
1

University of Toronto Department of Computer Science

1

Exam Review

Ü 2 hour final
Ü Exam Schedule:

Ä http://www.utm.utoronto.ca/~w3reg/exams/index.html

Ü No aids allowed (no calculators, no cheat sheets)
Ü The final will include material from the entire course

ÄHowever, the focus will be on material that you haven’t been tested on yet 
Ø That includes material from the entire course (not just the 2nd half).
Ø That does not mean that you will not be retested on material from the midterm.

University of Toronto Department of Computer Science

2

Course Outline
ÜWeek 1

ÄWhat is Requirements 
Engineering?

ÄWhat are 
Requirements?

ÜWeek 2
ÄWhat is Engineering?
ÄWhat is a System?

ÜWeek 3
Ä Requirements
Specifications
Ä Formal Inspections

ÜWeek 4
Ä Feasibility Studies
Ä Stakeholders Goals

ÜWeek 5
Ä Elicitation Techniques
Ä Risk 

ÜWeek 6
Ä Intro to Requirements 

Modelling
ÄModelling Enterprises

ÜWeek 7
ÄModelling Objects
ÄModelling Relationships

ÜWeek 8
ÄModelling State
ÄModelling Events

ÜWeek 9
ÄModelling Interactions

ÜWeek 10
ÄNon-functional 

Requirements
Ä Verification and 

Validation

ÜWeek 11
Ä Prioritizing 

Requirements
Ä Software Evolution

ÜWeek 12
ÄMoving into Design
Ä Software 

Architectures



2

University of Toronto Department of Computer Science

3

Calculations and Modelling Notations
Ü Formulas
Ä You are responsible for knowing all formulas taught in the course.

Ü Modelling notations
Ä You should know
Ø the syntax,
Ø what you can express with each modelling notation,
Ø how the diagrams interrelate, and 
Ø how to verify your models (cross-checks).

University of Toronto Department of Computer Science

4

UML
ÜWe’ve looked at the following UML diagrams:

Ä Activity diagrams 
Ø capture business processes involving concurrency and synchronization
Ø good for analyzing dependencies between tasks

Ä Class Diagrams
Ø capture the structure of the information used by the system
Ø good for analysing the relationships between data items used by the system
Ø good for helping you identify a modular structure for the system

Ä Statecharts
Ø capture all possible responses of an object to all uses cases in which it is involved
Ø good for modeling the dynamic behavior of a class of objects
Ø good for analyzing event ordering, reachability, deadlock, etc.

Ä Use Cases
Ø capture the view of the system from the view of its users
Ø good starting point for specification of functionality
Ø good visual overview of the main functional requirements

Ä Sequence Diagrams (collaboration diagrams are similar)
Ø capture an individual scenario (one path through a use case)
Ø good for modelling dialog structure for a user interface or a business process
Ø good for identifying which objects (classes) participate in each use case
Ø helps you check that you identified all the necessary classes and operations



3

University of Toronto Department of Computer Science

5

Non-UML Modelling Notations
ÜWe’ve looked at the following non-UML diagrams

Ä Goal Models
Ø Capture strategic goals of stakeholders
Ø Good for exploring ‘how’ and ‘why’ questions with stakeholders
Ø Good for analysing trade-offs, especially over design choices

Ä Fault Tree Models (as an example risk analysis technique)
Ø Capture potential failures of a system and their root causes
Ø Good for analysing risk, especially in safety-critical applications

Ä Strategic Dependency Models (i*)
Ø Capture relationships between actors in an organisational setting
Ø Helps to relate goal models to organisational setting
Ø Good for understanding how the organisation will be changed

Ä Entity-Relationship Models
Ø Capture the relational structure of information to be stored
Ø Good for understanding constraints and assumptions about the subject domain
Ø Good basis for database design

ÄMode Class Tables, Event Tables and Condition Tables (SCR)
Ø Capture the dynamic behaviour of a real-time reactive system
Ø Good for representing functional mapping of inputs to outputs
Ø Good for making behavioural models precise, for automated reasoning

University of Toronto Department of Computer Science

6

Basic Cross-Checks for UML
ÜUse Case Diagrams
ÄDoes each use case have a user?
Ø Does each user have at least one use case?

ÄIs each use case documented?
Ø Using sequence diagrams or equivalent

ÜClass Diagrams
ÄDoes the class diagram capture all the 

classes mentioned in other diagrams?
ÄDoes every class have methods to get/set 

its attributes?

ÜSequence Diagrams
ÄIs each class in the class diagram?
ÄCan each message be sent?
Ø Is there an association connecting sender and 

receiver classes on the class diagram?
Ø Is there a method call in the sending class for 

each sent message?
Ø Is there a method call in the receiving class 

for each received message?

StateChart Diagrams
ÄDoes each statechart diagram capture (the 

states of) a single class?
Ø Is that class in the class diagram?

ÄDoes each transition have a trigger event?
Ø Is it clear which object initiates each event?
Ø Is each event listed as an operation for that 

object’s class in the class diagram?
ÄDoes each state represent a distinct 

combination of attribute values?
Ø Is it clear which combination of attribute 

values?
Ø Are all those attributes shown on the class 

diagram?
ÄAre there method calls in the class 

diagram for each transition?
Ø …a method call that will update attribute 

values for the new state?
Ø …method calls that will test any conditions on 

the transition?
Ø …method calls that will carry out any actions 

on the transition?


