Lecture 4, Part 1: the Feasibility Study

What is a feasibility study?
- What to study and conclude?

Types of feasibility
- Technical
- Economic
- Schedule
- Operational

Quantifying benefits and costs
- Payback analysis
- Net Present Value Analysis
- Return on Investment Analysis

Comparing alternatives

Why a feasibility study?

Objectives of a feasibility study:
- To find out if a system development project can be done:
 - ...is it possible?
 - ...is it justified?
- To suggest possible alternative solutions.
- To provide management with enough information to know:
 - Whether the project can be done
 - Whether the final product will benefit its intended users
 - What the alternatives are (so that a selection can be made in subsequent phases)
 - Whether there is a preferred alternative

A feasibility study is a management-oriented activity
- After a feasibility study, management makes a "go/no-go" decision.
- Need to examine the problem in the context of broader business strategy
Content of a feasibility study

Things to be studied in the feasibility study:

- The present organizational system
 - Stakeholders, users, policies, functions, objectives,...
- Problems with the present system
 - Inconsistencies, inadequacies in functionality, performance,...
- Goals and other requirements for the new system
 - Which problem(s) need to be solved?
 - What would the stakeholders like to achieve?
- Constraints
 - Including nonfunctional requirements on the system (preliminary pass)
- Possible alternatives
 - "Sticking with the current system" is always an alternative
 - Different business processes for solving the problems
 - Different levels/types of computerization for the solutions
- Advantages and disadvantages of the alternatives

Things to conclude:

- Feasibility of the project
- The preferred alternative.

Exploring Feasibility

The "PIECES" framework

- Useful for identifying operational problems to be solved, and their urgency
- Performance
 - Is current throughput and response time adequate?
- Information
 - Do end users and managers get timely, pertinent, accurate and usefully formatted information?
- Economy
 - Are services provided by the current system cost-effective?
 - Could there be a reduction in costs and/or an increase in benefits?
- Control
 - Are there effective controls to protect against fraud and to guarantee information accuracy and security?
- Efficiency
 - Does current system make good use of resources: people, time, flow of forms,...?
- Services
 - Are current services reliable? Are they flexible and expandable?

See the course website for a more specific list of PIECES questions
Four Types of feasibility

- Technical feasibility
 - Is the project possible with current technology?
 - How much technical risk is there?
 - Does the technology exist at all?
 - Is it available locally?
 - Can it be obtained?
 - Will it be compatible with other systems?

- Economic feasibility
 - Is the project possible, given resource constraints?
 - What benefits will result from the system?
 - Both tangible and intangible benefits
 - Quantify them!
 - What are the development and operational costs?
 - Are the benefits worth the costs?

- Schedule feasibility
 - Is it possible to build a solution in time to be useful?
 - Any constraints on the schedule?
 - Can these constraints be met?

- Operational feasibility
 - Urgency of the problem and the acceptability of any solution:
 - If the system is developed, will it be used?
 - Human and social issues:
 - Internal issues:
 - Available of human resources?
 - Potential labour objections?
 - Manager resistance?
 - Organizational conflicts and policies?
 - External issues:
 - Social acceptability?
 - Legal aspects and government regulations?

Technical Feasibility

- Is the proposed technology or solution practical?
 - Do we currently possess the necessary technology?
 - Do we possess the necessary technical expertise, and is the schedule reasonable?
 - Is relevant technology mature enough to be easily applied to our problem?

- What kinds of technology will we need?
 - Some organizations like to use state-of-the-art technology
 - ...but most prefer to use mature and proven technology.
 - A mature technology has a larger customer base for obtaining advice concerning problems and improvements.

- Is the required technology available "in house"?
 - If the technology is available:
 - ...does it have the capacity to handle the solution?
 - If the technology is not available:
 - ...can it be acquired?
Economic Feasibility

Can the bottom line be quantified yet?
- Very early in the project...
 - a judgement of whether solving the problem is worthwhile.
- Once specific requirements and solutions have been identified...
 - the costs and benefits of each alternative can be calculated

Cost-benefit analysis
- Purpose - answer questions such as:
 - Is the project justified (i.e. will benefits outweigh costs)?
 - Can the project be done, within given cost constraints?
 - What is the minimal cost to attain a certain system?
 - Which alternative offers the best return on investment?
- Examples of things to consider:
 - Hardware/software selection
 - How to convince management to develop the new system
 - Selection among alternative financing arrangements (rent/lease/purchase)
- Difficulties
 - benefits and costs can both be intangible, hidden and/or hard to estimate
 - ranking multi-criteria alternatives

Benefits and Costs

Tangible Benefits
- Readily quantified as $ values
- Examples:
 - increased sales
 - cost/error reductions
 - increased throughput/efficiency
 - increased margin on sales
 - more effective use of staff time

Intangible benefits
- Difficult to quantify
 - But maybe more important!
 - business analysts help estimate $ values
- Examples:
 - increased flexibility of operation
 - higher quality products/services
 - better customer relations
 - improved staff morale

How will the benefits accrue?
- When - over what timescale?
- Where in the organization?

Development costs (OTO)
- Development and purchasing costs:
 - Cost of development team
 - Consultant fees
 - software used (buy or build)?
 - hardware (what to buy, buy/lease)?
 - facilities (site, communications, power,...)
- Installation and conversion costs:
 - installing the system,
 - training personnel,
 - file conversion, ...

Operational costs (on-going)
- System Maintenance:
 - hardware (repairs, lease, supplies,...),
 - software (licenses and contracts),
 - facilities
- Personnel:
 - For operation (data entry, backups,...)
 - For support (user support, hardware and software maintenance, supplies,...)
 - On-going training costs
Example: costs for small Client-Server project

Personnel:

<table>
<thead>
<tr>
<th>Role</th>
<th>Hours</th>
<th>Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Analysts</td>
<td>400</td>
<td>$35.00/hr</td>
<td>$28,000</td>
</tr>
<tr>
<td>Programmers/Analysts</td>
<td>150</td>
<td>$25.00/hr</td>
<td>$3,750</td>
</tr>
<tr>
<td>GUI Designer</td>
<td>350</td>
<td>$35.00/hr</td>
<td>$7,000</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>200</td>
<td>$45.00/hr</td>
<td>$9,000</td>
</tr>
<tr>
<td>Architect</td>
<td>100</td>
<td>$45.00/hr</td>
<td>$4,500</td>
</tr>
<tr>
<td>DBMS Specialist</td>
<td>15</td>
<td>$40.00/hr</td>
<td>$600</td>
</tr>
<tr>
<td>System Librarian</td>
<td>250</td>
<td>$10.00/hr</td>
<td>$2,500</td>
</tr>
</tbody>
</table>

Expenses:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smalltalk training registration</td>
<td>$14,000</td>
</tr>
</tbody>
</table>

New Hardware & Software:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Server (Pentium Pro-class)</td>
<td>$18,700</td>
</tr>
<tr>
<td>Server Software (operating system, misc.)</td>
<td>$1,500</td>
</tr>
<tr>
<td>DBMS server software</td>
<td>$7,500</td>
</tr>
<tr>
<td>DBMS Client software ($950.00 per client)</td>
<td>$6,650</td>
</tr>
</tbody>
</table>

Total Development Costs: $118,200

PROJECTED ANNUAL OPERATING COSTS

Personnel:

<table>
<thead>
<tr>
<th>Role</th>
<th>Hours</th>
<th>Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmer/Analysts</td>
<td>125</td>
<td>$25.00/hr</td>
<td>$3,125</td>
</tr>
<tr>
<td>System Librarian</td>
<td>20</td>
<td>$10.00/hr</td>
<td>$200</td>
</tr>
</tbody>
</table>

Expenses:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Agreement for Pentium Pro Server</td>
<td>$995</td>
</tr>
<tr>
<td>Maintenance Agreement for Server DBMS software</td>
<td>$255</td>
</tr>
<tr>
<td>Preprinted forms (15,000/year @ .22/form)</td>
<td>$3,300</td>
</tr>
</tbody>
</table>

Total Projected Annual Costs: $11,270

Analyzing Costs vs. Benefits

☞ Identify costs and benefits
 ✪ Tangible and intangible, one-time and recurring
 ✪ Assign values to costs and benefits

☞ Determine Cash Flow
 ✪ Project costs and benefits over time, e.g. 3-5 years
 ✪ Calculate Net Present Value for all future costs/benefits
 ➢ determines future costs/benefits of the project in terms of today’s dollar values
 ➢ A dollar earned today is worth more than a potential dollar earned next year

☞ Do cost/benefit analysis
 ✪ Calculate Return on Investment:
 ➢ Allows comparison of lifetime profitability of alternative solutions.
 \[
 \text{ROI} = \frac{\text{Lifetime benefits} - \text{Lifetime costs}}{\text{Lifetime costs}}
 \]
 ✪ Calculate Break-Even point:
 ➢ how long will it take (in years) to pay back the accrued costs:
 \[
 \text{Accrued Cost (initial + incremental)} < \text{Accrued Benefit}
 \]
Calculating Present Value

A dollar today is worth more than a dollar tomorrow...
Your analysis should be normalized to "current year" dollar values.

The discount rate measures opportunity cost:
- Money invested in this project means money not available for other things
- Benefits expected in future years are more prone to risk
This number is company- and industry-specific.
- "what is the average annual return for investments in this industry?"

Present Value:
The "current year" dollar value for costs/benefits n years into the future
- for a given discount rate i

\[
\text{Present Value}(n) = \frac{1}{(1 + i)^n}
\]
E.g. if the discount rate is 12%, then
- \(\text{Present Value}(1) = \frac{1}{(1 + 0.12)} = 0.893\)
- \(\text{Present Value}(2) = \frac{1}{(1 + 0.12)^2} = 0.797\)

Net Present Value

Measures the total value of the investment...
with all figures adjusted to present dollar values
\[
\text{NPV} = \text{Cumulative PV of all benefits} - \text{Cumulative PV of all costs}
\]

<table>
<thead>
<tr>
<th>Cash Flow</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev. Costs</td>
<td>($100,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oper.Costs</td>
<td>($4,000)</td>
<td>($4,500)</td>
<td>($5,000)</td>
<td>($5,500)</td>
<td></td>
</tr>
<tr>
<td>Present Value</td>
<td>1</td>
<td>0.893</td>
<td>0.797</td>
<td>0.712</td>
<td>0.636</td>
</tr>
<tr>
<td>Time-adj Costs</td>
<td>($100,000)</td>
<td>($3,572)</td>
<td>($3,587)</td>
<td>($3,560)</td>
<td>($3,816)</td>
</tr>
<tr>
<td>Cumulative Costs</td>
<td>($100,000)</td>
<td>($103,572)</td>
<td>($107,159)</td>
<td>($110,719)</td>
<td>($114,135)</td>
</tr>
<tr>
<td>Benefits</td>
<td>0</td>
<td>$25,000</td>
<td>$30,000</td>
<td>$35,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>T-adj Benefits</td>
<td>0</td>
<td>$22,325</td>
<td>$23,510</td>
<td>$24,920</td>
<td>$31,800</td>
</tr>
<tr>
<td>Cumulative Benefits</td>
<td>0</td>
<td>$22,325</td>
<td>$46,235</td>
<td>$71,155</td>
<td>$102,955</td>
</tr>
<tr>
<td>Net Costs-Benefits</td>
<td>($100,000)</td>
<td>($81,243)</td>
<td>($60,924)</td>
<td>($39,564)</td>
<td>($11,580)</td>
</tr>
</tbody>
</table>

Assuming subsequent years are like year 4...
- the net present value of this investment in the project will be:
- after 5 years, $13,652
- after 6 years, $36,168
Payback Analysis for Client-Server System Alternative

(Numbers rounded to nearest $)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cash flow description</td>
<td>Year 9</td>
<td>Year 1</td>
<td>Year 2</td>
<td>Year 3</td>
<td>Year 4</td>
<td>Year 5</td>
<td>Year 6</td>
</tr>
<tr>
<td>2</td>
<td>Development cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,900,000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$10,000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>6</td>
<td>Time-adjusted costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,900,000</td>
</tr>
<tr>
<td>8</td>
<td>Cumulative time-adjusted costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,900,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benefits derived from operation of new</td>
<td>$120,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$20,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Time-adjusted benefits</td>
<td>$180,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$20,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cumulative time-adjusted benefits</td>
<td>$300,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$20,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cumulative lifetime time-adjusted costs</td>
<td>$150,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>$1,900,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computing the Payback Period

- **Can compute the break-even point:**
 - When does lifetime benefits overtake lifetime costs?
 - Determine the fraction of a year when payback actually occurs:
 - beginningYear amount
 - endYear amount + beginningYear amount
 - For our last example, $51,611 / (70,501 + 51,611) = 0.42
 - Therefore, the payback period is 3.42 years
Return on Investment (ROI) analysis

- For comparing overall profitability
 - Which alternative is the best investment?
 - ROI measures the ratio of the value of an investment to its cost.

- ROI is calculated as follows:
 \[\text{ROI} = \frac{\text{Estimated lifetime benefits} - \text{Estimated lifetime costs}}{\text{Estimated lifetime costs}} \]
 or:
 \[\text{ROI} = \frac{\text{Net Present value}}{\text{Estimated lifetime costs}} \]

 - For our example
 \[\text{ROI} = \frac{(795,440 - 488,692)}{488,692} = 62.76\% \]
 \[\text{or:} \quad \text{ROI} = \frac{306,748}{488,692} = 62.76\% \]

- Solution with the highest ROI is the best alternative
 - But need to know payback period too to get the full picture
 - E.g. A lower ROI with earlier payback may be preferable in some circumstances

Schedule Feasibility

- How long will it take to get the technical expertise?
 - We may have the technology, but that doesn’t mean we have the skills required to properly apply that technology.
 - May need to hire new people
 - Or re-train existing systems staff
 - Whether hiring or training, it will impact the schedule.

- Assess the schedule risk:
 - Given our technical expertise, are the project deadlines reasonable?
 - If there are specific deadlines, are they mandatory or desirable?
 - If the deadlines are not mandatory, the analyst can propose several alternative schedules.

- What are the real constraints on project deadlines?
 - If the project overruns, what are the consequences?
 - Deliver a properly functioning information system two months late...
 - …or deliver an error-prone, useless information system on time?
 - Missed schedules are bad, but inadequate systems are worse!
Operational Feasibility

- How do end-users and managers feel about...
 - the problem you identified?
 - the alternative solutions you are exploring?

- You must evaluate:
 - Not just whether a system can work...
 - but also whether a system will work.

- Any solution might meet with resistance:
 - Does management support the project?
 - How do the end users feel about their role in the new system?
 - Which users or managers may resist (or not use) the system?
 - People tend to resist change.
 - Can this problem be overcome? If so, how?
 - How will the working environment of the end users change?
 - Can or will end users and management adapt to the change?

Feasibility Study Contents

1. Purpose & scope of the study
 - Objectives (of the study)
 - who commissioned it & who did it,
 - sources of information,
 - process used for the study,
 - how long did it take,...

2. Description of present situation
 - organizational setting, current system(s).
 - Related factors and constraints.

3. Problems and requirements
 - What's wrong with the present situation?
 - What changes are needed?

4. Objectives of the new system.
 - Goals and relationships between them

5. Possible alternatives
 - including 'do nothing'.

6. Criteria for comparison
 - definition of the criteria

7. Analysis of alternatives
 - description of each alternative
 - evaluation with respect to criteria
 - cost/benefit analysis and special implications.

8. Recommendations
 - what is recommended and implications
 - what to do next;
 - E.g. may recommend an interim solution and a permanent solution

9. Appendices
 - to include any supporting material.
Comparing Alternatives

How do we compare alternatives?
- When there are multiple selection criteria?
- When none of the alternatives is superior across the board?

Use a Feasibility Analysis Matrix!
- The columns correspond to the candidate solutions;
- The rows correspond to the feasibility criteria;
- The cells contain the feasibility assessment notes for each candidate;
- Each row can be assigned a rank or score for each criterion
 - e.g., for operational feasibility, candidates can be ranked 1, 2, 3, etc.
 - A final ranking or score is recorded in the last row.

Other evaluation criteria to include in the matrix
- quality of output
- ease of use
- vendor support
- cost of maintenance
- load on system

Example matrix

<table>
<thead>
<tr>
<th>Description</th>
<th>Candidate 1 Name</th>
<th>Candidate 2 Name</th>
<th>Candidate 3 Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranking</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feasibility Criteria

<table>
<thead>
<tr>
<th>Operational Feasibility</th>
<th>Wt.</th>
<th>Candidate 1</th>
<th>Candidate 2</th>
<th>Candidate 3</th>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>30%</td>
<td>Only supports Member Services requirements and current business processes would have to be modified to take advantage of software functionality.</td>
<td>Fully supports user required functionality.</td>
<td>Same as candidate 2.</td>
<td></td>
</tr>
<tr>
<td>Political</td>
<td>30%</td>
<td>Score: 60</td>
<td>Score: 100</td>
<td>Score: 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Feasibility</th>
<th>Wt.</th>
<th>Candidate 1</th>
<th>Candidate 2</th>
<th>Candidate 3</th>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>30%</td>
<td>Current production release of Platinum Plus package is version 1.0 and has only been on the market for 6 weeks. Maturity of product is a risk and company charges an additional monthly fee for technical support.</td>
<td>Although current technical staff has only Powerbuilder experience, the senior analysis who saw the MS Visual Basic demonstration and presentation, has agreed the transition will be simple and finding experienced VB programmers will be easier than finding Powerbuilder programmers and at a much cheaper cost.</td>
<td>MS Visual Basic 5.0 is a mature technology based on version number.</td>
<td></td>
</tr>
</tbody>
</table>

Economic Feasibility

<table>
<thead>
<tr>
<th>Feasibility Criteria</th>
<th>Wt.</th>
<th>Candidate 1</th>
<th>Candidate 2</th>
<th>Candidate 3</th>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost to develop:</td>
<td>30%</td>
<td>Approximately $350,000.</td>
<td>Approximately $418,040.</td>
<td>Approximately $400,000.</td>
<td></td>
</tr>
<tr>
<td>Payback period (discounted):</td>
<td>4.5 years.</td>
<td>Approximately 3.5 years.</td>
<td>Approximately 3.3 years.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net present value:</td>
<td>30%</td>
<td>Approximately $210,000.</td>
<td>Approximately $306,748.</td>
<td>Approximately $325,500.</td>
<td></td>
</tr>
</tbody>
</table>

Schedule Feasibility

<table>
<thead>
<tr>
<th>Feasibility Criteria</th>
<th>Wt.</th>
<th>Candidate 1</th>
<th>Candidate 2</th>
<th>Candidate 3</th>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>An assessment of how long the solution will take to design and implement.</td>
<td>10%</td>
<td>Less than 3 months.</td>
<td>9-12 months</td>
<td>9 months</td>
<td></td>
</tr>
</tbody>
</table>

Ranking

<table>
<thead>
<tr>
<th></th>
<th>Wt.</th>
<th>Candidate 1</th>
<th>Candidate 2</th>
<th>Candidate 3</th>
<th>Candidate E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility Criteria</td>
<td>100%</td>
<td>66.5</td>
<td>92</td>
<td>83.5</td>
<td></td>
</tr>
</tbody>
</table>
Lecture 4, Part 2:
Stakeholder Goals

- **Boundaries**
 - Scoping the problem

- **Stakeholders**
 - Identifying the problem owners

- **Goals**
 - Identifying the success criteria

- **Scenarios**
 - Using concrete examples to understand the problem

Where do we start?

- **Identify the problem**
 - what is the objective of the project?
 - the “vision” of those who are pushing for it?
 - e.g., “Meeting scheduling is too costly right now”

- **Scope the problem**
 - given the vision, how much do we tackle?
 - e.g. “Build a system that schedules meetings”, …or…
 - e.g. “Build a system that maintains people’s calendars” …or…

- **Choose a business process?**
 - given the problem, what is the appropriate business process for solving it?
 - e.g. “Anyone who wants to schedule a meeting goes to the secretary, gives details and the secretary handles the rest” …or…
 - e.g. “Anyone can submit a meeting request, participants are informed and a negotiation settles meeting details” …or…

- **Choose among alternatives?**
 - Given a business process, what parts should be automated, and how?
 - e.g. “Computer takes in scheduling request details, outputs a solution” …or…
 - e.g. “Solution arrived at interactively by secretary and computer” …or…
Requirements Elicitation

Starting point

- Some notion that there is a "problem" that needs solving
 - e.g. dissatisfaction with the current state of affairs
 - e.g. a new business opportunity
 - e.g. a potential saving of cost, time, resource usage, etc.

Collect enough information to:

- identify the "problem"/"opportunity"
 - Which problem needs to be solved? (identify problem Boundaries)
 - Where is the problem? (understand the Context/Problem Domain)
 - Whose problem is it? (identify Stakeholders)
 - Why does it need solving? (identify the stakeholders' Goals)
 - How does the problem manifest itself? (collect some Scenarios)
 - When does it need solving? (identify Development Constraints)
 - What might prevent us solving it? (identify Feasibility and Risk)

- become an expert in the problem domain
 - Learn how to find your way round a new problem area quickly
 - Use your (initial) ignorance as an excuse to ask questions
 - Recognise the domain expertise of the people you talk to

W6H
The journalist's technique:
- What?
- Where?
- Who?
- Why?
- When?
- How?
- (Which?)

Identifying the Problem

Vague problem stated by the customer:

- E.g. university textbook store:
 - Manager wants to computerize the book order forms filled out by instructors;

- E.g. A large insurance company:
 - Claims manager wants to cut down the average time it takes to process an insurance claim from 2 months to 2 weeks

- E.g. A telecommunications company:
 - CIO wants to integrate the billing system with customer record systems of several affiliates, so there is only one billing system...

- E.g. Large Government Aerospace Agency:
 - The president wants to send a manned mission to Mars by the the year 2020

Often you only see symptoms rather than causes:

- E.g. "Ontario patients needing X-ray scans have to wait for months"
 - The long wait is the symptom, not the problem. The problem may be:
 - Shortage of X-ray machines;
 - Shortage of trained staff;
 - Shortage of doctors to process the data
 - Inefficient scheduling procedures
Stakeholders

- **Stakeholder analysis:** Identify all the people who must be consulted during information acquisition.

- **Example stakeholders**
 - **Users**
 - concerned with the features and functionality of the new system
 - **Designers**
 - want to build a perfect system, or reuse existing code
 - **Systems analysts**
 - want to “get the requirements right”
 - **Training and user support staff**
 - want to make sure the new system is usable and manageable
 - **Business analysts**
 - want to make sure “we are doing better than the competition”
 - **Technical authors**
 - will prepare user manuals and other documentation for the new system
 - **The project manager**
 - wants to complete the project on time, within budget, with all objectives met.
 - **“The customer”**
 - Wants to get best value for money invested!

Finding stakeholders: The Org Chart

- **Organization charts show**
 - Areas of responsibility (flows upwards)
 - Lines of authority (delegated downwards)

- A useful tool for figuring out where the stakeholders are
Finding Stakeholders: Levels of authority

- **Top management**
 - Establishes goals
 - Does long-range planning
 - Determines new market & product developments
 - Decides on mergers & acquisitions.

- **Middle management**
 - Sets objectives
 - Allocates & controls resources
 - Does planning
 - Measures performance

- **Lower management**
 - Supervises day-to-day operations
 - Takes corrective action when necessary.

- **Operational level**
 - Performs day-to-day operations

Identifying Stakeholders' Goals

- **Approach**
 - Focus on why systems are constructed
 - Express the 'why' as a set of stakeholder goals
 - Use goal refinement to arrive at specific requirements
 - Goal analysis
 - Document, organize and classify goals
 - Goal evolution
 - Refine, elaborate, and operationalize goals
 - Goal hierarchies show refinements and alternatives

- **Advantages**
 - Reasonably intuitive
 - Explicit declaration of goals provides sound basis for conflict resolution

- **Disadvantages**
 - Captures a static picture - what if goals change over time?
 - Can regress forever up (or down) the goal hierarchy

Source: Adapted from Anton, 1996.
Goal Modeling

- **(Hard)** Goals:
 - Describe functions that must be carried out. E.g.
 - Satisfaction goals
 - Information goals

- **Softgoals**:
 - Cannot really be fully satisfied. E.g.
 - Accuracy
 - Performance
 - Security

- Also classified temporally:
 - Achieve/Cease goals:
 - Reach some desired state eventually
 - Maintain/Avoid goals:
 - Keep some property invariant
 - Optimize:
 - A criterion for selecting behaviours

- **Agents**:
 - Owners of goals
 - Choice of when to ascribe goals to agents:
 - Identify agents first, and then their goals
 - Identify goals first, and then allocate them to agents during operationalization

- **Modelling Tips**:
 - Multiple sources yield better goals
 - Associate stakeholders with each goal
 - reveals viewpoints and conflict
 - Use scenarios to explore how goals can be met
 - Explicit consideration of obstacles helps to elicit exceptions

Example Goal Elaboration

Or-decomposition

Crucial planning decision be made

Decision be made by email discussion

Decision be made face-to-face

Agenda be defined

Meeting be scheduled

Meeting be held

Minutes be circulated

Meeting be requested

Date and location set

Attendees know details

Changes be handled

Attended list obtained

AV & other needs defined

Attendees' preferences known

Facilities booked

Attendance confirmed

Participants notified
Goal Analysis

- **Goal Elaboration:**
 - "Why" questions explore higher goals (context)
 - "How" questions explore lower goals (operations)
 - "How else" questions explore alternatives

- **Relationships between goals:**
 - One goal helps achieve another (+)
 - One goal hurts achievement of another (-)
 - One goal makes another (++)
 - Achievement of one goal guarantees achievement of another
 - One goal breaks another (--)?
 - Achievement of one goal prevents achievement of another
 - Precedence ordering - must achieve goals in a particular order

- **Obstacle Analysis:**
 - Can this goal be obstructed, if so how?
 - What are the consequences of obstructing it?

Softgoals

- Some goals can never be fully satisfied
 - Treat these as softgoals
 - E.g. "system be easy to use"; "access be secure"
 - Also known as 'non-functional requirements'; 'quality requirements'
 - Will look for things that contribute to satisficing the softgoals
 - E.g. for a train system:
 - serve more passengers
 - minimize costs
 - improve safety
 - add new tracks
 - increase train speed
 - more frequent trains
 - minimize operation costs
 - minimize development costs
 - maintain safe distance
 - clearer signalling
 - reduce staffing
Softgoals as selection criteria

- **minimize costs**
- **serve more passengers**
- **improve safety**
- **maintain passenger comfort**
- **reduce staffing**
- **add new tracks**
- **increase train speed**
- **automate collision avoidance**
- **automate braking**
- **more frequent trains**
- **hire more operators**
- **buy new rolling stock**

Scenarios

- **Specific sequence of interaction between actor and system**
- **Tend to be short** (e.g. between 3 and 7 steps)
- **May be:**
 - positive (i.e. required behavior)
 - negative (i.e. an undesirable interaction)
- **May be indicative (describe current system) or optative (how it should be)**

Advantages

- **Very natural**: stakeholders tend to use them spontaneously
 - E.g. “Suppose I'm admitted to hospital - what happens during my admission?”
 - Typical answer: “You, or the person accompanying you would talk to the person at the admissions desk. You have to show your OHIP card and explain who referred you to the hospital. Then you…” (and so on)
- **Short scenarios very good for quickly illustrating specific interactions**

Disadvantages

- **Lack of structure:**
Example Scenario

Title: Successful meeting scheduled using messaging option
Participants: Alice (initiator, not attending); Bob, Carlo, Daphne (attendees)

<table>
<thead>
<tr>
<th>Action</th>
<th>Goals satisfied</th>
<th>Obstacles / Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice requests meeting, specifying participants, timeframe</td>
<td>Meeting requested; Attendee list obtained</td>
<td>What if selected timeframe is infeasible?</td>
</tr>
<tr>
<td>AS sends participant requests to Bob, Carlo and Daphne</td>
<td>?</td>
<td>Did we miss a goal?</td>
</tr>
<tr>
<td>Bob reads message</td>
<td>Participants informed</td>
<td>Can’t detect when messages are read; what happens if Bob reads the message but doesn’t reply?</td>
</tr>
<tr>
<td>Carlo reads message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne reads message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlo replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS schedules meeting</td>
<td>Room availability determined; room booked</td>
<td></td>
</tr>
<tr>
<td>AS notifies Alice, Bob, Carlo, Daphne of time and location</td>
<td>Meeting announced; Attendance Confirmed (?)</td>
<td>How do we know if they’ve all read the announcement? What if the schedule is no longer convenient for one of them?</td>
</tr>
</tbody>
</table>