
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 6, Part 1:
Requirements Modelling

Ü A little refresher:
ÄWhat are we modelling?
Ä Requirements; Systems; Systems Thinking

Ü Role of Modelling in RE
ÄWhy modelling is important
Ä Limitations of modelling

Ü Brief overview of modelling languages
Ü Modelling principles

Ä Abstraction
Ä Decomposition
Ä Projection
ÄModularity

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Refresher: Definitions

Ü Some distinctions:
Ä Domain Properties - things in the application domain that are true whether or not we

ever build the proposed system
Ä Requirements - things in the application domain that we wish to be made true by

delivering the proposed system
Ä A specification - a description of the behaviours the program must have in order to

meet the requirements

Ü Two correctness (verification) criteria:
Ä The Program running on a particular Computer satisfies the Specification
Ä The Specification, in the context of the given domain properties, satisfies the

requirements

Ü Two completeness (validation) criteria:
Ä We discovered all the important requirements
Ä We discovered all the relevant domain properties

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

2

University of Toronto Department of Computer Science

© Easterbrook 2004 3Source: Adapted from Loucopoulos & Karakostas, 1995, p73

Subject System

Information system

Uses

builds

Maintains
information

about

Needs
information

about

contracts

Usage System

Development System

Refresher: Systems to model

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Refresher: Systems Thinking

3

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Modelling…
Ü Modelling can guide elicitation:

Ä It can help you figure out what questions to ask
Ä It can help to surface hidden requirements

Ø i.e. does it help you ask the right questions?

Ü Modelling can provide a measure of progress:
Ä Completeness of the models -> completeness of the elicitation (?)

Ø i.e. if we’ve filled in all the pieces of the models, are we done?

Ü Modelling can help to uncover problems
Ä Inconsistency in the models can reveal interesting things…

Ø e.g. conflicting or infeasible requirements
Ø e.g. confusion over terminology, scope, etc
Ø e.g. disagreements between stakeholders

Ü Modelling can help us check our understanding
Ä Reason over the model to understand its consequences

Ø Does it have the properties we expect?
Ä Animate the model to help us visualize/validate the requirements

University of Toronto Department of Computer Science

© Easterbrook 2004 6Source: Adapted from Jackson, 1995, p120-122

For every B, at
least one P exists
such that R(P, B)

The
application

domain

Designations for
the application

domain

Common
Properties

The
modelling
domain

Designations
for the model’s
domain

B = Book
P = Person
R = Wrote

Book: entity
Person: entity

author: relation

RE involves a lot of modelling
Ü A model is more than just a description

Ä it has its own phenomena, and its own relationships among those phenomena.
Ø The model is only useful if the model’s phenomena correspond in a systematic way

to the phenomena of the domain being modelled.
Ä Example:

Book
title

author
(0,n)

(1,n)
name

ISBN

Person

4

University of Toronto Department of Computer Science

© Easterbrook 2004 7

“It’s only a model”
Ü There will always be:

Ä phenomena in the model that are not present in the application domain
Ä phenomena in the application domain that are not in the model

Ü A model is never perfect
Ä “If the map and the terrain disagree, believe the terrain”
Ä Perfecting the model is not always a good use of your time...

Source: Adapted from Jackson, 1995, p124-5

…every book has at
least one author…
…every book has a

unique ISBN…

Common
Phenomena

…ghost writers…
…pseudonyms…

…anonymity…

…no two people
born on same date
with same name…

Book
title

author
(0,n)

(1,n)
name

ISBN

Person

DOB

Phenomena
not captured
in the model

Phenomena
not true

in the world

University of Toronto Department of Computer Science

© Easterbrook 2004 8Source: Adapted from Loucopoulos & Karakostas, 1995, p72-73

UML fits in here

Choice of modelling notation
Ü natural language

Ä extremely expressive and flexible
Ø useful for elicitation, and to annotate models for readability

Ä poor at capturing key relationships

Ü semi-formal notation
Ä captures structure and some semantics
Ä can perform (some) reasoning, consistency checking, animation, etc.

Ø E.g. diagrams, tables, structured English, etc.
Ämostly visual - for rapid communication with a variety of stakeholders

Ü formal notation
Ä precise semantics, extensive reasoning possible

Ø Underlying mathematical model (e.g. set theory, FSMs, etc)
Ä very detailed models (may be more detailed than we need)

Ø RE formalisms are for conceptual modelling, hence differ from most computer
science formalisms

5

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Desiderata for Modelling Notations
Ü Implementation Independence

Ä does not model data representation,
internal organization, etc.

Ü Abstraction
Ä extracts essential aspects

Øe.g. things not subject to frequent
change

Ü Formality
Ä unambiguous syntax
Ä rich semantic theory

Ü Constructability
Ä can construct pieces of the model to

handle complexity and size
Ä construction should facilitate

communication

Ü Ease of analysis
Ä ability to analyze for ambiguity,

incompleteness, inconsistency

Ü Traceability
Ä ability to cross-reference elements
Ä ability to link to design,

implementation, etc.

Ü Executability
Ä can animate the model, to compare it

to reality

Ü Minimality
Ä No redundancy of concepts in the

modelling scheme
Øi.e. no extraneous choices of how to
represent something

Source: Adapted from Loucopoulos & Karakostas, 1995, p77

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Survey of Modelling Techniques
Ü Modelling Enterprises

Ä Goals & objectives
ÄOrganizational structure
Ä Tasks & dependencies
Ä Agents, roles, intentionality

Ü Modelling Information & Behaviour
Ä Information Structure
Ä Behavioral views

Ø Scenarios and Use Cases
Ø State machine models
Ø Information flow

Ä Timing/Sequencing requirements

Ü Modelling System Qualities (NFRs)
Ä All the ‘ilities’:

Ø Usability, reliability, evolvability, safety,
security, performance, interoperability,…

Organization modelling:
i*, SSM, ISAC
Goal modelling:
KAOS, CREWS

Organization modelling:
i*, SSM, ISAC
Goal modelling:
KAOS, CREWS

Information modelling:
E-R, Class Diagrams
Structured Analysis:
SADT, SSADM, JSD
Object Oriented Analysis:
OOA, OOSE, OMT, UML
Formal Methods:
SCR, RSML, Z, Larch, VDM

Information modelling:
E-R, Class Diagrams
Structured Analysis:
SADT, SSADM, JSD
Object Oriented Analysis:
OOA, OOSE, OMT, UML
Formal Methods:
SCR, RSML, Z, Larch, VDM

Quality tradeoffs:
QFD, win-win, AHP,
Specific NFRs:
Timed Petri nets (performance)
Task models (usability)
Probabilistic MTTF (reliability)

Quality tradeoffs:
QFD, win-win, AHP,
Specific NFRs:
Timed Petri nets (performance)
Task models (usability)
Probabilistic MTTF (reliability)

6

University of Toronto Department of Computer Science

© Easterbrook 2004 11

the Unified Modelling Language (UML)
Ü Third generation OO method

Ä Booch, Rumbaugh & Jacobson are principal authors
Ø Still evolving
Ø Attempt to standardize the proliferation of OO variants

Ä Is purely a notation
Ø No modelling method associated with it!
Ø Was intended as a design notation (some features unsuitable for RE)

ÄHas become an industry standard
Ø But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

Ü Has a standardized meta-model
Ä Use case diagrams
Ä Class diagrams
ÄMessage sequence charts
Ä Activity diagrams
Ä State Diagrams
ÄModule Diagrams
Ä Platform diagrams

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Meta-Modelling
Ü Can compare modelling schema using meta-models:

ÄWhat phenomena does each scheme capture?
ÄWhat guidance is there for how to elaborate the models?
ÄWhat analysis can be performed on the models?

Ü Example meta-model:

Facts

EventsActivities

modify record

trigger
State changes in the
application domain

Actions inducing change
of facts in the application domain

Propositions
about the application domain

7

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Modelling principles
Ü Facilitate Modification and Reuse

Ä Experienced analysts reuse their past experience
Ø they reuse components (of the models they have built in the past)
Ø they reuse structure (of the models they have built in the past)

Ä Smart analysts plan for the future
Ø they create components in their models that might be reusable
Ø they structure their models to make them easy to modify

Ü Helpful ideas:
Ä Abstraction

Ø strip away detail to concentrate on the important things
Ä Decomposition (Partitioning)

Ø Partition a problem into independent pieces, to study separately
Ä Viewpoints (Projection)

Ø Separate different concerns (views) and describe them separately
ÄModularization

Ø Choose structures that are stable over time, to localize change
Ä Patterns

Ø Structure of a model that is known to occur in many different applications

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Modelling Principle 1: Partitioning
Ü Partitioning

Ä captures aggregation/part-of relationship

Ü Example:
Ä goal is to develop a spacecraft
Ä partition the problem into parts:

Ø guidance and navigation;
Ø data handling;
Ø command and control;
Ø environmental control;
Ø instrumentation;
Ø etc

ÄNote: this is not a design, it is a problem decomposition
Ø actual design might have any number of components, with no relation to these

sub-problems
ÄHowever, the choice of problem decomposition will probably be reflected in

the design

8

University of Toronto Department of Computer Science

© Easterbrook 2004 15Source: Adapted from Davis, 1990, p48 and Loucopoulos & Karakostas, 1995, p78

based on symptoms:
Ä no response from device;
Ä incorrect response;
Ä self-test failure;

Ä etc...

based on location:
Ä instrumentation fault,
Ä communication fault,
Ä processor fault,

Ä etc

Modelling Principle 2: Abstraction
Ü Abstraction

Ä A way of finding similarities between concepts by ignoring some details
Ä Focuses on the general/specific relationship between phenomena

Ø Classification groups entities with a similar role as members of a single class
Ø Generalization expresses similarities between different classes in an ‘is_a’

association

Ü Example:
Ä requirement is to handle faults on the spacecraft
Ämight group different faults into fault classes

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Modelling Principle 3: Projection
Ü Projection:

Ä separates aspects of the model into multiple viewpoints
Ø similar to projections used by architects for buildings

Ü Example:
ÄNeed to model the requirements for a spacecraft
ÄModel separately:

Ø safety
Ø commandability
Ø fault tolerance
Ø timing and sequencing
Ø Etc…

Ü Note:
Ä Projection and Partitioning are similar:

Ø Partitioning defines a ‘part of’ relationship
Ø Projection defines a ‘view of’ relationship

Ä Partitioning assumes a the parts are relatively independent

Source: Adapted from Davis, 1990, p48-51

9

University of Toronto Department of Computer Science

© Easterbrook 2004 17

A brief UML example

:patient
Name
Date of Birth
physician
history

:in-patient
Room
Bed
Treatments
food prefs

:out-patient
Last visit
next visit
prescriptions

:patient
Name
Date of Birth
physician
history

:heart
Natural/artif.
Orig/implant
normal bpm

:eyes
Natural/artif.
Vision
colour

:kidney
Natural/artif.
Orig/implant
number

Source: Adapted from Davis, 1990, p67-68

1

0..1

0..21..2

0..1 0..1

Generalization
(an abstraction hierarchy)

Aggregation
(a partitioning hierarchy)

University of Toronto Department of Computer Science

© Easterbrook 2004 18

What is this a model of?

10

University of Toronto Department of Computer Science

© Easterbrook 2004 19

Summary
Ü Modelling plays a central role in RE

Ä Allows us to study a problem systematically
Ä Allows us to test our understanding

Ü Many choices for modelling notation
Ä In this course, we’ll use (and adapt) various UML notations

Ü All models are inaccurate (to some extent)
Ä Use successive approximation
Ä …but know when to stop perfecting the model
Ä Every model is created for a purpose
Ä The purpose is not usually expressed in the model
Ä …So every model needs an explanation

University of Toronto Department of Computer Science

© Easterbrook 2004 20

Lecture 6, Part 2:
Modelling Enterprises

Ü Modeling business processes
ÄWhy business processes?
ÄModelling concurrency and synchronization in business activities
Ä UML Activity Diagrams

Ü Modelling organisational intent
Ä i* modelling language
ÄModelling agents and the strategic dependencies between them
Ä Explaining these dependencies in terms of agents’ goals

11

University of Toronto Department of Computer Science

© Easterbrook 2004 21

Business Processes
Ü Business Process Automation

Ä Leave existing business processes as they are
Ø Look for opportunities to automate parts of the process

Ä Can make an organisation more efficient; has least impact on the business

Ü Business Process Improvement
ÄMake moderate changes to the way the organisation operates
Ä E.g. improve efficiency and/or effectiveness of existing process

Ø Techniques: Duration analysis; activity-based costing; benchmarking

Ü Business Process Reengineering
Ä Fundamental change to the way the organisation operates
Ä Techniques:

Ø Outcome analysis - focus on the real outcome from the customer’s perspective
Ø Technology analysis - look for opportunities to expoit new technology
Ø Activity elimination - consider each activity in turn as a candidate for elimination

University of Toronto Department of Computer Science

© Easterbrook 2004 22

Modelling Business Processes
Ü Business processes involve:

ÄMultiple actors (people, business units,…)
Ä Concurrent activities
Ä Explicit synchronization points

Ø E.g. some task cannot start until several other concurrent tasks are complete
Ä End-to-end flow of activities

Ü Choice of modelling language:
Ä UML Activity diagrams

Ø …based on flowcharts and petri nets
Ø Not really object oriented (poor fit with the rest of UML)

Ä Business Process Modelling Notation (BPMN)
Ø New (emerging) standard, loosely based on pi calculus

12

University of Toronto Department of Computer Science

© Easterbrook 2004 23

Refresher: Petri Nets

Before:Before: After:After:

Ü Petri net syntax:
Ä Places and transitions
Ä Tokens (possibly coloured)

University of Toronto Department of Computer Science

© Easterbrook 2004 24

Example

13

University of Toronto Department of Computer Science

© Easterbrook 2004 25

Example Activity Diagram
Receive
Order

Reorder
Item

Dispatch
Order

Check
Line Item

Assign to
Order

Authorize
Payment

Cancel
Order

[for each line
item on order]*

[in stock]

[need to
reorder]

[succeeded]

[failed]

University of Toronto Department of Computer Science

© Easterbrook 2004 26

Activity Diagram with Swimlanes

Receive
Order

Reorder
Item

Dispatch
Order

Check
Line
Item

Assign to
Order

[for each line
item on order]

*

[in stock]

[need to
reorder]

[stock assigned to
all line items and
payment authorized]

Authorize
Payment

Cancel
Order

[succeeded]

[failed]

Receive
Supply

Choose
Outstanding
Order Items

Assign Goods
to Order

[for each chosen
order item]

*

[all outstanding
order items filled]

Add Remainder
to Stock

Order
Processing

Finance Stock
Manager

14

University of Toronto Department of Computer Science

© Easterbrook 2004 27

i*
Ü Background

Ä Developed in the early 90’s
Ø provides a structure for asking ‘why’ questions in RE
Ø models the organisational context for information systems
Ø based on the notion of an “intentional actor”

Ä Two parts to the model
Ø Strategic dependency model - models relationships between the actors
Ø Strategic rationale model - models concerns and interests of the actors

Ü Approach
Ä SD model shows dependencies between actors:

Ø goal/softgoal dependency - an actor depends on another actor to attain a goal
Ø resource dependency - an actor needs a resource from another actor
Ø task dependency - an actor needs another actor to carry out a task

Ä SR model shows interactions between goals within each actor
Ø Shows task decompositions
Ø Shows means-ends links between tasks and goals

University of Toronto Department of Computer Science

© Easterbrook 2004 28

E.g. Strategic Dependency Model

This diagram ©2001, Eric Yu

15

University of Toronto Department of Computer Science

© Easterbrook 2004 29

E.g. Strategic Rationale Model

This diagram ©2001, Eric Yu

University of Toronto Department of Computer Science

© Easterbrook 2004 30

Summary
Ü Need to understand business processes

Ä Existing business process
Ø to understand the problem

Ä Potential changes to the business process
Ø To investigate alternative solutions

Ü Need to understand organisational interdependencies
ÄHow people depend on one another to achieve their goals
ÄHow goals relate to tasks

