Department of Computer Science

Lecture 8, Part 1:
Modelling “State”

University of Toronto

2 What is State?

% statespace for an object
% concrete vs. abstract states

o Finite State Machines
% states and transitions
% events and actions

o Modularized State machine models: Statecharts
% superstates and substates
% Guidelines for drawing statecharts

© Easterbrook 2004 1

» University of Toronto Department of Computer Science

What does the model mean?

2 Finite State Machines

% There are a finite number of states (all attributes have finite ranges)
» E.g. imagine a stack with max length = 3

Push() Push() Push()

£ N y yN
.&‘”0.[empty] [1item] [2 items] [3items]
N UAVANGAV AW,

% The model specifies a sepgp(g)f traTcoé)é) Pop0 TopO Pop) Top0

» E.g. new();Push();Push(); Top();Pop();Push()...

» E.g. new();Push();Pop();Push();Pop().

» There may be an infinite number of traces (and traces may be of infinite length)
% The model excludes some behaviours

» E.g. no trace can start with a Pop()

» E.g. no trace may have more Pops than Pushes

» E.g. no trace may have more than 3 Pushes without a Pop in between

© Easterbrook 2004 3

o University of Toronto Department of Computer Science

Getting objects to behave

o All objects have “state”
% The object either exists or it doesn't
% If it exists, then it has a value for each of its attributes

% Each possible assignment of values to attributes is a “state”
» (and non-existence is a state, although we normally ignore it)

o E.g. For a stack object

Push() Push() Push() Push()

N TN Ty
new()[empty] [1item] [2 items] [3items][4 items]
T T U T TR T T

Pop() Top() Pop() Top() Pop() Top() Pop() Top()

© Easterbrook 2004 2

o University of Toronto Department of Computer Science

Abstraction

o The state space of most objects is enormous
% State space size is the product of the range of each attribute
> E.g. object with five boolean attributes: 2°+1 states
> E.g. object with five integer attributes: (maxint)®+1 states
» E.g. object with five real-valued attributes: ..?
% If we ignore computer representation limits, the state space is infinite

o Only part of that state space is “interesting”
% Some states are not reachable
% Integer and real values usually only vary within some relevant range
% We're usually not interested in the actual values, just certain ranges:
» E.g. for Age, we may be interested in age<18; 18=age=65; and age>65
» E.g. for Cost, we may only be interested in cost=budget, cost=0, cost>budget,
and cost>(budget+10%)

© Easterbrook 2004

University of Toronto

; Collapsing the state space

Department of Computer Science

Push() Push() Push() Push()

neW()[empty] [1item] [2 items] [3items][4 items]
N U T U ST U U

Pop() Top() Pop() Top() Pop() Top() Pop() Top()

gy =

Push()

t

Pop() [sc=1]

Pop() [sc>1]

% The abstraction usually permits more traces
» E.g. this model does not prevent traces with more pops than pushes
» But it still says something useful

© Easterbrook 2004 5

University of Toronto

Department of Computer Science

Y
. ff hook
id OIT NoOol
4

on hook

A

Dial
[calles
busy]

3 Is this model indicative or optative?

on hook busy

A
Callee disconnects

on hook

[callee idiq]

ringing

[connected

| —

on hook

© Easterbrook 2004

o University of Toronto

0 What are we modelling?

Application Domain

Department of Computer Science

Machine Domain

D - domain propertie

R - requirements

> Observed states of an application domain entity?
»E.g. a phone can be idle, ringing, connected,
% Model shows the states an entity can be in, and how events can change its state
% This is an indicative model

> Required behaviour of an application domain entity?
»E.g. a telephone switch shall connect the phones only when the callee accepts the call
% Model distinguishes between traces that are desired and those that are not
% This is an optative model

o Specified behaviour of a machine domain entity?
»E.g. when the user presses the ‘connect’ button the incoming call shall be connected
% Model specifies how the machine should respond to input events
% This is an optative model, in which all events are shared phenomena

© Easterbrook 2004 [

o University of Toronto

Department of Computer Science

:person —%
age
havebirthday()
havebirthday()

[age < 18]
havebirthday()
[age = 18]

havebirthday()

[age < 65] adult
havebirthday()
[age = 65]

havebirthday() .
senior

* the world vs. the machine

person Q.

dateOfBirth
dateOfDeath
recordBirth()
setDOB()
recordDeath()
setDateofDeath()

thisyear-birthyear>18]
adult

thisyear-birthyear>65]

senior

recordDeath()
'setDateofDeath()

.

© Easterbrook 2004

» University of Toronto Department of Computer Science

StateCharts

2 Notation:

% States
» “interesting” configurations of the values of an object’s attributes
» may include a specification of action to be taken on entry or exit
» States may be nested
» States may be “on” or “off” at any given moment

% Transitions
» Are enabled when the state is “on”; disabled otherwise

» Every transition has an event that acts as a trigger
» A transition may also have a condition (or guard)
» A transitions may also cause some action to be taken
» When a transition is enabled, it can fire if the trigger event occurs and it guard
is true
» Syntax: event [guard] / action
% Events

» occurrence of stimuli that can trigger an object to change its state
» determine when transitions can fire

© Easterbrook 2004 9

» University of Toronto Department of Computer Science

A more detailed example

child

s adult N\
()) ;
® working age| senior deceased

@

L

© Easterbrook 2004 11

o University of Toronto Department of Computer Science

Superstates

oStates can be nested, to make diagrams simpler
%A superstate consists of one or more states.
% Superstates make it possible to view a state diagram at different levels of abstraction.

OR superstates AND superstates

% when the superstate is “on”, only one (concurrent substates)
of its substates is “on % When the superstate is “on”, all of
its states are also “on
% Usually, the AND substates will be
nested further as OR superstates

employed

after [6 months]

employed

on payroll

to project

© Easterbrook 2004 10

o University of Toronto Department of Computer Science

States in UML

o A state represents a time period during which
% A predicate is true
» e.g. (budget - expenses) > 0,
% An action is being performed, or an event is awaited:
» e.g. checking inventory for order items
» e.g. waiting for arrival of a missing order item

© States can have associated activities:
% do/activity
» carries out some activity for as long as the state is “on”
% entry/action and exit/action
» carry out the action whenever the state is entered (exited)
% include/stateDiagramName
» “calls” another state diagram, allowing state diagrams to be nested

© Easterbrook 2004 12

o

» University of Toronto Department of Computer Science

Events in UML

o Events are happenings the system needs to know about
% Must be relevant to the system (or object) being modelled
% Must be modellable as an instantaneous occurance (from the system’s point

of view)
» E.g. completing an assignment, failing an exam, a system crash

% Are implemented by message passing in an OO Design

o In UML, there are four types of events:
% Change events occur when a condition becomes true
» denoted by the keyword ‘when’
» e.g. when[balance < 0]
% Call events occur when an object receives a call for one of its operations to
be perfomed
% Signal events occur when an object receives an explicit (real-time) signal
% Elapsed-time events mark the passage of a designated period of time
» e.g. after[10 seconds]

© Easterbrook 2004 13

University of Toronto

o

Department of Computer Science

Lecture 8, Part 2:
Modelling “events”

o Focus on states or events?
% E.g. SCR table-based models
% Explicit event semantics

o Comparing notations for state transition models
% FSMs vs. Statecharts vs. SCR

o Checking properties of state transition models
% Consistency Checking
% Model Checking, using Temporal Logic

2 When to use formal methods

© Easterbrook 2004 15

x

o University of Toronto

Checking your Statecharts

Department of Computer Science

o Consistency Checks
% All events in a statechart should appear as:
» operations of an appropriate class in the class diagram
% All actions in a statechart should appear as:
» operations of an appropriate class in the class diagram and

o Style Guidelines
% Give each state a unique, meaningful name
% Only use superstates when the state behaviour is genuinely complex
% Do not show too much detail on a single statechart

% Use guard conditions carefully to ensure statechart is unambiguous
» Statecharts should be deterministic (unless there is a good reason)

o You probably shouldn’'t be using statecharts if:
% you find that most transitions are fired “when the state completes”

% many of the trigger events are sent from the object to itself
% your states do not correspond to the attribute assignments of the class

© Easterbrook 2004 14

x

o University of Toronto

What are we modelling?

Machine Domain

Department of Computer Science

Application Domain

D - domain propertie

R - requirements

o Starting point:
% States of the environment
% Events that occur in the application domain (that change the state of the environment)

> Requirements expressed as:

% Constraints over states and events of the application domain
»E.g. “When the aircraft is in the air, the pilot should be prevented from accidentally engaging
the reverse thrust”

> To get to a specification:
% For each relevant application domain event, find a corresponding input event

% For each relevant state, ensure there is a way for the machine to detect it
% For each required action, find a corresponding output event

© Easterbrook 2004 16

University of Toronto

Department of Computer Science

Tabular Specifications: SCR

Four Variable Model:

System
Monitored_) input_. Th’put software outpuL@ Controlled/ Enviro-
— 4 W TesL
Variables | \ 98VI€S | data data | devices,! | variables \ Ment
L items ltems RN
Dictionaries: Tables: also:
Monitored/Controlled Mode Transition Tables Assertions,
ariables Scenarios,

Event Tables

o — e

T e e

I T— T -

CET e T e

[Wameara= el
= e
=g o

.

SCR Specification

© Easter brook 2004

17

University of Toronto

Department of Computer Science

Defining Mode Classes

> Mode Class Tables
% Define a (disjoint) set of modes (states) that the software can be in.

% A complex system will have many different modes classes
» Each mode class has a mode table showing the events that cause transitions between modes
% A mode table defines a partial function from modes and events to modes

> Example:

Current | Powered Too Cold | Temp OK | Too Hot = New Mode

Mode on
Off @T - t - Inactive
Q@T t - - Heat
(@) - - t AC
Inactive @F - - - Off
- @t - - Heat
- - - @T AC
Heat @F - - - Off
- - @T - Inactive
AC @F - - - Off
- - @T - Inactive

© Easterbrook 2004 Source: Adapted fromHeitmeyer et. al. 1996.

19

o University of Toronto

Department of Computer Science

SCR basics

2 Modes and Mode classes

% A mode class is a finite state machine, with states called system modes
» Transitions in each mode class are triggered by events
% Complex systems described using several mode classes operating in parallel
% System State is defined as:
» the system is in exactly one mode from each mode class.
» ..and each variable has a unique value

o Events

% Single input assumption - only one input event can occur at once

% An event occurs when any system entity changes value
» An input event occurs when an input variable changes value

% Notation:
» We may need to refer to both the old and new value of a variable:
» Used primed values to denote values after the event
> @T(c) ° @c Uc e.g. @T(y=1) ° yt1 Uy=1
> @F(c) ° c Ugdc

% A conditioned event is an event with a predicate
> @T(c) WHEN d ° @c Uc' Ud

bt Source: Adapted fromHeitmeyer et. al. 1996.

18

o University of Toronto

Department of Computer Science

Defining Controlled Variables

o> Event Tables
% defines how a controlled variable changes in response to input events
% Defines a partial function from modes and events to variable values

% Example: Modes
Heat, AC @C(target) never
Inactive, Off never @C(target)
Ack_tone = Beep Clang

o Condition Tables
% defines the value of a controlled variable under every possible condition
% Defines a total function from modes and conditions to variable values

& Example: Modes
Heat target - temp 25 | target - temp >5
AC temp - target 25 | temp - target >5
Inactive, Off true never
Warning light = Off Oon

bt Source: Adapted fromHeitmeyer et. al. 1996.

20

University of Toronto

Department of Computer Science

Refresher: FSMs and Statecharts

on hook
—| busytone

Dial Callee disconnects
[callee
busy] Callee

off hook i accepts
[idle]—0[dialtone }call[:eaildle] [ringtone] [connected]
on hook |

on hook
on hook

offhook
busytone

on hook Dial
[callee

busy] Callee

off hook K K accepts
dialtone ringtone connected

Callee disconnects

© Easter brook 2004

21

University of Toronto

Department of Computer Science

State Machine Models vs. SCR

o All 3 models on previous slides are (approx) equivalent
o State machine models

% Emphasis is on states & transitions
» No systematic treatment of events
» Different event semantics can be applied

% Graphical notation easy to understand (?)

% Composition achieved through statechart nesting

% Hard to represent complex conditions on transitions

% Hard to represent real-time constraints (e.g. elapsed time)

2 SCR models

% Emphasis is on events
» Clear event semantics based on changes to environmental variables
» Single input assumption simplifies modelling

% Tabular notation easy to understand (?)
% Composition achieved through parallel mode classes
% Hard to represent real-time constraints (e.g. elapsed time)

© Easterbrook 2004

23

o University of Toronto

Department of Computer Science

SCR Equivalent

Current . callee New
Mode B el offhook Mode
Idle @T - - Dialtone
Dialtone - @T F Ringtone
- @T T Busytone
@F - - Idle
Busytone @F - - Idle
Ringtone - - @T Connected
@F - - Idle
Connected - - @F Dialtone
AC @F - - Idle

o Interpretation:
% In Dialtone: @T/(offhook) WHEN callee_offhook takes you to Ringing
% In Ringtone: @F(offhook) takes you to Idle
% Etc...

© Easterbrook 2004

22

o University of Toronto

Department of Computer Science

formal analysis

o Consistency analysis and typechecking

% “Is the formal model well-formed?”
» [assumes a modeling language where well-formedness is a useful thing to check]

© Validation:
% Animation of the model on small examples
% Formal challenges:
» “if the model is correct then the following property should hold...”
% ‘What if’ questions:
» reasoning about the consequences of particular requirements;
» reasoning about the effect of possible changes
% State exploration
» E.g. use a model checking to find traces that satisfy some property
% Checking application properties:
» “will the system ever do the following...”

o Verifying design refinement

» “does the design meet the requirements?”

© Easterbrook 2004

24

University of Toronto

E.g. Consistency Checks in SCR

Department of Computer Science

(4}

Syntax

% did we use the notation correctly?

> Type Checks

% do we use each variable correctly?

Disjointness
% is there any overlap between rows of the mode tables?
> ensures we have a deterministic state machine

Coverage

% does each condition table define a value for all possible conditions?

> Mode Reachability

% is there any mode that cannot ever happen?

Cycle Detection

% have we defined any variable in terms of itself?

(4

(4

(Y

© Easterbrook 2004 25

University of Toronto

Department of Computer Science

Model Checking Basics

o Build a finite state machine model
% E.g. PROMELA - processes and message channels
% E.g. SCR - tables for state transitions and control actions
% E.g. RSML - statecharts + truth tables for action preconditions

o Express validation property as a logic specification
% Propositions in first order logic (for invariants)

% Temporal Logic (for safety & liveness properties)
> E.g. CTL, LTL, ...

o Run the model checker:
% Computes the value of: model |= property

o Explore counter-examples
% If the answer is ‘no’ find out why the property doesn’t hold
% Counter-example is a trace through the model

© Easterbrook 2004

27

Department of Computer Science

Model Checking

o Has revolutionized formal verification:
% emphasis on partial verification of partial models
» E.g. as a debugging tool for state machine models
% fully automated

2 What it does:

% Mathematically - computes the “satisfies” relation:
» Given a temporal logic theory, checks whether a given finite state machine is a
model for that theory.
% Engineering view - checks whether properties hold:
» Given a model (e.g. a FSM), checks whether it obeys various safety and liveness
properties

> How to apply it in RE:
% The model is an (operational) Specification
» Check whether particular requirements hold of the spec
% The model is (an abstracted portion of) the Requirements
» Carry out basic validity tests as the model is developed
% The model is a conjunction of the Requirements and the Domain
» Formalise assumptions and test whether the model respects them

o University of Toronto

© Easterbrook 2004 26

o University of Toronto

Department of Computer Science

Temporal Logic
o LTL (Linear Temporal Logic)

& Expresses properties of infinite traces through a state machine model
% adds two temporal operators to propositional logic:

?p - p is true eventually (in some future state)

Op - p is true always (now and in the future)

o CTL (Computational Tree Logic)
% branching-time logic - can quantify over possible futures

% Each operator has two parts:
EX p - p is true in some next states
AX p - p is true in all next states
EF p - along some path, p is true in some future state
AF p - along all paths
E[p U q] - along some path, p holds until g holds;
Alp U q] - along all paths
EG p - along some path, p holds in every state;
AG p - along all paths

© Easterbrook 2004

28

University of Toronto

Department of Computer Science

; Example

offhook
busytone

Callee disconnects

on hook Dial
[callee
busy] Callee

off hook — Dial) accepts -
laltone calleeidle] ringtone connectel
L

> Sample Properties
% If you are connected you can hang up:
% AG(CONNECTED ® EX(-OFFHOOK)
% If you are connected, hanging up always disconnects you:
% AG(CONNECTED ® AX(-OFFHOOK ® -CONNECTED))
% A connection doesn't start until you pick up the phone:
% AG(-CONNECTED ® A[-CONNECTED U OFFHOOK])
% If you make a call, the phone cannot ring without returning to idle first:
% AG((RINGTONE U BUSYTONE) ® A[-RINGING U IDLE])

© Easter brook 2004

29

University of Toronto
r Formal Methods in RE

sWhat to formalize in RE?

Y models of requirements knowledge (so we can reason about them)
Y specifications of requirements (so we can document them precisely)

Department of Computer Science

Why formalize in RE?

% Remove ambiguity and improve precision
% Provides a basis for verification that
the requirements have been met

% Can reason about the requirements
» Properties of formal requirements models

Why people don't formalize in RE
% Formal Methods tend to be lower level
than other analysis techniques
» They force you to include too much detail
% Formal Methods tend to concentrate on
consistent, correct models

can be checked automatically > ..but most of the time your models are
> Can test for consistency, explore the inconsistent, incorrect, incomplete
CIELIES, EE % People get confused about which tools
% Can animate/execute the requirements are appropriate:

» Helps with visualization and validation
% Will have to formalize eventually anyway modeling the requirements
> RE is all about bridging from the informal » formal methods advocates get too attached
world to a formal machine domain to one tool!
% Formal methods require more effort
» ...and the payoff is deferred

» E.g. modeling program behaviour vs.

© Easterbrook 2004 3

o University of Toronto

Department of Computer Science

0 Complexity Issues

o The problem:
% Model Checking is exponential in the size of the model and the property
% Current MC engines can explore 10*?° states...
» using highly optimized data structures (BDDs)
» ..and state space reduction techniques
& ..that's roughly 400 propositional variables
» integer and real variables cause real problems
% Realistic models are often to large to be model checked

o The solution:

% Abstraction:
» Replace related groups of states with a single superstate
» Replace real & integer variables with propositional variables

% Projection:
» Slice the model to remove parts unrelated to the property

% Compositional verification - break large model into smaller pieces
» (But it's hard to verify that the composition preserves properties)

© Easterbrook 2004

30

University of Toronto

; FM in practice

Department of Computer Science

o From Shuttle Study [Crow & DiVito 1996]

% More errors found in the process of formalizing the requirements than were
found in the formal analysis
» Formalization forces you to be precise and explicit, hence reveals problems
» Formal analysis then finds fewer, but more subtle problems
% Typical errors found include:
> inconsistent interfaces
» incorrect requirements (system does the wrong thing in response to an input)
» clarity/maintainability problems

Issue Severity | With FM _Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4
© Easterbrook 2004 32

University of Toronto Department of Computer Science

"
v Using Formal Methods

o Selective use of Formal Methods
% Amount of formality can vary
% Need not build complete formal models
» Apply to the most critical pieces
» Apply where existing analysis techniques are weak
% Need not formally analyze every system property
» E.g. check safety properties only
% Need not apply FM in every phase of development
» E.g. use for modeling requirements, but don't formalize the system design
% Can choose what level of abstraction (amount of detail) to model

© Easter brook 2004

33

