
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 13:
Object Oriented Modelling

Ü Object Oriented Analysis
Ä Rationale
Ä Identifying Classes
Ä Attributes and Operations

Ü Class Diagrams
Ä Associations
ÄMultiplicity
Ä Aggregation
Ä Composition
Ä Generalization

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Application Domain Machine Domain

D - domain properties
R - requirements

C - computers

P - programs

Requirements & Domain Models

Ü Our analysis models should…
Ä …represent people, physical things and concepts important to the analyst’s

understanding of what is going on in the application domain
Ä …show connections and interactions among these people, things and relevant

concepts.
Ä …show the business situation in enough detail to evaluate possible designs.
Ä …be organized to be useful later, during design and implementation of the

software.
Ä …allow us to check whether the functions we will include in the specification

will satisfy the requirements
Ä …test our understanding of how the new system will interact with the world

Reminder: we are modeling this and this … … … … but not this

2

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Object Oriented Analysis
Ü Background

ÄModel the requirements in terms of objects and the services they provide
Ä Grew out of object oriented design

Ø Applied to modelling the application domain rather than the program

Ü Motivation
ÄOO is (claimed to be) more ‘natural’

Ø As a system evolves, the functions it performs need to be changed more often
than the objects on which they operate…

Ø …a model based on objects (rather than functions) will be more stable over time…
Ø …hence the claim that object-oriented designs are more maintainable

ÄOO emphasizes importance of well-defined interfaces between objects
Ø compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Nearly anything can be an object…
Ü External Entities

Ä …that interact with the system
being modeled
ØE.g. people, devices, other systems

Ü Things
Ä …that are part of the domain being

modeled
ØE.g. reports, displays, signals, etc.

Ü Occurrences or Events
Ä …that occur in the context of the

system
ØE.g. transfer of resources, a control
action, etc.

Ü Roles
Ä played by people who interact with

the system

Ü Organizational Units
Ä that are relevant to the application

ØE.g. division, group, team, etc.

Ü Places
Ä …that establish the context of the

problem being modeled
ØE.g. manufacturing floor, loading
dock, etc.

Ü Structures
Ä that define a class or assembly of

objects
ØE.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
Ä procedures (e.g. print, invert, etc)
Ä attributes (e.g. blue, 50Mb, etc)

Source: Adapted from Pressman, 1994, p242

3

University of Toronto Department of Computer Science

© Easterbrook 2004 5

What are classes?
Ü A class describes a group of objects with

Ä similar properties (attributes),
Ä common behaviour (operations),
Ä common relationships to other objects,
Ä and common meaning (“semantics”).

Ü Examples
Ä employee: has a name, employee# and department; an employee is hired, and fired; an

employee works in one or more projects

:employee
name
employee#
department
hire()
fire()
assignproject()

Name (mandatory)Attributes
(optional)

Operations
(optional)

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Finding Classes
Ü Finding classes source data:

Ä Look for nouns and noun phrases in stakeholders’ descriptions of the problem
Ø include in the model if they explain the nature or structure of information in the

application.

Ü Finding classes from other sources:
Ä Reviewing background information;
Ä Users and other stakeholders;
Ä Analysis patterns;

Ü It’s better to include many candidate classes at first
Ä You can always eliminate them later if they turn out not to be useful
Ä Explicitly deciding to discard classes is better than just not thinking about

them

4

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Selecting Classes
Ü Discard classes for concepts which:

Ä Are beyond the scope of the analysis;
Ä Refer to the system as a whole;
Ä Duplicate other classes;
Ä Are too vague or too specific

Ø e.g. have too many or too few instances
Ä Coad & Yourdon’s criteria:

Ø Retained information: Will the system need to remember information about this
class of objects?

Ø Needed Services: Do objects in this class have identifiable operations that
change the values of their attributes?

Ø Multiple Attributes: If the class only has one attribute, it may be better
represented as an attribute of another class

Ø Common Attributes: Does the class have attributes that are shared with all
instances of its objects?

Ø Common Operations: Does the class have operations that are shared with all
instances of its objects?

Ä External entities that produce or consume information essential to the
system should be included as classes

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Objects vs. Classes
Ü The instances of a class are called objects.

ÄObjects are represented as:

Ä Two different objects may have identical attribute values (like two people
with identical name and address)

Ü Objects have associations with other objects
Ä E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
Ä But we will capture these relationships at the class level (why?)
ÄNote: Make sure attributes are associated with the right class

Ø E.g. you don’t want both managerName and manager# as attributes of Project!
(…Why??)

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

5

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Associations
Ü Objects do not exist in isolation from one another

Ä A relationship represents a connection among things.
Ä In UML, there are different types of relationships:

Ø Association
Ø Aggregation and Composition
Ø Generalization
Ø Dependency
Ø Realization

ÄNote: The last two are not useful during requirements analysis

Ü Class diagrams show classes and their relationships

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Association Multiplicity
Ü Ask questions about the associations:

Ä Can a campaign exist without a member of staff to manage it?
Ø If yes, then the association is optional at the Staff end - zero or one

Ä If a campaign cannot exist without a member of staff to manage it
Ø then it is not optional

Ä if it must be managed by one and only one member of staff then we show it
like this - exactly one

ÄWhat about the other end of the association?
Ä Does every member of staff have to manage exactly one campaign?

Ø No. So the correct multiplicity is zero or more.

Ü Some examples of specifying multiplicity:
ÄOptional (0 or 1) 0..1
Ä Exactly one 1 = 1..1
Ä Zero or more 0..* = *
ÄOne or more 1..*
Ä A range of values 1..6
Ä A set of ranges 1..3,7..10,15,19..*

6

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client

companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

University of Toronto Department of Computer Science

© Easterbrook 2004 12

More Examples

7

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Association Classes
Ü Sometimes the association is itself a class
Ä …because we need to retain information about the association
Ä …and that information doesn’t naturally live in the classes at the ends of the

association
Ø E.g. a “title” is an object that represents information about the relationship

between an owner and her car

:car
VIN(vehicle Id Number)
YearMade
Mileage

:person

Name
Address
DriversLicenceNumber
PermittedVehicles

0..* 1owns
owner

:title
yearbought
initialMileage
PricePaid
LicencePlate#

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Aggregation and Composition
Ü Aggregation

Ä This is the “Has-a” or “Whole/part” relationship

Ü Composition
Ä Strong form of aggregation that implies ownership:

Ø if the whole is removed from the model, so is the part.
Ø the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive

8

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Generalization

Ü Notes:
Ä Subclasses inherit attributes, associations, & operations from the superclass
Ä A subclass may override an inherited aspect

Ø e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
Ä Superclasses may be declared {abstract}, meaning they have no instances

Ø Implies that the subclasses cover all possibilities
Ø e.g. there are no other staff than AdminStaff and CreativeStaff

University of Toronto Department of Computer Science

© Easterbrook 2004 16

More on Generalization
Ü Usefulness of generalization

Ä Can easily add new subclasses if the organization changes

Ü Look for generalizations in two ways:
Ä Top Down

Ø You have a class, and discover it can be subdivided
Ø Or you have an association that expresses a “kind of” relationship
Ø E.g. “Most of our work is on advertising for the press, that’s newspapers and

magazines, also for advertising hoardings, as well as for videos”
Ä Bottom Up

Ø You notice similarities between classes you have identified
Ø E.g. “We have books and we have CDs in the collection, but they are all filed

using the Dewey system, and they can all be lent out and reserved”

Ü But don’t generalize just for the sake of it
Ä Be sure that everything about the superclass applies to the subclasses
Ä Be sure that the superclass is useful as a class in its own right

Ø I.e. not one that we would discard using our tests for useful classes
Ä Don’t add subclasses or superclasses that are not relevant to your analysis

9

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Class Diagrams

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2

0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor

University of Toronto Department of Computer Science

© Easterbrook 2004 18

Evaluation of OOA
Ü Advantages of OO analysis for RE

Ä Fits well with the use of OO for design and implementation
Ø Transition from OOA to OOD ‘smoother’ (but is it?)

Ä Removes emphasis on functions as a way of structuring the analysis
Ä Avoids the fragmentary nature of structured analysis

Ø object-orientation is a coherent way of understanding the world

Ü Disadvantages
Ä Emphasis on objects brings an emphasis on static modeling

Ø although later variants have introduced dynamic models
ÄNot clear that the modeling primitives are appropriate

Ø are objects, services and relationships really the things we need to model in RE?
Ä Strong temptation to do design rather than problem analysis
Ä Fragmentation of the analysis

Ø E.g. reliance on use-cases means there is no “big picture” of the user’s needs
Ä Too much marketing hype!

Ø and false claims - e.g. no evidence that objects are a more natural way to think

