
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 7, Part 1:
Object Oriented Modelling

Ü Object Oriented Analysis
Ä Rationale
Ä Identifying Classes
Ä Attributes and Operations

Ü Class Diagrams
Ä Associations
ÄMultiplicity
Ä Aggregation
Ä Composition
Ä Generalization

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Application Domain Machine Domain

D - domain properties
R - requirements

C - computers

P - programs

Requirements & Domain Models

Ü Our analysis models should…
Ä …represent people, physical things and concepts important to the analyst’s

understanding of what is going on in the application domain
Ä …show connections and interactions among these people, things and relevant

concepts.
Ä …show the business situation in enough detail to evaluate possible designs.
Ä …be organized to be useful later, during design and implementation of the

software.
Ä …allow us to check whether the functions we will include in the specification

will satisfy the requirements
Ä …test our understanding of how the new system will interact with the world

Reminder: we are modeling this and this … … … … but not this

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Object Oriented Analysis
Ü Background

ÄModel the requirements in terms of objects and the services they provide
Ä Grew out of object oriented design

Ø Applied to modelling the application domain rather than the program

Ü Motivation
Ä OO is (claimed to be) more ‘natural’

Ø As a system evolves, the functions it performs need to be changed more often
than the objects on which they operate…

Ø …a model based on objects (rather than functions) will be more stable over time…
Ø …hence the claim that object-oriented designs are more maintainable

Ä OO emphasizes importance of well-defined interfaces between objects
Ø compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Nearly anything can be an object…
Ü External Entities

Ä …that interact with the system
being modeled
ØE.g. people, devices, other systems

Ü Things
Ä …that are part of the domain being

modeled
ØE.g. reports, displays, signals, etc.

Ü Occurrences or Events
Ä …that occur in the context of the

system
ØE.g. transfer of resources, a control
action, etc.

Ü Roles
Ä played by people who interact with

the system

Ü Organizational Units
Ä that are relevant to the application

ØE.g. division, group, team, etc.

Ü Places
Ä …that establish the context of the

problem being modeled
ØE.g. manufacturing floor, loading
dock, etc.

Ü Structures
Ä that define a class or assembly of

objects
ØE.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
Ä procedures (e.g. print, invert, etc)
Ä attributes (e.g. blue, 50Mb, etc)

Source: Adapted from Pressman, 1994, p242

2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

What are classes?
Ü A class describes a group of objects with

Ä similar properties (attributes),
Ä common behaviour (operations),
Ä common relationships to other objects,
Ä and common meaning (“semantics”).

Ü Examples
Ä employee: has a name, employee# and department; an employee is hired, and fired; an

employee works in one or more projects

:employee
name
employee#
department
hire()
fire()
assignproject()

Name (mandatory)Attributes
(optional)

Operations
(optional)

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Finding Classes
Ü Finding classes source data:

Ä Look for nouns and noun phrases in stakeholders’ descriptions of the problem
Ø include in the model if they explain the nature or structure of information in the

application.

Ü Finding classes from other sources:
Ä Reviewing background information;
Ä Users and other stakeholders;
Ä Analysis patterns;

Ü It’s better to include many candidate classes at first
Ä You can always eliminate them later if they turn out not to be useful
Ä Explicitly deciding to discard classes is better than just not thinking about

them

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Selecting Classes
Ü Discard classes for concepts which:

Ä Are beyond the scope of the analysis;
Ä Refer to the system as a whole;
Ä Duplicate other classes;
Ä Are too vague or too specific

Ø e.g. have too many or too few instances
Ä Coad & Yourdon’s criteria:

Ø Retained information: Will the system need to remember information about this
class of objects?

Ø Needed Services: Do objects in this class have identifiable operations that
change the values of their attributes?

Ø Multiple Attributes: If the class only has one attribute, it may be better
represented as an attribute of another class

Ø Common Attributes: Does the class have attributes that are shared with all
instances of its objects?

Ø Common Operations: Does the class have operations that are shared with all
instances of its objects?

Ä External entities that produce or consume information essential to the
system should be included as classes

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Objects vs. Classes
Ü The instances of a class are called objects.

Ä Objects are represented as:

Ä Two different objects may have identical attribute values (like two people
with identical name and address)

Ü Objects have associations with other objects
Ä E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
Ä But we will capture these relationships at the class level (why?)
ÄNote: Make sure attributes are associated with the right class

Ø E.g. you don’t want both managerName and manager# as attributes of Project!
(…Why??)

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Associations
Ü Objects do not exist in isolation from one another

Ä A relationship represents a connection among things.
Ä In UML, there are different types of relationships:

Ø Association
Ø Aggregation and Composition
Ø Generalization
Ø Dependency
Ø Realization

ÄNote: The last two are not useful during requirements analysis

Ü Class diagrams show classes and their relationships

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Association Multiplicity
Ü Ask questions about the associations:

Ä Can a campaign exist without a member of staff to manage it?
Ø If yes, then the association is optional at the Staff end - zero or one

Ä If a campaign cannot exist without a member of staff to manage it
Ø then it is not optional

Ä if it must be managed by one and only one member of staff then we show it
like this - exactly one

ÄWhat about the other end of the association?
Ä Does every member of staff have to manage exactly one campaign?

Ø No. So the correct multiplicity is zero or more.

Ü Some examples of specifying multiplicity:
Ä Optional (0 or 1) 0..1
Ä Exactly one 1 = 1..1
Ä Zero or more 0..* = *
Ä One or more 1..*
Ä A range of values 1..6
Ä A set of ranges 1..3,7..10,15,19..*

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client

companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

University of Toronto Department of Computer Science

© Easterbrook 2004 12

More Examples

4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Association Classes
Ü Sometimes the association is itself a class
Ä …because we need to retain information about the association
Ä …and that information doesn’t naturally live in the classes at the ends of the

association
Ø E.g. a “title” is an object that represents information about the relationship

between an owner and her car

:car
VIN(vehicle Id Number)
YearMade
Mileage

:person

Name
Address
DriversLicenceNumber
PermittedVehicles

0..* 1owns
owner

:title
yearbought
initialMileage
PricePaid
LicencePlate#

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Aggregation and Composition
Ü Aggregation

Ä This is the “Has-a” or “Whole/part” relationship

Ü Composition
Ä Strong form of aggregation that implies ownership:

Ø if the whole is removed from the model, so is the part.
Ø the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Generalization

Ü Notes:
Ä Subclasses inherit attributes, associations, & operations from the superclass
Ä A subclass may override an inherited aspect

Ø e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
Ä Superclasses may be declared {abstract}, meaning they have no instances

Ø Implies that the subclasses cover all possibilities
Ø e.g. there are no other staff than AdminStaff and CreativeStaff

University of Toronto Department of Computer Science

© Easterbrook 2004 16

More on Generalization
Ü Usefulness of generalization

Ä Can easily add new subclasses if the organization changes

Ü Look for generalizations in two ways:
Ä Top Down

Ø You have a class, and discover it can be subdivided
Ø Or you have an association that expresses a “kind of” relationship
Ø E.g. “Most of our work is on advertising for the press, that’s newspapers and

magazines, also for advertising hoardings, as well as for videos”
Ä Bottom Up

Ø You notice similarities between classes you have identified
Ø E.g. “We have books and we have CDs in the collection, but they are all filed

using the Dewey system, and they can all be lent out and reserved”

Ü But don’t generalize just for the sake of it
Ä Be sure that everything about the superclass applies to the subclasses
Ä Be sure that the superclass is useful as a class in its own right

Ø I.e. not one that we would discard using our tests for useful classes
Ä Don’t add subclasses or superclasses that are not relevant to your analysis

5

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Class Diagrams

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2

0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor

University of Toronto Department of Computer Science

© Easterbrook 2004 18

Evaluation of OOA
Ü Advantages of OO analysis for RE

Ä Fits well with the use of OO for design and implementation
Ø Transition from OOA to OOD ‘smoother’ (but is it?)

Ä Removes emphasis on functions as a way of structuring the analysis
Ä Avoids the fragmentary nature of structured analysis

Ø object-orientation is a coherent way of understanding the world

Ü Disadvantages
Ä Emphasis on objects brings an emphasis on static modeling

Ø although later variants have introduced dynamic models
ÄNot clear that the modeling primitives are appropriate

Ø are objects, services and relationships really the things we need to model in RE?
Ä Strong temptation to do design rather than problem analysis
Ä Fragmentation of the analysis

Ø E.g. reliance on use-cases means there is no “big picture” of the user’s needs
Ä Too much marketing hype!

Ø and false claims - e.g. no evidence that objects are a more natural way to think

University of Toronto Department of Computer Science

© Easterbrook 2004 19

Lecture 7, Part 2:
Entity Relationship Modelling

Ü The Entity-Relationship Model
Ä Entities
Ä Relationships
Ä Attributes

Ü Constraining the instances
Ä Cardinalities
Ä Identifiers
Ä Generalization

University of Toronto Department of Computer Science

© Easterbrook 2004 20

The Entity Relationship Model
Ü Entity-Relationship Schema

Ä Describes data requirements for a new information system
Ä Direct, easy-to-understand graphical notation
Ä Translates readily to relational schema for database design

Ø But more abstract than relational schema
Ø E.g. can represent an entity without knowing its properties

Ä comparable to UML class diagrams

Ü Entities:
Ä classes of objects with properties in common and an autonomous existence

Ø E.g. City, Department, Employee, Purchase and Sale
Ä An instance of an entity is an object in the class represented by the entity

Ø E.g. Stockholm, Helsinki, are examples of instances of the entity City

Ü Relationships:
Ä logical links between two or more entities.

Ø E.g. Residence is a relationship that can exist between the City and Employee
Ä An instance of a relationship is an n-tuple of instances of entities

Ø E.g. the pair (Johanssen,Stockholm), is an instance in the relationship Residence.

6

University of Toronto Department of Computer Science

© Easterbrook 2004 21

Examples

University of Toronto Department of Computer Science

© Easterbrook 2004 22

Example Instances for Exam

Exam

University of Toronto Department of Computer Science

© Easterbrook 2004 23

MeetsCourse Room

Course instancesCourse instances Room instancesRoom instances
Meets instancesMeets instances

What Does An E-R Diagram Really
Mean?

Ü Course and Room are entities.
Ä Their instances are particular courses (eg CSC340F) and rooms (eg MB128)

Ü Meets is a relationship.
Ä Its instances describe particular meetings.
Ä Each meeting has exactly one associated course and room

University of Toronto Department of Computer Science

© Easterbrook 2004 24

Recursive Relationships
Ü an entity can have

relationships with itself…

Ü If the relationship is not
symmetric…
Ä …need to indicate the two roles that

the entity plays in the relationship.

7

University of Toronto Department of Computer Science

© Easterbrook 2004 25

Ternary Relationships

University of Toronto Department of Computer Science

© Easterbrook 2004 26

Contains

Order

Part

Requests Service

XORXOR

FilledBy

Order

Shipment

Generates Invoice

ANDAND

““Each Order Each Order
either contains a either contains a
part or requests part or requests

a service, but not a service, but not
both”both”

““For any given order,For any given order,
whenever there is at whenever there is at

least one invoice least one invoice
there is also at least there is also at least

one shipmentone shipment
and vice versa”and vice versa”

AND/XOR Relationships

University of Toronto Department of Computer Science

© Easterbrook 2004 27

Attributes
Ü associates with each instance of an entity (or relationship) a

value belonging to a set (the domain of the attribute).
Ä The domain determines the admissible values for the attribute.

University of Toronto Department of Computer Science

© Easterbrook 2004 28

Composite Attributes
Ü These group attributes of the same entity or relationship that

have closely connected meanings or uses.

8

University of Toronto Department of Computer Science

© Easterbrook 2004 29

Schema with Attributes

University of Toronto Department of Computer Science

© Easterbrook 2004 30

Cardinalities
Ü Cardinalities constrain participation in relationships

Ä maximum and minimum number of relationship instances in which an entity
instance can participate.

Ä E.g.

Ü cardinality is any pair of non-negative integers (a,b)
Ä such that a=b.
Ä If a=0 then entity participation in a relationship is optional
Ä If a=1 then entity participation in a relationship is mandatory.
Ä If b=1 each instance of the entity is associated at most with a single

instance of the relationship
Ä If b=“N” then each instance of the entity is associated with an arbitrary

number of instances of the relationship.

University of Toronto Department of Computer Science

© Easterbrook 2004 31

MeetsCourse Room
(2,2)

Day

(0,40)

(0,N)

““A course A course
meets twicemeets twice

a week”a week”

““A room can A room can
have up to have up to

40 meetings 40 meetings
per week”per week”

““A day can A day can
have an have an

unlimited unlimited
number of number of
meetings”meetings”

Cardinality Example

University of Toronto Department of Computer Science

© Easterbrook 2004 32

MeetsCourse Room
(2,2) (0,40)

Instantiating ER diagrams
Ü An ER diagram specifies what states are possible in

the world being modeled

9

University of Toronto Department of Computer Science

© Easterbrook 2004 33

MeetsCourse Room
(2,2) (0,40)

Illegal Instantiations

University of Toronto Department of Computer Science

© Easterbrook 2004 34

Cardinalities of Attributes
Ü Attributes can also have

cardinalities
Ä To describe the minimum and

maximum number of values of the
attribute associated with each
instance of an entity or a
relationship.

Ä The default is (1,1)
Ä Optional attributes have cardinality

(0,1)

Ü Multi-valued attribute
cardinalities are problematic
Ä Usually better modelled with additional

entities linked by one-to-many (or many-
to-many) relationships

Perso
n

Owns

Car

Surname
License#

Registration#

(0,N)

(1,1)

University of Toronto Department of Computer Science

© Easterbrook 2004 35

Identifiers (also known as “keys”)

Ü How to uniquely identify instances of an entity?
Ä An identifier may formed by one or more attributes of the entity itself
Ä If attributes of an entity are not sufficient to identify instances

unambiguously, other entities can be involved in the identification
Ä A relationships is identified using identifiers for all the entities it relates

Ø E.g. the identifier for the relationship (Person-) Owns(-Car) is a combination of
the Person and Car identifiers.

internal, single-attribute

internal, multi-attributeexternal, multi-attribute

University of Toronto Department of Computer Science

© Easterbrook 2004 36

Notes on Identifiers
Ü Identifiers and cardinality:

Ä An identifier can involve one or more attributes, provided that each has
(1,1) cardinality

Ä An external identifier can involve one or more entities, provided that each
is a member of a relationship to which the entity to identify participates
with cardinality (1,1)

Ü Cycles
Ä An external identifier can involve an entity that is in its turn identified

externally, as long as cycles are not generated;

Ü Multiple identifiers
Ä Each entity must have at least one (internal or external) identifier
Ä An entity can have more than one identifier

Ø Note: if there is more than one identifier, then the attributes and entities
involved in an identification can be optional (minimum cardinality equal to 0).

10

University of Toronto Department of Computer Science

© Easterbrook 2004 37

Schema with Identifiers

University of Toronto Department of Computer Science

© Easterbrook 2004 38

Modeling an Application with
Identifiers

Ü Identifiers provide an important modelling tool
Ä E.g. Assume we want a database storing information about lecture

meetings.
Ä If we use the identifier <coursename,day,hour> for the Meeting entity.

Ø This says there can only be one meeting at any one time for a given course name,
day, hour; we can’t have two sections of the same course meeting at the same
day+hour.

Ä If we use only <coursename> as identifier for Meeting.
Ø This says that there can only be one meeting per given course name

(unreasonable!)
Ä If we use <courseinstructor,room> as identifier for Meeting

Ø we are stating that there can only be one meeting for a given instructor+room
combination, so an instructor must have all her meetings in different rooms!

Ä If we use <courseinstructor> by itself as identifier for Meeting
Ø We are stating that each instructor participates in at most one meeting

(unreasonable!)

University of Toronto Department of Computer Science

© Easterbrook 2004 39

Generalizations
Ü Show “is-a” relationships between entities

Ü Inheritance:
Ä Every instance of a child entity is also an instance of the parent entity
Ä Every property of the parent entity (attribute, identifier, relationship or

other generalization) is also a property of a child entity

University of Toronto Department of Computer Science

© Easterbrook 2004 40

Types of Generalizations
Ü Total generalizations:

Ä …every instance of the parent
entity is an instance of one of
its children

Ä Shown as a solid arrow
Ä (otherwise: Partial, shown as an

unfilled arrow)

Ü Exclusive generalizations:
Ä …every instance of the parent

entity is at most an instance of
one of its children

Ä (otherwise: overlapping)

11

University of Toronto Department of Computer Science

© Easterbrook 2004 41

The E-R Meta-Model (as an E-R Diagram)

