

# Lecture 7: the Feasibility Study

- ⇒ What is a feasibility study?
  - **♦ What to study and conclude?**
- Types of feasibility
  - **∜** Technical
  - **♥** Economic
  - **♥** Schedule
  - **♦** Operational
- Quantifying benefits and costs
  - **♦ Payback analysis**
  - **♦ Net Present Value Analysis**
  - **♦ Return on Investment Analysis**
- Comparing alternatives

© Easterbrook 2004



#### **University of Toronto**

**Department of Computer Science** 

### Why a feasibility study?

- ⇒ Objectives of a feasibility study:
  - **♥** To find out if an system development project can be done:
    - > ...is it possible?
    - > ...is it justified?
  - **⋄** To suggest possible alternative solutions.
  - ♦ To provide management with enough information to know:
    - > Whether the project can be done
    - > Whether the final product will benefit its intended users
    - ▶ What the alternatives are (so that a selection can be made in subsequent phases)
    - > Whether there is a preferred alternative
- ⇒ A feasibility study is a management-oriented activity
  - ♦ After a feasibility study, management makes a "go/no-go" decision.
  - Need to examine the problem in the context of broader business strategy



### Content of a feasibility study

### ⇒ Things to be studied in the feasibility study:

- ♦ The present organizational system
  - Stakeholders, users, policies, functions, objectives,...
- **♦ Problems with the present system** 
  - > inconsistencies, inadequacies in functionality, performance,...
- **♦** Goals and other requirements for the new system
  - Which problem(s) need to be solved?
  - > What would the stakeholders like to achieve?
- **♥** Constraints
  - > including nonfunctional requirements on the system (preliminary pass)
- **♦ Possible alternatives** 
  - > "Sticking with the current system" is always an alternative
  - > Different business processes for solving the problems
  - Different levels/types of computerization for the solutions
- Advantages and disadvantages of the alternatives

### ⇒ Things to conclude:

- **♦** The preferred alternative.

© Easterbrook 2004

3



**University of Toronto** 

Department of Computer Science

# **Exploring Feasibility**

#### ⇒ The "PIECES" framework

- ♥ Useful for identifying operational problems to be solved, and their urgency
- Performance
  - > Is current throughput and response time adequate?
- **♦ Information** 
  - Do end users and managers get timely, pertinent, accurate and usefully formatted information?
- **♥** Economy
  - Are services provided by the current system cost-effective?
  - Could there be a reduction in costs and/or an increase in benefits?
- **♥ Control** 
  - > Are there effective controls to protect against fraud and to guarantee information accuracy and security?
- - > Does current system make good use of resources: people, time, flow of forms,...?
- Services
  - > Are current services reliable? Are they flexible and expandable?

See the course website for a more specific list of PIECES questions

© Easterbrook 2004

4



# Four Types of feasibility

#### ⇒ Technical feasibility

- Is the project possible with current technology?
  - > How much technical risk is there?
- $\$  Does the technology exist at all?
  - ➤ Is it available locally?
  - > Can it be obtained?
  - > Will it be compatible with other systems?

#### Economic feasibility

- \$ Is the project possible, given resource constraints?
- What benefits will result from the system?
  - > Both tangible and intangible benefits
  - > Quantify them!
- What are the development and operational costs?
- Are the benefits worth the costs?

#### Schedule feasibility

- ♦ Is it possible to build a solution in time to be useful:
  - $\succ$  Any constraints on the schedule?
  - > Can these constraints be met?

#### Operational feasibility

- Urgency of the problem and the acceptability of any solution:
  - > If the system is developed, will it be used?
- ⋄ internal issues:
  - > Available of human resources?
  - ➤ Potential labour objections?
  - ➤ Manager resistance?
  - > Organizational conflicts and policies?
- **♦ external issues:** 
  - > Social acceptability?
  - legal aspects and government regulations?

© Easterbrook 2004

5



#### **University of Toronto**

Department of Computer Science

# **Technical Feasibility**

### ⇒ Is the proposed technology or solution practical?

- ♦ Do we currently possess the necessary technology?
- Do we possess the necessary technical expertise, and is the schedule reasonable?
- ♥ Is relevant technology mature enough to be easily applied to our problem?

### ⇒ What kinds of technology will we need?

- ♦ Some organizations like to use state-of-the-art technology
  - > ...but most prefer to use mature and proven technology.
- A mature technology has a larger customer base for obtaining advice concerning problems and improvements.

### ⇒ Is the required technology available "in house"?

- $\$  If the technology is available:
  - > ...does it have the capacity to handle the solution?
- ⋄ If the technology is not available:
  - > ...can it be acquired?

© Easterbrook 2004

6

# **Economic Feasibility**

### Can the bottom line be quantified yet?

- **♦ Very early in the project...** 
  - > a judgement of whether solving the problem is worthwhile.
- ♦ Once specific requirements and solutions have been identified...
  - ... the costs and benefits of each alternative can be calculated

### Cost-benefit analysis

- ♦ Purpose answer questions such as:
  - ➤ Is the project justified (I.e. will benefits outweigh costs)?
  - > Can the project be done, within given cost constraints?
  - What is the minimal cost to attain a certain system?
  - Which alternative offers the best return on investment?

#### **♦** Examples of things to consider:

- Hardware/software selection
- ➤ How to convince management to develop the new system
- ➤ Selection among alternative financing arrangements (rent/lease/purchase)

#### ♥ Difficulties

- benefits and costs can both be intangible, hidden and/or hard to estimate
- > ranking multi-criteria alternatives

© Easterbrook 2004



#### **University of Toronto**

Department of Computer Science

### **Benefits and Costs**

#### ⇒ Tangible Benefits

- **∜Readily quantified as \$ values**
- **Examples**:
  - > increased sales
  - > cost/error reductions
  - > increased throughput/efficiency
  - > increased margin on sales
  - > more effective use of staff time

#### Intangible benefits

- **♥Difficult to quantify** 
  - > But maybe more important!
  - business analysts help estimate \$ values

#### **Examples**:

- > increased flexibility of operation
- higher quality products/services
- better customer relations
- > improved staff morale

#### ⇒ How will the benefits accrue?

- ♦When over what timescale?
- **♦Where in the organization?**

#### ⇒ Development costs (OTO)

- **♦ Development and purchasing costs:** 
  - > Cost of development team
  - Consultant fees
  - software used (buy or build)?
  - > hardware (what to buy, buy/lease)?
    > facilities (site, communications, power,...)

#### ♦ Installation and conversion costs:

- installing the system,
- training personnel,file conversion,....

#### Operational costs (on-going)

#### **♦** System Maintenance:

- hardware (repairs, lease, supplies,...),
- software (licenses and contracts), facilities

#### **♥Personnel**:

- For operation (data entry, backups,...)For support (user support, hardware and
- software maintenance, supplies,...)
- > On-going training costs



**Department of Computer Science** 

### **Example:** costs for small Client-Server project

| Pers | onnel:                                                 |  |
|------|--------------------------------------------------------|--|
| 2    | System Analysts (400 hours/ea \$35.00/hr)              |  |
| 4    | Programmer/Analysts (250 hours/ea \$25.00/hr)          |  |
| 1    | GUI Designer (200 hours/ea \$35.00/hr)                 |  |
| 1    | Telecommunications Specialist (50 hours/ea \$45.00/hr) |  |
| 1    | System Architect (100 hours/ea \$45 00/hr)             |  |

| 1 | Database Specialist (15 hours/ea \$40.00/hr) | \$600   |
|---|----------------------------------------------|---------|
| 1 | System Librarian (250 hours/ea \$10.00/hr)   | \$2,500 |
| _ |                                              |         |

New Hardware & Software:

| 1 | Development Server (Pentium Pro class)     | \$18,700 |
|---|--------------------------------------------|----------|
| 1 | Server Software (operating system, misc.)  | \$1,500  |
| 1 | DBMS server software                       | \$7,500  |
| 7 | DBMS Client software (\$950.00 per client) | \$6,650  |

**Total Development Costs:** \$118,200

#### PROJECTED ANNUAL OPERATING COSTS

4 Smalltalk training registration (\$3500.00/student)

| Pers | onnel: |
|------|--------|
|      |        |
| 2    | Drogra |

| 2 | Programmer/Analysts (125 hours/ea \$25.00/hr) | \$6,250 |
|---|-----------------------------------------------|---------|
| 1 | System Librarian (20 hours/ea \$10.00/hr)     | \$200   |

| 1 | Maintenance Agreement for Pentium Pro Server   | \$995   |
|---|------------------------------------------------|---------|
| 1 | Maintenance Agreement for Server DBMS software | \$525   |
|   | Preprinted forms (15,000/year @ .22/form)      | \$3,300 |

**Total Projected Annual Costs:** 

© Easterbrook 2004

#### **University of Toronto**

**Department of Computer Science** 

# **Analyzing Costs vs. Benefits**

- ⇒ Identify costs and benefits
  - **♥** Tangible and intangible, one-time and recurring
  - **♦** Assign values to costs and benefits
- ⇒ Determine Cash Flow
  - ♦ Project costs and benefits over time, e.g. 3-5 years
  - State Calculate Net Present Value for all future costs/benefits
    - > determines future costs/benefits of the project in terms of today's dollar values
    - > A dollar earned today is worth more than a potential dollar earned next year
- Do cost/benefit analysis
  - **♦ Calculate Return on Investment:** 
    - > Allows comparison of lifetime profitability of alternative solutions.

Lifetime benefits - Lifetime costs ROI =

Lifetime costs

- **♦ Calculate Break-Even point:** 
  - how long will it take (in years) to pay back the accrued costs: Accrued Cost (initial + incremental) < Accrued Benefit



### **Calculating Present Value**

- ⇒ A dollar today is worth more than a dollar tomorrow...
  - ♦ Your analysis should be normalized to "current year" dollar values.
- ⇒ The discount rate
  - measures opportunity cost:
    - ➤ Money invested in this project means money not available for other things
    - > Benefits expected in future years are more prone to risk
  - \$\text{This number is company- and industry-specific.}
    - "what is the average annual return for investments in this industry?"
- Present Value:
  - $\ ^{\mbox{\tiny $b$}}\ \mbox{\mbox{The "current year" dollar value for costs/benefits }\mbox{\mbox{\mbox{$n$}}\ \mbox{\mbox{\mbox{$y$}}\ \mbox{\mbox{$a$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{$a$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{$a$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{$a$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \mbox{\mbox{\mbox{$b$}}\ \$ 
    - > ... for a given discount rate i

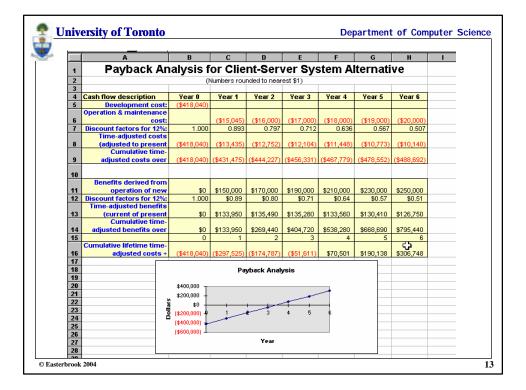
Present\_Value(n) = 
$$\frac{1}{(1+i)^n}$$

♣ E.g. if the discount rate is 12%, then
➤ Present\_Value(1) = 1/(1 + 0.12)¹ = 0.893
➤ Present\_Value(2) = 1/(1 + 0.12)² = 0.797

© Easterbrook 2004



#### **University of Toronto**


**Department of Computer Science** 

### **Net Present Value**

- Measures the total value of the investment
  - ...with all figures adjusted to present dollar values NPV = Cumulative PV of all benefits - Cumulative PV of all costs

| Cash Flow           | Year 0      | Year 1      | Year 2      | Year 3      | Year 4      |  |
|---------------------|-------------|-------------|-------------|-------------|-------------|--|
| Dev. Costs          | (\$100,000) |             |             |             |             |  |
| Oper.Costs          |             | (\$4,000)   | (\$4,500)   | (\$5,000)   | (\$5,500)   |  |
| Present Value       | 1           | 0.893       | 0.797       | 0.712       | 0.636       |  |
| Time-adj Costs      | (\$100,000) | (\$3,572)   | (\$3,587)   | (\$3,560)   |             |  |
| Cumulative Costs    | (\$100,000) | (\$103,572) | (\$107,159) | (\$110,719) | (\$114,135) |  |
|                     |             |             |             |             |             |  |
| Benefits            | 0           | \$25,000    | \$30,000    | \$35,000    | \$50,000    |  |
| T-adj Benefits      | 0           | \$22,325    | \$23,910    | \$24,920    | \$31,800    |  |
| Cumulative Benefits | 0           | \$22,325    | \$46,235    | \$71,155    | \$102,955   |  |
| Net Costs+Benefits  | (\$100,000) | (\$81,243)  | (\$60,924)  | (\$39,564)  | (\$11,580)  |  |
|                     |             |             |             |             |             |  |

- Assuming subsequent years are like year 4...
  - > the net present value of this investment in the project will be:
  - > after 5 years, \$13,652
  - > after 6 years, \$36,168





**University of Toronto** 

**Department of Computer Science** 

# Computing the payback period

- ⇒ Can compute the break-even point:
  - when does lifetime benefits overtake lifetime costs?
  - ♦ Determine the fraction of a year when payback actually occurs:

| beginningYear amount |

endYear amount + | beginningYear amount |

- ♦ For our last example, 51,611 / (70,501 + 51,611) = 0.42
- ♦ Therefore, the payback period is 3.42 years



or:

# Return on Investment (ROI) analysis

- > For comparing overall profitability
  - ♦ Which alternative is the best investment?
  - \$ ROI measures the ratio of the value of an investment to its cost.
- ⇒ ROI is calculated as follows:

```
ROI = Estimated lifetime benefits - Estimated lifetime costs

Estimated lifetime costs

ROI = Net Present value / Estimated lifetime costs
```

♦ For our example
ROI = (795,440 - 488,692) / 488,692= 62.76%,
or ROI = 306,748 / 488,692 = 62.76%

- ⇒ Solution with the highest ROI is the best alternative
  - Use But need to know payback period too to get the full picture
     ▶ E.g. A lower ROI with earlier payback may be preferable in some circumstances

© Easterbrook 2004



#### **University of Toronto**

Department of Computer Science

### Schedule Feasibility

- ⇒ How long will it take to get the technical expertise?
  - We may have the technology, but that doesn't mean we have the skills required to properly apply that technology.
    - > May need to hire new people
    - Or re-train existing systems staff
    - > Whether hiring or training, it will impact the schedule.
- Assess the schedule risk:
  - \$ Given our technical expertise, are the project deadlines reasonable?
  - \$ If there are specific deadlines, are they mandatory or desirable?
    - If the deadlines are not mandatory, the analyst can propose several alternative schedules.
- ⇒ What are the real constraints on project deadlines?
  - ♦ If the project overruns, what are the consequences?
    - > Deliver a properly functioning information system two months late...
    - > ...or deliver an error-prone, useless information system on time?
  - ♥ Missed schedules are bad, but inadequate systems are worse!



### **Operational Feasibility**

- ⇒ How do end-users and managers feel about...
  - ⋄...the problem you identified?
  - \$ ...the alternative solutions you are exploring?
- ⇒ You must evaluate:
  - ♥ Not just whether a system can work...
  - \$ ... but also whether a system will work.
- ⇒ Any solution might meet with resistance:
  - **♥ Does management support the project?**
  - \$\text{How do the end users feel about their role in the new system?}
  - ♦ Which users or managers may resist (or not use) the system?
    - > People tend to resist change.
    - > Can this problem be overcome? If so, how?
  - \$\text{How will the working environment of the end users change?}
  - \$\text{Can or will end users and management adapt to the change?}

© Easterbrook 2004



#### **University of Toronto**

**Department of Computer Science** 

# **Feasibility Study Contents**

- 1. Purpose & scope of the study
  - **⋄** Objectives (of the study)
  - ♥ who commissioned it & who did it,
  - ♥ sources of information,
  - by process used for the study,
  - ♦ how long did it take,...
- 2. Description of present situation
  - organizational setting, current
     system(s).
  - **♦** Related factors and constraints.
- 3. Problems and requirements
  - What's wrong with the present situation?
  - ♦ What changes are needed?
- 4. Objectives of the new system.
  - **⋄** Goals and relationships between them

- 5. Possible alternatives
  - ⋄ ...including 'do nothing'.
- 6. Criteria for comparison
- b. definition of the criteria
- Analysis of alternative
- 7. Analysis of alternatives

  b description of each alternative
  - evaluation with respect to criteria
  - cost/benefit analysis and special implications.
- 8. Recommendations
  - **⋄** what is recommended and implications
  - ⋄ what to do next;
    - E.g. may recommend an interim solution and a permanent solution
- Appendices



**Department of Computer Science** 

# **Comparing Alternatives**

### ⇒ How do we compare alternatives?

- ♦ When there are multiple selection criteria?
- ♦ When none of the alternatives is superior across the board?

### ⇒ Use a Feasibility Analysis Matrix!

- \$\ \text{The columns correspond to the candidate solutions;}
- ♦ The rows correspond to the feasibility criteria;
- \$ The cells contain the feasibility assessment notes for each candidate;
- \$ Each row can be assigned a rank or score for each criterion
  - > e.g., for operational feasibility, candidates can be ranked 1, 2, 3, etc.
- ♦ A final ranking or score is recorded in the last row.

### ⇒ Other evaluation criteria to include in the matrix

- **♥** quality of output
- ♦ ease of use
- ⋄ vendor support
- **♦** cost of maintenance
- **♦ load on system**

© Easterbrook 2004

19



**University of Toronto** 

**Department of Computer Science** 

### **Example matrix**

|             | Candidate 1 Name | Candidate 2 Name | Candidate 3 Name |
|-------------|------------------|------------------|------------------|
| Description |                  |                  |                  |
| Operational |                  |                  |                  |
| Feasibility |                  |                  |                  |
| Technical   |                  |                  |                  |
| Feasibility |                  |                  |                  |
| Schedule    |                  |                  |                  |
| Feasibility |                  |                  |                  |
| Economic    |                  |                  |                  |
| Feasibility |                  |                  |                  |
| Ranking     |                  |                  |                  |

© Easterbrook 2004

20

# University of Toronto

#### Department of Computer Science

|                                   |     |                           |                                            | •                                           |             |
|-----------------------------------|-----|---------------------------|--------------------------------------------|---------------------------------------------|-------------|
| Feasibility Criteria              | Wt. | Candidate 1               | Candidate 2                                | Candidate 3                                 | Candidate É |
| Operational Feasibility           | 30% | Only supports Member      | Fully supports user                        | Same as candidate 2.                        |             |
|                                   |     | Services requirements     | required functionality.                    |                                             |             |
| Functionality . Describes to      |     | and current business      |                                            |                                             |             |
| what degree the alternative       |     | processes would have to   |                                            |                                             |             |
| would benefit the organization    |     | be modified to take       |                                            |                                             |             |
| and how well the system           |     | advantage of software     |                                            |                                             |             |
| would work.                       |     | functionality             |                                            |                                             |             |
| Political . A description of      |     |                           |                                            |                                             |             |
| how well received this            |     |                           |                                            |                                             |             |
| solution would be from both       |     |                           |                                            |                                             |             |
| user management, user, and        |     |                           |                                            |                                             |             |
| organization perspective.         |     | Score: 60                 | Score: 100                                 | Score: 100                                  |             |
| Technical Feasibility             | 30% | Current production        | Although current                           | Although current                            |             |
|                                   |     | release of Platinum       | technical staff has only                   | technical staff is                          |             |
| Technology . An assessment        |     | Plus package is version   | Powerbuilder                               | comfortable with                            |             |
| of the maturity, availability (or |     | 1.0 and has only been     | experience, the senior                     | Powerbuilder.                               |             |
| ability to acquire), and          |     | on the market for 6       | analysts who saw the                       | management is                               |             |
| desirability of the computer      |     | weeks. Maturity of        | MS Visual Basic                            | concerned with recent                       |             |
| technology needed to support      |     | product is a risk and     | demonstration and                          | acquisition of                              |             |
| this candidate.                   |     | company charges an        | presentation, has                          | Powerbuilder by                             |             |
|                                   |     | additional monthly fee    | agreed the transition                      | Sybase Inc.                                 |             |
| Expertise . An assessment to      |     | for technical support.    | will be simple and                         | MS SQL Server is a                          |             |
| the technical expertise needed    |     |                           | finding experienced                        | current company                             |             |
| to develop, operate, and          |     | Required to hire or train | VB programmers will                        | standard and competes                       |             |
| maintain the candidate system.    |     | C++ expertise to          | be easier than finding                     | with SYBASE in the                          |             |
|                                   |     | perform modifications     | Powerbuilder                               | Client/Server DBMS                          |             |
|                                   |     | for integration           | programmers and at a                       | market. Because of                          |             |
|                                   |     | requirements.             | much cheaper cost.                         | this we have no                             |             |
|                                   | I   |                           |                                            | guarantee future                            | 1           |
|                                   | I   |                           | MS Visual Basic 5.0                        | versions of                                 | l           |
|                                   | ı   |                           | is a mature technology<br>based on version | Powerbuilder will                           | l           |
|                                   | I   |                           | based on version<br>number.                | Nplay wellÓ with our<br>current version SQL | l           |
|                                   | I   |                           | number.                                    | Server.                                     | l           |
|                                   | I   |                           | ĺ                                          | Server.                                     | 1           |
|                                   |     |                           |                                            |                                             | 1           |
|                                   |     | Score: 50                 | Score: 95                                  | Score: 60                                   |             |

© Easterbrook 2004

# University of Toronto

#### **Department of Computer Science**

21

| Feasibility Criteria                                                      | Wt.  | Candidate 1              | Candidate 2              | Candidate 3              | Candidate É |
|---------------------------------------------------------------------------|------|--------------------------|--------------------------|--------------------------|-------------|
| Operational<br>Feasibility                                                | 30%  | Score: 60                | Score: 100               | Score: 100               |             |
| Technical<br>Feasibility                                                  | 30%  | Score: 50                | Score: 95                | Score: 100               |             |
| Economic Feasibility                                                      | 30%  |                          |                          |                          |             |
| Cost to develop:                                                          |      | Approximately \$350,000. | Approximately \$418,040. | Approximately \$400,000. |             |
| Payback period (discounted):                                              |      | Approximately 4.5 years. | Approximately 3.5 years. | Approximately 3.3 years. |             |
| Net present value:                                                        |      | Approximately \$210,000. | Approximately \$306,748. | Approximately \$325,500. |             |
| Detailed calculations:                                                    |      | See Attachment<br>A.     | See Attachment A.        | See Attachment A.        |             |
|                                                                           |      | Score: 60                | Score: 85                | Score: 90                |             |
| Schedule Feasibility                                                      | 10%  | Less than 3 months.      | 9-12 months              | 9 months                 |             |
| An assessment of how long the solution will take to design and implement. |      | S                        | Score: 80                | Score: 85                |             |
| Ranking                                                                   | 100% | Score: 95<br>60.5        | 92                       | 83.5                     |             |