonedialtone

busytone
on hook

on hook

on hook
on hook

off hook

Dial 
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

idle connectedringtonedialtone

busytone

on hook

off hook

Dial 
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

Refresher: FSMs and Statecharts
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SCR Equivalent
Current
Mode

offhook dial callee
offhook

New
Mode

Idle @T - - Dialtone
Dialtone - @T F Ringtone

- @T T Busytone
@F - - Idle

Busytone @F - - Idle
Ringtone - - @T Connected

@F - - Idle
Connected - - @F Dialtone
AC @F - - Idle

Ü Interpretation:
Ä In Dialtone:    @T(offhook) WHEN callee_offhook takes you to Ringing
Ä In Ringtone:    @F(offhook) takes you to Idle
Ä Etc…
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State Machine Models vs. SCR
Ü All 3 models on previous slides are (approx) equivalent
Ü State machine models

Ä Emphasis is on states & transitions
Ø No systematic treatment of events
Ø Different event semantics can be applied

Ä Graphical notation easy to understand (?)
Ä Composition achieved through statechart nesting
Ä Hard to represent complex conditions on transitions
Ä Hard to represent real-time constraints (e.g. elapsed time)

Ü SCR models
Ä Emphasis is on events

Ø Clear event semantics based on changes to environmental variables
Ø Single input assumption simplifies modelling

Ä Tabular notation easy to understand (?)
Ä Composition achieved through parallel mode classes
Ä Hard to represent real-time constraints (e.g. elapsed time)
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formal analysis
Ü Consistency analysis and typechecking

Ä “Is the formal model well-formed?”
Ø [assumes a modeling language where well-formedness is a useful thing to check]

Ü Validation:
Ä Animation of the model on small examples
Ä Formal challenges:

Ø “if the model is correct then the following property should hold...”
Ä ‘What if’ questions:

Ø reasoning about the consequences of particular requirements;
Ø reasoning about the effect of possible changes

Ä State exploration 
Ø E.g. use a model checking to find traces that satisfy some property

Ä Checking application properties:
Ø “will the system ever do the following...”

Ü Verifying design refinement
Ø “does the design meet the requirements?”
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E.g. Consistency Checks in SCR
Ü Syntax 

Ä did we use the notation correctly?

Ü Type Checks 
Ä do we use each variable correctly?

Ü Disjointness
Ä is there any overlap between rows of the mode tables?

Ø ensures we have a deterministic state machine

Ü Coverage 
Ä does each condition table define a value for all possible conditions?

Ü Mode Reachability
Ä is there any mode that cannot ever happen?

Ü Cycle Detection 
Ä have we defined any variable in terms of itself?
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Model Checking
Ü Has revolutionized formal verification:

Ä emphasis on partial verification of partial models
Ø E.g. as a debugging tool for state machine models

Ä fully automated

Ü What it does:
ÄMathematically – computes the “satisfies” relation:

Ø Given a temporal logic theory, checks whether a given finite state machine is a 
model for that theory.

Ä Engineering view – checks whether properties hold:
Ø Given a model (e.g. a FSM), checks whether it obeys various safety and liveness

properties

Ü How to apply it in RE:
Ä The model is an (operational) Specification

Ø Check whether particular requirements hold of the spec
Ä The model is (an abstracted portion of) the Requirements

Ø Carry out basic validity tests as the model is developed
Ä The model is a conjunction of the Requirements and the Domain

Ø Formalise assumptions and test whether the model respects them
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Model Checking Basics
Ü Build a finite state machine model

Ä E.g. PROMELA - processes and message channels
Ä E.g. SCR - tables for state transitions and control actions
Ä E.g. RSML - statecharts + truth tables for action preconditions

Ü Express validation property as a logic specification
Ä Propositions in first order logic (for invariants)
Ä Temporal Logic (for safety & liveness properties)

Ø E.g. CTL, LTL, ...

Ü Run the model checker:
Ä Computes the value of: model |= property

Ü Explore counter-examples
Ä If the answer is ‘no’ find out why the property doesn’t hold
Ä Counter-example is a trace through the model
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Temporal Logic
Ü LTL (Linear Temporal Logic)

Ä Expresses properties of infinite traces through a state machine model
Ä adds two temporal operators to propositional logic:

? p - p is true eventually (in some future state)
op - p is true always (now and in the future)

Ü CTL (Computational Tree Logic) 
Ä branching-time logic - can quantify over possible futures
Ä Each operator has two parts:

EX p - p is true in some next states
AX p - p is true in all next states
EF p - along some path, p is true in some future state
AF p - along all paths…
E[p U q] - along some path, p holds until q holds;
A[p U q] - along all paths…
EG p - along some path, p holds in every state;
AG p - along all paths…
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Example

Ü Sample Properties
Ä If you are connected you can hang up: 
Ä AG(CONNECTED → EX(¬OFFHOOK)
Ä If you are connected, hanging up always disconnects you: 
Ä AG(CONNECTED → AX(¬OFFHOOK → ¬CONNECTED))
Ä A connection doesn’t start until you pick up the phone:
Ä AG(¬CONNECTED → A[¬CONNECTED U OFFHOOK])
Ä If you make a call, the phone cannot ring without returning to idle first:
Ä AG((RINGTONE ∨ BUSYTONE) → A[¬RINGING U IDLE])

offhook

idle connectedringtonedialtone

busytone

on hook

off hook

Dial 
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects
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Complexity Issues
Ü The problem:

ÄModel Checking is exponential in the size of the model and the property
Ä Current MC engines can explore 10120 states…

Ø using highly optimized data structures (BDDs)
Ø …and state space reduction techniques

Ä …that’s roughly 400 propositional variables
Ø integer and real variables cause real problems

Ä Realistic models are often to large to be model checked

Ü The solution:
Ä Abstraction:

Ø Replace related groups of states with a single superstate
Ø Replace real & integer variables with propositional variables

Ä Projection:
Ø Slice the model to remove parts unrelated to the property

Ä Compositional verification - break large model into smaller pieces
Ø (But it’s hard to verify that the composition preserves properties)
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Formal Methods in RE

Why formalize in RE?
Ä Remove ambiguity and improve precision
Ä Provides a basis for verification that 

the requirements have been met
Ä Can reason about the requirements

Ø Properties of formal requirements models 
can be checked automatically

Ø Can test for consistency, explore the 
consequences, etc.

Ä Can animate/execute the requirements
ØHelps with visualization and validation

ÄWill have to formalize eventually anyway
Ø RE is all about bridging from the informal 

world to a formal machine domain

Why formalize in RE?
Ä Remove ambiguity and improve precision
Ä Provides a basis for verification that 

the requirements have been met
Ä Can reason about the requirements

Ø Properties of formal requirements models 
can be checked automatically

Ø Can test for consistency, explore the 
consequences, etc.

Ä Can animate/execute the requirements
ØHelps with visualization and validation

ÄWill have to formalize eventually anyway
Ø RE is all about bridging from the informal 

world to a formal machine domain

Why people don’t formalize in RE
Ä Formal Methods tend to be lower level 

than other analysis techniques
Ø They force you to include too much detail

Ä Formal Methods tend to concentrate on 
consistent, correct models
Ø …but most of the time your models are 

inconsistent, incorrect, incomplete…
Ä People get confused about which tools 

are appropriate:
Ø E.g. modeling program behaviour vs. 

modeling the requirements
Ø formal methods advocates get too attached 

to one tool!
Ä Formal methods require more effort

Ø ...and the payoff is deferred

Why people don’t formalize in RE
Ä Formal Methods tend to be lower level 

than other analysis techniques
Ø They force you to include too much detail

Ä Formal Methods tend to concentrate on 
consistent, correct models
Ø …but most of the time your models are 

inconsistent, incorrect, incomplete…
Ä People get confused about which tools 

are appropriate:
Ø E.g. modeling program behaviour vs. 

modeling the requirements
Ø formal methods advocates get too attached 

to one tool!
Ä Formal methods require more effort

Ø ...and the payoff is deferred

ÜWhat to formalize in RE?
Ämodels of requirements knowledge (so we can reason about them)
Äspecifications of requirements (so we can document them precisely)
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Issue Severity With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4

FM in practice
Ü From Shuttle Study [Crow & DiVito 1996]

ÄMore errors found in the process of formalizing the requirements than were 
found in the formal analysis
Ø Formalization forces you to be precise and explicit, hence reveals problems
Ø Formal analysis then finds fewer, but more subtle problems

Ä Typical errors found include:
Ø inconsistent interfaces
Ø incorrect requirements (system does the wrong thing in response to an input)
Ø clarity/maintainability problems
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Using Formal Methods
Ü Selective use of Formal Methods

Ä Amount of formality can vary
Ä Need not build complete formal models

Ø Apply to the most critical pieces
Ø Apply where existing analysis techniques are weak

Ä Need not formally analyze every system property
Ø E.g. check safety properties only

Ä Need not apply FM in every phase of development
Ø E.g. use for modeling requirements, but don’t formalize the system design

Ä Can choose what level of abstraction (amount of detail) to model


