
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 15:
Modelling “State”

Ü What is State?
Ä statespace for an object
Ä concrete vs. abstract states

Ü Finite State Machines
Ä states and transitions
Ä events and actions

Ü Modularized State machine models: Statecharts
Ä superstates and substates
Ä Guidelines for drawing statecharts

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Getting objects to behave
Ü All objects have “state”

Ä The object either exists or it doesn’t
Ä If it exists, then it has a value for each of its attributes
Ä Each possible assignment of values to attributes is a “state”

Ø (and non-existence is a state, although we normally ignore it)

Ü E.g. For a stack object

empty 1 item

Push()

Pop()

new()
2 items 3 items 4 items

Push() Push() Push()

Pop() Pop()

…
Pop()Top() Top() Top() Top()

University of Toronto Department of Computer Science

© Easterbrook 2004 3

What does the model mean?
Ü Finite State Machines

Ä There are a finite number of states (all attributes have finite ranges)
Ø E.g. imagine a stack with max length = 3

Ä The model specifies a set of traces
Ø E.g. new();Push();Push();Top();Pop();Push()…
Ø E.g. new();Push();Pop();Push();Pop()…
Ø There may be an infinite number of traces (and traces may be of infinite length)

Ä The model excludes some behaviours
Ø E.g. no trace can start with a Pop()
Ø E.g. no trace may have more Pops than Pushes
Ø E.g. no trace may have more than 3 Pushes without a Pop in between

empty 1 item

Push()

Pop()

new()
2 items 3 items

Push() Push()

Pop() Pop()Top() Top() Top()

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Abstraction
Ü The state space of most objects is enormous

Ä State space size is the product of the range of each attribute
Ø E.g. object with five boolean attributes: 25+1 states
Ø E.g. object with five integer attributes: (maxint)5+1 states
Ø E.g. object with five real-valued attributes: …?

Ä If we ignore computer representation limits, the state space is infinite

Ü Only part of that state space is “interesting”
Ä Some states are not reachable
Ä Integer and real values usually only vary within some relevant range
ÄWe’re usually not interested in the actual values, just certain ranges:

Ø E.g. for Age, we may be interested in age<18; 18=age=65; and age>65
Ø E.g. for Cost, we may only be interested in� cost=budget, cost=0, cost>budget,

and cost>(budget+10%)

2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Collapsing the state space

empty 1 item

Push()

Pop()

new()
2 items 3 items 4 items

Push() Push() Push()

Pop() Pop()

…
Pop()Top() Top() Top() Top()

empty not empty

Push()Push()

Pop() [sc=1]

new()

Pop() [sc>1]

Top()

Ä The abstraction usually permits more traces
Ø E.g. this model does not prevent traces with more pops than pushes
Ø But it still says something useful

University of Toronto Department of Computer Science

© Easterbrook 2004 6

What are we modelling?

Ü Observed states of an application domain entity?
ØE.g. a phone can be idle, ringing, connected, …

Ä Model shows the states an entity can be in, and how events can change its state
Ä This is an indicative model

Ü Required behaviour of an application domain entity?
ØE.g. a telephone switch shall connect the phones only when the callee accepts the call

Ä Model distinguishes between traces that are desired and those that are not
Ä This is an optative model

Ü Specified behaviour of a machine domain entity?
ØE.g. when the user presses the ‘connect’ button the incoming call shall be connected

Ä Model specifies how the machine should respond to input events
Ä This is an optative model, in which all events are shared phenomena

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Is this model indicative or optative?

idle connectedringingdial
tone

busy
on hook

on hook

on hook

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

University of Toronto Department of Computer Science

© Easterbrook 2004 8

the world vs. the machine

:person

age

havebirthday()

child

adult

senior

havebirthday()
[age = 18]

havebirthday()
[age = 65]

havebirthday()
[age < 18]

havebirthday()
[age < 65]

havebirthday()

child

adult

senior

when
[thisyear-birthyear>18]

when
[thisyear-birthyear>65]

blank

deceased

recordBirth()
/setDOB()

recordDeath()
/setDateofDeath()

:person

dateOfBirth
dateOfDeath
recordBirth()
setDOB()
recordDeath()
setDateofDeath()

3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

StateCharts
Ü Notation:

Ä States
Ø “interesting” configurations of the values of an object’s attributes
Ø may include a specification of action to be taken on entry or exit
Ø States may be nested
Ø States may be “on” or “off” at any given moment

Ä Transitions
Ø Are enabled when the state is “on”; disabled otherwise
Ø Every transition has an event that acts as a trigger
Ø A transition may also have a condition (or guard)
Ø A transitions may also cause some action to be taken
Ø When a transition is enabled, it can fire if the trigger event occurs and it guard

is true
Ø Syntax: event [guard] / action

Ä Events
Ø occurrence of stimuli that can trigger an object to change its state
Ø determine when transitions can fire

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Superstates

OR superstates
Ä when the superstate is “on”, only one

of its substates is “on”

AND superstates
(concurrent substates)
Ä When the superstate is “on”, all of

its states are also “on”
Ä Usually, the AND substates will be

nested further as OR superstates

ÜStates can be nested, to make diagrams simpler
ÄA superstate consists of one or more states.
ÄSuperstates make it possible to view a state diagram at different levels of abstraction.

employed

probationary

full

employed

on payroll

assigned
to project

after [6 months]

University of Toronto Department of Computer Science

© Easterbrook 2004 11

adult

single coupled

A more detailed example

child

working age senior

unmarried
married

divorced

widowed

separated

deceased

University of Toronto Department of Computer Science

© Easterbrook 2004 12

States in UML
Ü A state represents a time period during which

Ä A predicate is true
Ø e.g. (budget - expenses) > 0,

Ä An action is being performed, or an event is awaited:
Ø e.g. checking inventory for order items
Ø e.g. waiting for arrival of a missing order item

Ü States can have associated activities:
Ä do/activity

Ø carries out some activity for as long as the state is “on”
Ä entry/action and exit/action

Ø carry out the action whenever the state is entered (exited)
Ä include/stateDiagramName

Ø “calls” another state diagram, allowing state diagrams to be nested

4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Events in UML
Ü Events are happenings the system needs to know about

ÄMust be relevant to the system (or object) being modelled
ÄMust be modellable as an instantaneous occurance (from the system’s point

of view)
Ø E.g. completing an assignment, failing an exam, a system crash

Ä Are implemented by message passing in an OO Design

Ü In UML, there are four types of events:
Ä Change events occur when a condition becomes true

Ø denoted by the keyword ‘when’
Ø e.g. when[balance < 0]

Ä Call events occur when an object receives a call for one of its operations to
be perfomed

Ä Signal events occur when an object receives an explicit (real-time) signal
Ä Elapsed-time events mark the passage of a designated period of time

Ø e.g. after[10 seconds]

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Checking your Statecharts
Ü Consistency Checks

Ä All events in a statechart should appear as:
Ø operations of an appropriate class in the class diagram

Ä All actions in a statechart should appear as:
Ø operations of an appropriate class in the class diagram and

Ü Style Guidelines
Ä Give each state a unique, meaningful name
Ä Only use superstates when the state behaviour is genuinely complex
Ä Do not show too much detail on a single statechart
Ä Use guard conditions carefully to ensure statechart is unambiguous

Ø Statecharts should be deterministic (unless there is a good reason)

Ü You probably shouldn’t be using statecharts if:
Ä you find that most transitions are fired “when the state completes”
Ä many of the trigger events are sent from the object to itself
Ä your states do not correspond to the attribute assignments of the class

