
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 9:
Modelling System Interactions

Ü Interactions with the new system
ÄHow will people interact with the system?
ÄWhen/Why will they interact with the system?

Ü Use Cases
Ä introduction to use cases
Ä identifying actors
Ä identifying cases
Ä Advanced features

Ü Sequence Diagrams
Ä Temporal ordering of events involved in a use case

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Moving towards specification
ÜWhat functions will the new system provide?

ÄHow will people interact with it?
Ä Describe functions from a user’s perspective

Ü UML Use Cases
Ä Used to show:

Ø the functions to be provided by the system
Ø which actors will use which functions

Ä Each Use Case is:
Ø a pattern of behavior that the new system is required to exhibit
Ø a sequence of related actions performed by an actor and the system via a

dialogue.

Ü An actor is:
Ä anything that needs to interact with the system:

Ø a person
Ø a role that different people may play
Ø another (external) system.

2

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Campaign
Manager

Accountant

Change a
client contact

Add a new client

Record client payment

Staff contact

Use Case Diagrams
Ü Capture the relationships between actors and Use

Cases

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Staff contact

Actor

Change client
contact

Communication
association System

boundary

Use case

Notation for Use Cases

3

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Add new
staff member

Add new
staff grade

Calculate staff
bonuses

Change grade
for staff member

Accountant

Change rate
for staff grade

Example

University of Toronto Department of Computer Science

© Easterbrook 2004 6

<<extends>>

Check Campaign
Budget

Print Campaign
Summary

<<uses>>

Find Campaign

<<extends>> and <<uses>>
Ü <<extends>> when one use case adds behaviour to a base case

Ä used to model a part of a use case that the user may see as optional system behavior;
Ä also models a separate sub-case which is executed conditionally.

Ü <<uses>>: one use case invokes another (like a procedure call);
Ä used to avoid describing the same flow of events several times
Ä puts the common behavior in a use case of its own.

4

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Driver Mechanic

<<extends>>
<<uses>>

GasAttendant

<<uses>>

<<uses>>

Sample use cases for a car

<<uses>>
Fix CarCheck Oil

Drive
Fill Up

Fix car on
the roadTurn On

Engine

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Provide
constraints

Edit
ConstraintsWithdraw

Validate
User

Schedule
meeing

Initiator Participant

<<uses>>

<<extends>>

<<uses>>

Meeting Scheduler Example

Generate
Schedule

<<uses>>

<<uses>> <<
us

es
>>

5

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Identifying Actors
Ü Ask the following questions:

ÄWho will be a primary user of the system? (primary actor)
ÄWho will need support from the system to do her daily tasks?
ÄWho will maintain, administrate, keep the system working? (secondary

actor)
ÄWhich hardware devices does the system need?
ÄWith which other systems does the system need to interact with?
ÄWho or what has an interest in the results that the system produces ?

Ü Look for:
Ä the users who directly use the system
Ä also others who need services from the system

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Finding Use Cases
Ü For each actor, ask the following questions:

ÄWhich functions does the actor require from the system?
ÄWhat does the actor need to do ?
Ä Does the actor need to read, create, destroy, modify, or store some kinds

of information in the system ?
Ä Does the actor have to be notified about events in the system?
Ä Does the actor need to notify the system about something?
ÄWhat do those events require in terms of system functionality?
Ä Could the actor’s daily work be simplified or made more efficient through

new functions provided by the system?

6

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Documenting Use Cases
Ü For each use case:

Ä prepare a “flow of events” document, written from an actor’s point of view.
Ä describe what the system must provide to the actor when the use case is

executed.

Ü Typical contents
ÄHow the use case starts and ends;
ÄNormal flow of events;
Ä Alternate flow of events;
Ä Exceptional flow of events;

Ü Documentation style:
Ä Choice of how to represent the use case:

Ø English language description
Ø Collaboration Diagrams
Ø Sequence Diagrams

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Generalizations
Ü Actor classes

Ä It’s sometimes useful to identify
classes of actor
Ø E.g. where several actors belong to a

single class
Ø Some use cases are needed by all members

in the class
Ø Other use cases are only needed by some

members of the class
Ä Actors inherit use cases from the class

Ü Use Case classes
Ä Sometimes useful to identify a

generalization of several use casesGeneralisation relations:
Read as: “is a member of”
or just “is a”

7

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Modelling Sequences of Events
Ü Objects “own” information and behaviour

Ä they have attributes and operations relevant to their responsibilities.
Ä They don’t “know” about other objects’ information, but can ask for it.
Ä To carry out business processes, objects have to collaborate.

Ø …by sending messages to one another to invoke each others’ operations
ÄObjects can only send messages to one another if they “know” each other

Ø I.e. if there is an association between them.

Ü Describe a Use Case using Sequence Diagrams
Ä Sequence diagrams show step-by-step what’s involved in a use case

Ø Which objects are relevant to the use case
Ø How those objects participate in the function

Ä You may need several sequence diagrams to describe a single use case.
Ø Each sequence diagram describes one possible scenario for the use case

Ä Sequence diagrams…
Ø …should remain easy to read and understand.
Ø …do not include complex control logic

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Example Sequence Diagram

Call()
Respond()

What’s up?()

Give mtg details()
[for all participants] *Inform()

[for all participants] *Remind()

Prompt()

Show schedule()

[decision=OK] ScheduleOK’ed()

Initiator
:Person

Participant
:Person

[for all participants]
*Inform()

Staff
:Person

Scheduler
:Person

Acknowledge()

Acknowledge()
condition

iteration

participating
object

T
im

e

8

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Another Example

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Branching messages, etc

:CustomerP :PrinterP

PrintFile(file)

:Printer

GetStatus()

:Queue

[Ready]Print()
[Busy]

PutInQueue
(file)

[OutOfService]
CallRepair

Ready(file)

GetNext()

Branching

Ready(file)

Asynchronous

Done

Lifeline Inactive

Active

9

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Don’t forget what we’re modelling
Ü During analysis

Ä we want to know about the application domain and the requirements
Ä …so we develop a course-grained model to show where responsibilities are,

and how objects interact
Ø Our models show a message being passed, but we don’t worry too much about the

contents of each message
Ø To keep things clear, use icons to represent external objects and actors, and

boxes to represent system objects.

Ü During design
Ä we want to say how the software should work
Ä … so we develop fine-grained models to show exactly what will happen when

the system runs
Ø E.g. show the precise details of each method call.

