Lid University of Toronto Department of Computer Science

T Lecture 7, Part 1:
Object Oriented Modelling

2 Object Oriented Analysis
& Rationale
% Identifying Classes
% Attributes and Operations

o Class Diagrams
& Associations
% Multiplicity
% Aggregation
& Composition
& Generalization

© Easterbrook 2004 1

Lid University of Toronto Department of Computer Science

i Requirements & Domain Models

.. .. but not this

Reminder: we are modeling this and this

Application Domain Machine Domain

© Our analysis models should...

% ..represent people, physical things and concepts important to the analyst’s
understanding of what is going on in the application domain

% ..show connections and interactions among these people, things and relevant
concepts.

% ..show the business situation in enough detail to evaluate possible designs.

% ..be organized to be useful later, during design and implementation of the
software.

% ..allow us to check whether the functions we will include in the specification
will satisfy the requirements

& .. test our understanding of how the new system will interact with the world

© Easterbrook 2004 2

Lid University of Toronto Department of Computer Science

Object Oriented Analysis

© Background
% Model the requirements in terms of objects and the services they provide

% Grew out of object oriented design
» Applied to modelling the application domain rather than the program

© Motivation

% OO0 is (claimed to be) more ‘natural’

» As a system evolves, the functions it performs need to be changed more often
than the objects on which they operate...

» ..a model based on objects (rather than functions) will be more stable over time..
» ..hence the claim that object-oriented designs are more maintainable

% OO emphasizes importance of well-defined interfaces between objects
» compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

© Easterbrook 2004

Lid University of Toronto Department of Computer Science

v Nearly anything can be an object..

Source: Adapted from Pressman, 1994, p242

> External Entities o Organizational Units
% ..that interact with the system % that are relevant to the application
being modeled >E.g. division, group, team, etc.
»E.g. people, devices, other systems
. o Places
o Thlngs % ..that establish the context of the
& ..that are part of the domain being problem being modeled
modeled >E.g. manufacturing floor, loading
>E.g. reports, displays, signals, etc. dock, etc.
o Occurrences or Events o Structures
& ..that occur in the context of the % that define a class or assembly of
system objects .
>E.g. transfer of resources, a control »E.g. sensors, four-wheeled vehicles,
action, etc. computers, etc.
o Roles Some things cannot be objects:
% played by people who interact with % procedures (e.g. print, invert, etc)
the system % attributes (e.g. blue, 50Mb, etc)

© Easterbrook 2004

Lid University of Toronto Department of Computer Science

What are classes?

> A class describes a group of objects with
% similar properties (attributes),
% common behaviour (operations),
% common relationships to other objects,
% and common meaning (“semantics”).

> Examples

% employee: has a name, employee# and department; an employee is hired, and fired; an
employee works in one or more projects

:employee .|
Attributes .. ‘lname | Name (mandatory)
optional) ™ "“[employee#
(op) department
hire() e .
flre() -f"_'.'.'JOperatIOnS
assignproject() 1 (optional)
© Easterbrook 2004 5
Lid University of Toronto Department of Computer Science

Finding Classes

o Finding classes source data:

% Look for nouns and noun phrases in stakeholders’ descriptions of the problem
» include in the model if they explain the nature or structure of information in the
application.

o Finding classes from other sources:
% Reviewing background information;
% Users and other stakeholders;
% Analysis patterns;

o It's better to include many candidate classes at first
% You can always eliminate them later if they turn out not to be useful

% Explicitly deciding to discard classes is better than just not thinking about
them

© Easterbrook 2004 6

Lid University of Toronto Department of Computer Science

= Selecting Classes

o Discard classes for concepts which:
% Are beyond the scope of the analysis;
% Refer to the system as a whole;
% Duplicate other classes;

% Are too vague or too specific
» e.g. have too many or too few instances

% Coad & Yourdon's criteria:
» Retained information: Will the system need to remember information about this
class of objects?
» Needed Services: Do objects in this class have identifiable operations that
change the values of their attributes?
» Multiple Attributes: If the class only has one attribute, it may be better
represented as an attribute of another class
» Common Attributes: Does the class have attributes that are shared with all
instances of its objects?
» Common Operations: Does the class have operations that are shared with all
instances of its objects?
% External entities that produce or consume information essential to the
system should be included as classes

© Easterbrook 2004 7

Lid University of Toronto Department of Computer Science

= Objects vs. Classes

o The instances of a class are called objects.
% Objects are represented as:

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

% Two different objects may have identical attribute values (like two people
with identical name and address)

o Objects have associations with other objects
% E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
% But we will capture these relationships at the class level (why?)

% Note: Make sure attributes are associated with the right class
» E.g. you don't want both managerName and manager# as attributes of Project!
(..Why??)

© Easterbrook 2004 8

Lid University of Toronto

Department of Computer Science

Associations

© Objects do not exist in isolation from one another

% A relationship represents a connection among things.
% In UML, there are different types of relationships:

» Association

» Aggregation and Composition

» Generalization
» Dependency
» Realization

% Note: The last two are not useful during requirements analysis

o Class diagrams show classes and their relationships

Q.*

<<entity>>
Advert

<<er}ti1y>>
Client <<entity>>

companyAddress Campaign
companyName 1 0.* |title 1
company;elephone campaignStartDate
companyFax ignFini
o places campaignFinishDate

- - etCampaignAdverts
getClientCampaigns() gddNewa\dged() 0
getClients()

conducted by

| createNewAdvert()

setCompleted()

© Easterbrook 2004

Lid University of Toronto

Department of Computer Science

Association Multiplicity

o Ask questions about the associations:

% Can a campaign exist without a member of staff to manage it?
» If yes, then the association is optional at the Staff end - zero or one

% If a campaign cannot exist without a member of staff to manage it

» then it is not optional

% if it must be managed by one and only one member of staff then we show it

like this - exactly one

& What about the other end of the association?

% Does every member of staff have to manage exactly one campaign?

» No. So the correct multiplicity is zero or more.

> Some examples of speC|fy|ng multiplicity:

% Optional (0 or 1)
& Exactly one

& Zero or more

% One or more

% A range of values
% A set of ranges

PRPRPORO

=1..1

*

,7..10,15,19..*

© Easterbrook 2004

10

?
v

University of Toronto

Department of Computer Science

Multiplicity Multiplicity
A client has A staff member has

exactly one staffmember
as a contact person

Class associations

zero or more clients on
His/her clientList

Name
of the
association -
:Client
Stafiiiember ,/ companyAddress
staffName 1 i ; 0..* | companyEmail
staff# liaises with - —] companyFax
staffStartDate | contact > ClientList] companyName
person /‘ companyTelephone
Direction
The “liaises with”
association should be
read in this direction
Role

The staffmember’s
role in this association
is as a contact person

Role
The clients’ role
in this association
is as a clientList

© Easterbrook 2004

11

*
L 4

University of Toronto

Department of Computer Science

More Examples
Campaign 1 conducted by 0.* Advert
>
Grade allocated to StaffViember
deN staffName
grageiName * . | staffNo
1. < 0.7 | staffStartDate
Hand contains Card
0.1 > 1.7

© Easterbrook 2004

12

University of Toronto Department of Computer Science

£
v Association Classes

2 Sometimes the association is itself a class
%, ..because we need to retain information about the association

& ..and that information doesn’t naturally live in the classes at the ends of the
association

» E.g. a “title” is an object that represents information about the relationship
between an owner and her car

:person
:car Namo
VIN(vehicle Id Number)| Q..* owns 1 | Address
YearMade : DriversLicenceNumber
Mileage < : Owner | permittedVehicles
;title
yearbought
initialMileage
PricePaid
LicencePlate#
© Easterbrook 2004 13
? University of Toronto Department of Computer Science
: Aggregation and Composition
o Aggregation

% This is the “Has-a” or “Whole/part” relationship

o Composition

% Strong form of aggregation that implies ownership:
» if the whole is removed from the model, so is the part.
» the whole is responsible for the disposition of its parts

1 | :Engine
composition -
:Locomotive| 1 «
1 |
. 0.1 -
Car_ | 4® @ Tan
N\
N~ 0.1
| ‘Person |o.x 0.1
[driver 1 passengers
aggregation

© Easterbrook 2004 14

Department of Computer Science

Lid University of Toronto

Generalization por—
{abstract}
Grade 1.0 - allocated 0." | staffName
staffNo <---- A superclass
gradeName P staffStartDate
o calculate Bonus ()
e assignNewStaff Grade ()
7 getStaffDetails ()
/I’
Superclass Two
associations are _ :ubFﬂasses
inherited by]
subelasses /
-]
Vs v
AdminStaff CreativeStaff
calculateBonus () qualification
calculateBonus ()
assignStaffContact ()

© Notes:
% Subclasses inherit attributes, associations, & operations from the superclass

% A subclass may override an inherited aspect
» e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
% Superclasses may be declared {abstract}, meaning they have no instances

» Implies that the subclasses cover all possibilities
» e.g. there are no other staff than AdminStaff and CreativeStaff

15

© Easterbrook 2004

Department of Computer Science

Lid University of Toronto
More on Generalization

o Usefulness of generalization
% Can easily add new subclasses if the organization changes

o Look for generalizations in two ways:

% Top Down
» You have a class, and discover it can be subdivided

» Or you have an association that expresses a “kind of” relationship
» E.g. “Most of our work is on advertising for the press, that's newspapers and

magazines, also for advertising hoardings, as well as for videos”

% Bottom Up
» You notice similarities between classes you have identified
» E.g. “We have books and we have CDs in the collection, but they are all filed

using the Dewey system, and they can all be lent out and reserved”

© But don’'t generalize just for the sake of it
% Be sure that everything about the superclass applies to the subclasses

% Be sure that the superclass is useful as a class in its own right
» l.e. not one that we would discard using our tests for useful classes

% Don't add subclasses or superclasses that are not relevant to your analysis

16

© Easterbrook 2004

Lid University of Toronto Department of Computer Science
3

: Class Diagrams =
Class name aggregation Colour
0..2| Diameter
Correction
- multiplicities
_ “Patient 0..1—F :kidney
attributes NS O e
————J pateor girtn] 1»// '
Height O—
i Weight / 1.2
services . 0..1 ..
\—> e
:heart
|
generalization 1 g‘lz'ggilyz‘;m
:In-patient :Out-patient
Room Last visit zorgan
Bed next visit Natural/artif.
Physician physician Orig/implant
donor
© Easterbrook 2004

17

? University of Toronto

L4

Department of Computer Science

Evaluation of OOA

o Advantages of OO analysis for RE
% Fits well with the use of OO for design and implementation
» Transition from OOA to OOD ‘smoother’ (but is it?)
% Removes emphasis on functions as a way of structuring the analysis

% Avoids the fragmentary nature of structured analysis
» object-orientation is a coherent way of understanding the world

o Disadvantages

% Emphasis on objects brings an emphasis on static modeling
» although later variants have introduced dynamic models
% Not clear that the modeling primitives are appropriate
» are objects, services and relationships really the things we need to model in RE?
% Strong temptation to do design rather than problem analysis
% Fragmentation of the analysis
» E.g. reliance on use-cases means there is no “big picture” of the user’s needs
% Too much marketing hype!
» and false claims - e.g. no evidence that objects are a more natural way to think

© Easterbrook 2004 18

Lid University of Toronto Department of Computer Science

Lecture 7, Part 2:
Entity Relationship Modelling

© The Entity-Relationship Model
% Entities
% Relationships
% Attributes

o Constraining the instances
& Cardinalities
% Identifiers
& Generalization

© Easterbrook 2004 19

Lid University of Toronto Department of Computer Science

The Entity Relationship Model

° Entity-Relationship Schema
% Describes data requirements for a new information system
% Direct, easy-to-understand graphical notation

% Translates readily to relational schema for database design
» But more abstract than relational schema
» E.g. can represent an entity without knowing its properties

% comparable to UML class diagrams

© Entities:
% classes of objects with properties in common and an autonomous existence
» E.g. City, Department, Employee, Purchase and Sale

% An instance of an entity is an object in the class represented by the entity
» E.g. Stockholm, Helsinki, are examples of instances of the entity City

© Relationships:

% logical links between two or more entities.
» E.g. Residence is a relationship that can exist between the City and Employee

% An instance of a relationship is an n-tuple of instances of entities
» E.g. the pair (Johanssen,Stockholm), is an instance in the relationship Residence.

© Easterbrook 2004 20

University of Toronto

Department of Computer Science

2
v

STUDENT

EMPLOYEE

Examples

WorkPLACE

COURSE

City

© Easterbrook 2004

21

University of Toronto

Department of Computer Science

*
L

Student

Example Instances for Exam

© Easterbrook 2004

22

University of Toronto Department of Computer Science

s
W What Does An E-R Diagram Really
Mean?

[Course}———<fjees>——{Room]

o Course and Room are entities.
% Their instances are particular courses (eg CSC340F) and rooms (eg MB128)

o Meets is a relationship.
% Its instances describe particular meetings.
% Each meeting has exactly one associated course and room

.. Meets instances .
Course instances Room_ instances
© Easterbrook 2004 23
University of Toronto Department of Computer Science

.-‘zmﬂ.

Recursive Relationships

S an entity can have
relationships with itself...

EMPLOYEE
o> If the relationship is not
symmetric...
% ..need to indicate the two roles that
the entity plays in the relationship.
SOVEREIGN
Predecessor Successor

© Easterbrook 2004 24

University of Toronto Department of Computer Science

b 4
v Ternary Relationships

Supplier

SUPPLIER @ ProbDUCT

DEPARTMENT Department

25

© Easterbrook 2004

University of Toronto Department of Computer Science

Lid
\J AND/XOR Relationships

“Each Order
either contains a
part or requests
a service, but not

both”

“For any given order,
whenever there is at
least one invoice
there is also at least
one shipment
and vice versa”

<

Invoice

enerate

26

© Easterbrook 2004

University of Toronto Department of Computer Science

©»

Attributes

S associates with each instance of an entity (or relationship) a

value belonging to a set (the domain of the attribute).
% The domain determines the admissible values for the attribute.

Mark Date
Q) (0

Number Name
A STUDENT ¢ COuRsE
EnrolmentDate \Ygir

Name

Surname SNy /3
Salary O— EMPLOYEE Crry

Age ol \O

NumberOf

O
DateOfBirth Inhabitants

© Easterbrook 2004

27

University of Toronto

Department of Computer Science

@»

Composite Attributes

S These group attributes of the same entity or relationship that
have closely connected meanings or uses.

__OSurname

PERSON /\"8’2@8
X Street
Address HouseNumber
PostCode

© Easterbrook 2004

28

University of Toronto

Department of Computer Science

?
v

Code

Surname

Salary

rge

EMpLOYEE

Schema with Attributes

/OPhone

DEPARTMENT,

0 \Q Name
StartDate
COMPOSITION
{0 StartDate

Name City
Budget
85— ProjecT BRANCH Number
O/ Address
ReleaseDate Street
PostCode
© Easterbrook 2004 29

University of Toronto Department of Computer Science

.-‘zmﬂ.

Cardinalities

o Cardinalities constrain participation in relationships
& maximum and minimum number of relationship instances in which an entity
instance can participate.
% E.g.

(1,5)

EMPLOYEE TAsK

o cardinality is any pair of no

% such that a=b.

% If a=0 then entity participation in a relationship is optional

& If a=1 then entity participation in a relationship is mandatory.

% If b=1 each instance of the entity is associated at most with a single
instance of the relationship

% If b="N" then each instance of the entity is associated with an arbitrary
number of instances of the relationship.

-negative integers (a,b)

© Easterbrook 2004 30

Lid University of Toronto Department of Computer Science

v

Cardinality Example

“A course
meets twice
a week”

“A day can “A room can
have an (ON) have up to
unlimited 40 meetings
number of per week”
meetings” Day
© Easterbrook 2004 31
? University of Toronto Department of Computer Science

L4

2 An ER diagram specifies what states are possible in
the world being modeled

(2.2) @ (0.40)

—

Instantiating ER diagrams

-/';/'

© Easterbrook 2004

32

Lid University of Toronto

Department of Computer Science

v

Illegal Instantiations

Course

© Easterbrook 2004

33

? University of Toronto

Department of Computer Science

L4

Cardinalities of Attributes

2 Attributes can also have

cardinalities

% To describe the minimum and
maximum number of values of the
attribute associated with each
instance of an entity or a
relationship.

% The default is (1,1)

% Optional attributes have cardinality

0,1)
% CarRegistration
PERSON —OSurname

©0,/OLicenceNumber

2 Multi-valued attribute

cardinalities are problematic

% Usually better modelled with additional
entities linked by one-to-many (or many-

to-many) relationships

Surnam
License#

Perso

(O.N)

>

(1.1)

Car

Registration#

© Easterbrook 2004

Lid University of Toronto Department of Computer Science

Identifiers (also known as “keys”)

© How to uniquely identify instances of an entity?
% An identifier may formed by one or more attributes of the entity itself
% If attributes of an entity are not sufficient to identify instances
unambiguously, other entities can be involved in the identification

% A relationships is identified using identifiers for all the entities it relates
» E.g. the identifier for the relationship (Person-) Owns(-Car) is a combination of
the Person and Car identifiers.

internal, single-attribute DateOf Birth
™~ . . Surname
/.Reglstratlon PERsON SN
irstName
AUTOMOBILE ——OModel)
Colour
external, multi-attribute internal, multi-attribute
Registration
. @ Name

Year Jo—| STUDENT UNIVERSITY —()City

Surnameo/ \O Address

© Easterbrook 2004 35

Lid University of Toronto Department of Computer Science

R Notes on ldentifiers

o ldentifiers and cardinality:
% An identifier can involve one or more attributes, provided that each has
(1,1) cardinality
% An external identifier can involve one or more entities, provided that each
is a member of a relationship to which the entity to identify participates
with cardinality (1,1)

o Cycles

% An external identifier can involve an entity that is in its turn identified
externally, as long as cycles are not generated;

© Multiple identifiers
% Each entity must have at least one (internal or external) identifier

% An entity can have more than one identifier
» Note: if there is more than one identifier, then the attributes and entities
involved in an identification can be optional (minimum cardinality equal to 0).

© Easterbrook 2004 36

Lid University of Toronto Department of Computer Science

Schema with ldentifiers

Code

Surname

(% Phone

Salary

Ager

EMPLOYEE

MEMBERSHIP DEPARTMENT

(1.1)

O
StartDate
CoMPOSITION
O StartDate

' Name

Name (IN) /.City
Budget P
RS BRANCH Number
Address Street
ReleaseDate P
© Easterbrook 2004 37
Lid University of Toronto Department of Computer Science

Modeling an Application with

Identifiers

o ldentifiers provide an important modelling tool

% E.g. Assume we want a database storing information
meetings.
% If we use the identifier <coursename,day,hour> for

» This says there can only be one meeting at any one time for a given course name,

day, hour; we can't have two sections of the same cou
day-+hour.

% If we use only <coursename> as identifier for Meeti

about lecture

the Meeting entity.

rse meeting at the same

ng-

» This says that there can only be one meeting per given course name

(unreasonable!)

% If we use <courseinstructor,room> as identifier for
» we are stating that there can only be one meeting for

Meeting
a given instructor+room

combination, so an instructor must have all her meetings in different rooms!

% If we use <courseinstructor> by itself as identifier
» We are stating that each instructor participates in at
(unreasonable!)

for Meeting
most one meeting

© Easterbrook 2004

38

University of Toronto Department of Computer Science

.-‘Em-ﬂ.

Generalizations

© Show “is-a” relationships between entities

PersoN

TaxCode

TaxCode .\
AddressC) PROFESSIONAL

| T |

MaN WomaN LAWYER ENGINEER Doctor

Surname ()

Age

MaternityStatus}) Specialization\o

2 Inheritance:
& Every instance of a child entity is also an instance of the parent entity
& Every property of the parent entity (attribute, identifier, relationship or
other generalization) is also a property of a child entity

© Easterbrook 2004

39

University of Toronto Department of Computer Science

.-‘zmﬂ.

Types of Generalizations

© Total generalizations:

% ..every instance of the parent
entity is an instance of one of Surname; PeorLe ‘

TaxCode

unfilled arrow)

o> Exclusive generalizations:
% ..every instance of the parent
entity is at most an instance of

‘WOMAN‘ ‘ MaN HEMPLOYEE‘ ‘STUDENT‘

Maternity
Status | |

its children Age
% Shown as a solid arrow Salar Number
Y
% (otherwise: Partial, shown as an Q\ /O

one of its children
& (otherwise: overlapping)

‘ MANAGER ‘ ‘PROGRAMMER‘ ‘ ANALYST ‘

O/Language

PROJECT
MANAGER

© Easterbrook 2004

University of Toronto

Department of Computer Science

"
v

The E-R Meta-Model (as an E-R Diagram)

CONSTRUCT
Minimum
Number T Cardinality
‘ Name
GENERALIZATION Basic
CONSTRUCT ATTRIBUTE
Maximum
Cardinality
COMPOSITE

ATTRIBUTE

© Easterbrook 2004

41

