
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 16:
Modelling “events”

Ü Focus on states or events?
Ä E.g. SCR table-based models
Ä Explicit event semantics

Ü Comparing notations for state transition models
Ä FSMs vs. Statecharts vs. SCR

Ü Checking properties of state transition models
Ä Consistency Checking
ÄModel Checking, using Temporal Logic

Ü When to use formal methods

University of Toronto Department of Computer Science

© Easterbrook 2004 2

What are we modelling?

Ü Starting point:
Ä States of the environment
Ä Events that occur in the application domain (that change the state of the environment)

Ü Requirements expressed as:
Ä Constraints over states and events of the application domain

ØE.g. “When the aircraft is in the air, the pilot should be prevented from accidentally engaging
the reverse thrust”

Ü To get to a specification:
Ä For each relevant application domain event, find a corresponding input event
Ä For each relevant state, ensure there is a way for the machine to detect it
Ä For each required action, find a corresponding output event

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

University of Toronto Department of Computer Science

© Easterbrook 2004 3

software
Monitored

Variables

Enviro-
ment

System

input
devices

input

data
items

data
items

output

devices

output Controlled

Variables

Enviro-
ment

Tabular Specifications: SCR

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Modes Events
NoFailure @T(INMODE) never
Blah @T(thingy) @T(other)
Doodah never always
ACFailure, HeatFailure never @T(INMODE)
ACpower = Off On

Modes Events
NoFailure false true
ACFailure, HeatFailure true false
Buzzer = Off On

Modes Events

NoFailure true false
ACFailure temp > temp0 temp <= temp0
HeatFailure false waterlevel =low
Warning light = Off On

Variable Type Initial Value Units

WarningFlag boolean false -
OtherFlag boolean true
Fudgelevel enumerated one -
Waterlevel real 0.0 m

temperature real 0.0 degrees C
BlipCounter integer 0 miles
TimeNow real 100.0 sec
AirBrakeAcc real 0.0 m/sec

Constant Type Value Units
LowTemp integer 15 degrees C
HighTemp integer 23 degrees C
MaxTimeOut integer 300 millisec
ReferenceSafetyLevel safetytype low -
TempMargin integer 5 degrees C

Type BaseType Values Units
WarningLevel enumerated low,med,high -

Temperature integer -100..100 degrees C
Waterlevel integer 0..100 meters
Flag enumerated on, off -

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

Timeout @F - - - No Failure
- f f @T ACFailure

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Modes Events
NoFailure @T(INMODE) never
Blah @T(thingy) @T(other)
Doodah never always
ACFailure, HeatFailure never @T(INMODE)
Heater = Off On

Modes Events
NoFailure @T(INMODE) never
SensorFail @T(reset=on) @T(INMODE)
Timeout always never
ACFailure, HeatFailure never @T(INMODE)
Warning light = Off On

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

Four Variable Model:

SCR Specification

University of Toronto Department of Computer Science

© Easterbrook 2004 4

SCR basics
Ü Modes and Mode classes

Ä A mode class is a finite state machine, with states called system modes
Ø Transitions in each mode class are triggered by events

Ä Complex systems described using several mode classes operating in parallel
Ä System State is defined as:

Ø the system is in exactly one mode from each mode class…
Ø …and each variable has a unique value

Ü Events
Ä Single input assumption - only one input event can occur at once
Ä An event occurs when any system entity changes value

Ø An input event occurs when an input variable changes value
ÄNotation:

Ø We may need to refer to both the old and new value of a variable:
Ø Used primed values to denote values after the event
Ø @T(c) ≡ ¬c ∧ c’ e.g. @T(y=1) ≡ y≠1 ∧ y’=1
Ø @F(c) ≡ c ∧ ¬c

Ä A conditioned event is an event with a predicate
Ø @T(c) WHEN d ≡ ¬c ∧ c’ ∧ d

Source: Adapted from Heitmeyer et. al. 1996.

2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Ü Mode Class Tables
Ä Define a (disjoint) set of modes (states) that the software can be in.
Ä A complex system will have many different modes classes

Ø Each mode class has a mode table showing the events that cause transitions between modes
Ä A mode table defines a partial function from modes and events to modes

Ü Example:

Defining Mode Classes

Source: Adapted from Heitmeyer et. al. 1996.

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Ü Event Tables
Ä defines how a controlled variable changes in response to input events
Ä Defines a partial function from modes and events to variable values
Ä Example:

Ü Condition Tables
Ä defines the value of a controlled variable under every possible condition
Ä Defines a total function from modes and conditions to variable values
Ä Example:

Defining Controlled Variables

Source: Adapted from Heitmeyer et. al. 1996.

Modes
Heat target - temp ² 5 target - temp >5
AC temp - target ² 5 temp - target >5
Inactive, Off true never
Warning light = Off On

Modes
Heat, AC @C(target) never
Inactive, Off never @C(target)
Ack_tone = Beep Clang

University of Toronto Department of Computer Science

© Easterbrook 2004 7

offhook

idle connectedringtonedialtone

busytone
on hook

on hook

on hook
on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

Refresher: FSMs and Statecharts
University of Toronto Department of Computer Science

© Easterbrook 2004 8

SCR Equivalent
Current
Mode

offhook dial callee
offhook

New
Mode

Idle @T - - Dialtone
Dialtone - @T F Ringtone

- @T T Busytone
@F - - Idle

Busytone @F - - Idle
Ringtone - - @T Connected

@F - - Idle
Connected - - @F Dialtone
AC @F - - Idle

Ü Interpretation:
Ä In Dialtone: @T(offhook) WHEN callee_offhook takes you to Ringing
Ä In Ringtone: @F(offhook) takes you to Idle
Ä Etc…

3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

State Machine Models vs. SCR
Ü All 3 models on previous slides are (approx) equivalent
Ü State machine models

Ä Emphasis is on states & transitions
Ø No systematic treatment of events
Ø Different event semantics can be applied

Ä Graphical notation easy to understand (?)
Ä Composition achieved through statechart nesting
Ä Hard to represent complex conditions on transitions
Ä Hard to represent real-time constraints (e.g. elapsed time)

Ü SCR models
Ä Emphasis is on events

Ø Clear event semantics based on changes to environmental variables
Ø Single input assumption simplifies modelling

Ä Tabular notation easy to understand (?)
Ä Composition achieved through parallel mode classes
Ä Hard to represent real-time constraints (e.g. elapsed time)

University of Toronto Department of Computer Science

© Easterbrook 2004 10

formal analysis
Ü Consistency analysis and typechecking

Ä “Is the formal model well-formed?”
Ø [assumes a modeling language where well-formedness is a useful thing to check]

Ü Validation:
Ä Animation of the model on small examples
Ä Formal challenges:

Ø “if the model is correct then the following property should hold...”
Ä ‘What if’ questions:

Ø reasoning about the consequences of particular requirements;
Ø reasoning about the effect of possible changes

Ä State exploration
Ø E.g. use a model checking to find traces that satisfy some property

Ä Checking application properties:
Ø “will the system ever do the following...”

Ü Verifying design refinement
Ø “does the design meet the requirements?”

University of Toronto Department of Computer Science

© Easterbrook 2004 11

E.g. Consistency Checks in SCR
Ü Syntax

Ä did we use the notation correctly?

Ü Type Checks
Ä do we use each variable correctly?

Ü Disjointness
Ä is there any overlap between rows of the mode tables?

Ø ensures we have a deterministic state machine

Ü Coverage
Ä does each condition table define a value for all possible conditions?

Ü Mode Reachability
Ä is there any mode that cannot ever happen?

Ü Cycle Detection
Ä have we defined any variable in terms of itself?

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Model Checking
Ü Has revolutionized formal verification:

Ä emphasis on partial verification of partial models
Ø E.g. as a debugging tool for state machine models

Ä fully automated

Ü What it does:
ÄMathematically – computes the “satisfies” relation:

Ø Given a temporal logic theory, checks whether a given finite state machine is a
model for that theory.

Ä Engineering view – checks whether properties hold:
Ø Given a model (e.g. a FSM), checks whether it obeys various safety and liveness

properties

Ü How to apply it in RE:
Ä The model is an (operational) Specification

Ø Check whether particular requirements hold of the spec
Ä The model is (an abstracted portion of) the Requirements

Ø Carry out basic validity tests as the model is developed
Ä The model is a conjunction of the Requirements and the Domain

Ø Formalise assumptions and test whether the model respects them

4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Model Checking Basics
Ü Build a finite state machine model

Ä E.g. PROMELA - processes and message channels
Ä E.g. SCR - tables for state transitions and control actions
Ä E.g. RSML - statecharts + truth tables for action preconditions

Ü Express validation property as a logic specification
Ä Propositions in first order logic (for invariants)
Ä Temporal Logic (for safety & liveness properties)

Ø E.g. CTL, LTL, ...

Ü Run the model checker:
Ä Computes the value of: model |= property

Ü Explore counter-examples
Ä If the answer is ‘no’ find out why the property doesn’t hold
Ä Counter-example is a trace through the model

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Temporal Logic
Ü LTL (Linear Temporal Logic)

Ä Expresses properties of infinite traces through a state machine model
Ä adds two temporal operators to propositional logic:

? p - p is true eventually (in some future state)
op - p is true always (now and in the future)

Ü CTL (Computational Tree Logic)
Ä branching-time logic - can quantify over possible futures
Ä Each operator has two parts:

EX p - p is true in some next states
AX p - p is true in all next states
EF p - along some path, p is true in some future state
AF p - along all paths…
E[p U q] - along some path, p holds until q holds;
A[p U q] - along all paths…
EG p - along some path, p holds in every state;
AG p - along all paths…

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Example

Ü Sample Properties
Ä If you are connected you can hang up:
Ä AG(CONNECTED → EX(¬OFFHOOK)
Ä If you are connected, hanging up always disconnects you:
Ä AG(CONNECTED → AX(¬OFFHOOK → ¬CONNECTED))
Ä A connection doesn’t start until you pick up the phone:
Ä AG(¬CONNECTED → A[¬CONNECTED U OFFHOOK])
Ä If you make a call, the phone cannot ring without returning to idle first:
Ä AG((RINGTONE ∨ BUSYTONE) → A[¬RINGING U IDLE])

offhook

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Complexity Issues
Ü The problem:

ÄModel Checking is exponential in the size of the model and the property
Ä Current MC engines can explore 10120 states…

Ø using highly optimized data structures (BDDs)
Ø …and state space reduction techniques

Ä …that’s roughly 400 propositional variables
Ø integer and real variables cause real problems

Ä Realistic models are often to large to be model checked

Ü The solution:
Ä Abstraction:

Ø Replace related groups of states with a single superstate
Ø Replace real & integer variables with propositional variables

Ä Projection:
Ø Slice the model to remove parts unrelated to the property

Ä Compositional verification - break large model into smaller pieces
Ø (But it’s hard to verify that the composition preserves properties)

5

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Formal Methods in RE

Why formalize in RE?
Ä Remove ambiguity and improve precision
Ä Provides a basis for verification that

the requirements have been met
Ä Can reason about the requirements

Ø Properties of formal requirements models
can be checked automatically

Ø Can test for consistency, explore the
consequences, etc.

Ä Can animate/execute the requirements
ØHelps with visualization and validation

ÄWill have to formalize eventually anyway
Ø RE is all about bridging from the informal

world to a formal machine domain

Why formalize in RE?
Ä Remove ambiguity and improve precision
Ä Provides a basis for verification that

the requirements have been met
Ä Can reason about the requirements

Ø Properties of formal requirements models
can be checked automatically

Ø Can test for consistency, explore the
consequences, etc.

Ä Can animate/execute the requirements
ØHelps with visualization and validation

ÄWill have to formalize eventually anyway
Ø RE is all about bridging from the informal

world to a formal machine domain

Why people don’t formalize in RE
Ä Formal Methods tend to be lower level

than other analysis techniques
Ø They force you to include too much detail

Ä Formal Methods tend to concentrate on
consistent, correct models
Ø …but most of the time your models are

inconsistent, incorrect, incomplete…
Ä People get confused about which tools

are appropriate:
Ø E.g. modeling program behaviour vs.

modeling the requirements
Ø formal methods advocates get too attached

to one tool!
Ä Formal methods require more effort

Ø ...and the payoff is deferred

Why people don’t formalize in RE
Ä Formal Methods tend to be lower level

than other analysis techniques
Ø They force you to include too much detail

Ä Formal Methods tend to concentrate on
consistent, correct models
Ø …but most of the time your models are

inconsistent, incorrect, incomplete…
Ä People get confused about which tools

are appropriate:
Ø E.g. modeling program behaviour vs.

modeling the requirements
Ø formal methods advocates get too attached

to one tool!
Ä Formal methods require more effort

Ø ...and the payoff is deferred

ÜWhat to formalize in RE?
Ämodels of requirements knowledge (so we can reason about them)
Äspecifications of requirements (so we can document them precisely)

University of Toronto Department of Computer Science

© Easterbrook 2004 18

Issue Severity With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4

FM in practice
Ü From Shuttle Study [Crow & DiVito 1996]

ÄMore errors found in the process of formalizing the requirements than were
found in the formal analysis
Ø Formalization forces you to be precise and explicit, hence reveals problems
Ø Formal analysis then finds fewer, but more subtle problems

Ä Typical errors found include:
Ø inconsistent interfaces
Ø incorrect requirements (system does the wrong thing in response to an input)
Ø clarity/maintainability problems

University of Toronto Department of Computer Science

© Easterbrook 2004 19

Using Formal Methods
Ü Selective use of Formal Methods

Ä Amount of formality can vary
Ä Need not build complete formal models

Ø Apply to the most critical pieces
Ø Apply where existing analysis techniques are weak

Ä Need not formally analyze every system property
Ø E.g. check safety properties only

Ä Need not apply FM in every phase of development
Ø E.g. use for modeling requirements, but don’t formalize the system design

Ä Can choose what level of abstraction (amount of detail) to model

