
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 12, Part 1:
Software Evolution

Ü Basics of Software Evolution
Ä Laws of software evolution
Ä Requirements Growth
Ä Software Aging

Ü Basics of Change Management
Ä Baselines, Change Requests and Configuration Management

Ü Software Families - The product line approach
Ü Requirements Traceability

Ä Importance of traceability
Ä Traceability tools

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Program Types
Ü S-type Programs (“Specifiable”)

Ä problem can be stated formally and completely
Ä acceptance: Is the program correct according to its specification?
Ä This software does not evolve.

Ø A change to the specification defines a new problem, hence a new program

Ü P-type Programs (“Problem-solving”)
Ä imprecise statement of a real-world problem
Ä acceptance: Is the program an acceptable solution to the problem?
Ä This software is likely to evolve continuously

Ø because the solution is never perfect, and can be improved
Ø because the real-world changes and hence the problem changes

Ü E-type Programs (“Embedded”)
Ä A system that becomes part of the world that it models
Ä acceptance: depends entirely on opinion and judgement
Ä This software is inherently evolutionary

Ø changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 3

real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare

P-type

real world

PROGRAM

abstract
view of worldrequirements

specification

model

E-type

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to

change

change

change

S-type

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
Ü Continuing Change

Ä Any software that reflects some external reality undergoes continual change 
or becomes progressively less useful
Ø change continues until it is judged more cost effective to replace the system

Ü Increasing Complexity
Ä As software evolves, its complexity increases… 

Ø …unless steps are taken to control it.

Ü Fundamental Law of Program Evolution
Ä Software evolution is self-regulating

Ø …with statistically determinable trends and invariants

Ü Conservation of Organizational Stability
Ä During the active life of a software system, the work output of a 

development project is roughly constant (regardless of resources!)

Ü Conservation of Familiarity
Ä The amount of change in successive releases is roughly constant



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Requirements Growth
ÜDavis’s model:
ÄUser needs evolve continuously
ØImagine a graph showing growth 

of needs over time
ØMay not be linear or continuous 

(hence no scale shown)
ÄTraditional development always 
lags behind needs growth
Ø first release implements only 

part of the original requirements
Ø functional enhancement adds new 

functionality
Øeventually, further enhancement 

becomes too costly, and a 
replacement is planned

Ø the replacement also only 
implements part of its 
requirements,

Øand so on...
Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy 
req

uir
em

ent
s

fir
st 

rel
eas

e

enh
anc

em
ent

 ph
ase

fre
eze

 an
d r

epl
ace

rep
lac

em
ent

 de
live

red

enh
anc

em
ent

 ph
ase

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Evolutionary Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Incremental Development

Time

Fu
nc

ti
on

al
it
y

User needs

Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Software “maintenance”
Ü Maintenance philosophies

Ä “throw-it-over-the-wall” - someone else is responsible for maintenance
Ø investment in knowledge and experience is lost
Ø maintenance becomes a reverse engineering challenge

Ä “mission orientation” - development team make a long term commitment to 
maintaining/enhancing the software

Ü Basili’s maintenance process models:
ÄQuick-fix model

Ø changes made at the code level, as easily as possible
Ø rapidly degrades the structure of the software

Ä Iterative enhancement model
Ø Changes made based on an analysis of the existing system
Ø attempts to control complexity and maintain good design

Ä Full-reuse model
Ø Starts with requirements for the new system, reusing as much as possible
Ø Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Software Aging
Ü Causes of Software Aging

Ä Failure to update the software to meet changing needs
Ø Customers switch to a new product if benefits outweigh switching costs

Ä Changes to software tend to reduce its coherence

Ü Costs of Software Aging
Ä Owners of aging software find it hard to keep up with the marketplace
Ä Deterioration in space/time performance due to deteriorating structure
Ä Aging software gets more buggy

Ø Each “bug fix” introduces more errors than it fixes

Ü Ways of Increasing Longevity
Ä Design for change
Ä Document the software carefully
Ä Requirements and designs should be reviewed by those responsible for its 

maintenance
Ä Software Rejuvenation…

Source: Adapted from Parnas, 1994



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Managing Requirements Change
Ü Managers need to respond to requirements change

Ä Add new requirements during development
Ø But not succumbing to feature creep

ÄModify requirements during development
Ø Because development is a learning process

Ä Remove requirements during development
Ø requirements “scrub” for handling cost/schedule slippage

Ü Key techniques
Ä Change Management Process
Ä Release Planning
Ä Requirements Prioritization (previous lecture!)
Ä Requirements Traceability
Ä Architectural Stability (next week’s lecture)

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Change Management
Ü Configuration Management

Ä Each distinct product is a Configuration Item (CI)
Ä Each configuration item is placed under version control
Ä Control which version of each CI belongs in which build of the system

Ü Baselines
Ä A baseline is a stable version of a document or system

Ø Safe to share among the team
Ä Formal approval process for changes to be incorporated into the next 

baseline

Ü Change Management Process
Ä All proposed changes are submitted formally as change requests
Ä A review board reviews these periodically and decides which to accept

Ø Review board also considers interaction between change requests

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Towards Software Families
Ü Libraries of Reusable Components

Ä domain specific libraries (e.g. Math libraries)
Ä program development libraries (e.g. Java AWT, C libraries)

Ü Domain Engineering
Ä Divides software development into two parts:

Ø domain analysis - identifies generic reusable components for a problem domain
Ø application development - uses the domain components for specific applications.

Ü Software Families
ÄMany companies offer a range of related software systems

Ø Choose a stable architecture for the software family
Ø identify variations for different members of the family

Ä Represents a strategic business decision about what software to develop
Ä Vertical families

Ø e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
Ä Horizontal families

Ø similar systems used in related domains

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Requirements Traceability
Ü From IEEE-STD-830:

Ä Backward traceability
Ø i.e. to previous stages of development.
Ø the origin of each requirement should be clear 

Ä Forward traceability
Ø i.e., to all documents spawned by the SRS.
Ø Facilitation of referencing of each requirement in future documentation
Ø depends upon each requirement having a unique name or reference number.

Ü From DOD-STD-2167A:
Ä A requirements specification is traceable if:

Ø “(1) it contains or implements all applicable stipulations in predecessor document
Ø (2) a given term, acronym, or abbreviation means the same thing in all documents
Ø (3) a given item or concept is referred to by the same name in the documents
Ø (4) all material in the successor document has its basis in the predecessor 

document, that is, no untraceable material has been introduced
Ø (5) the two documents do not contradict one another”



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Importance of Traceability
Ü Verification and Validation

Ä assessing adequacy of test suite
Ä assessing conformance to 

requirements
Ä assessing completeness, consistency, 

impact analysis
Ä assessing over- and under-design
Ä investigating high level behavior 

impact on detailed specifications
Ä detecting requirements conflicts
Ä checking consistency of decision 

making across the lifecycle

Ü Maintenance
Ä Assessing change requests
Ä Tracing design rationale

Ü Document access
Ä ability to find information quickly in 

large documents

Ü Process visibility
Ä ability to see how the software was 

developed
Ä provides an audit trail

Ü Management
Ä change management
Ä risk management
Ä control of the development process 

Source: Adapted from Palmer, 1996, p365

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Traceability Difficulties
Ü Cost

Ä very little automated support
Ä full traceability is very expensive and time-consuming

Ü Delayed gratification
Ä the people defining traceability links are not the people who benefit from it

Ø development vs. V&V
Ä much of the benefit comes late in the lifecycle

Ø testing, integration, maintenance

Ü Size and diversity
Ä Huge range of different document types, tools, decisions, responsibilities,…
ÄNo common schema exists for classifying and cataloging these
Ä In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Current Practice
Ü Coverage:

Ä links from requirements forward to designs, code, test cases,
Ä links back from designs, code, test cases to requirements
Ä links between requirements at different levels

Ü Traceability process
Ä Assign each sentence or paragraph a unique id number
ÄManually identify linkages
Ä Use manual tables to record linkages in a document
Ä Use a traceability tool (database) for project wide traceability
Ä Tool then offers ability to

Ø follow links
Ø find missing links
Ø measure overall traceability

Source: Adapted from Palmer, 1996, p367-8

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Limitations of Current Tools
Ü Informational Problems

Ä Tools fail to track useful traceability information
Ø e.g cannot answer queries such as “who is responsible for this piece of 

information?”
Ä inadequate pre-requirements traceability 

Ø “where did this requirement come from?”

Ü Lack of agreement…
Ä …over the quantity and type of information to trace

Ü Informal Communication
Ä People attach great importance to personal contact and informal 

communication
Ø These always supplement what is recorded in a traceability database

Ä But then the traceability database only tells part of the story!
Ø Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100



5

University of Toronto Department of Computer Science

© Easterbrook 2004 17Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
Ü Involvement

ÄWho has been involved in the production of this requirement and how?

Ü Responsibility & Remit
ÄWho is responsible for this requirement?

Ø who is currently responsible for it?
Ø at what points in its life has this responsibility changed hands?

ÄWithin which group’s remit are decisions about this requirement?

Ü Change
Ä At what points in the life of this requirements has working arrangements of 

all involved been changed?

Ü Notification
ÄWho needs to be involved in, or informed of, any changes proposed to this 

requirement?

Ü Loss of knowledge
ÄWhat are the ramifications regarding the loss of project knowledge if a 

specific individual or group leaves?

University of Toronto Department of Computer Science

© Easterbrook 2004 18

Lecture 12, Part 2:
Moving into Design

Ü Analysis vs. Design
ÄWhy the distinction?

Ü Design Processes
Ä Logical vs. Physical Design
Ä System vs. Detailed Design

Ü Architectures
Ä System Architecture
Ä Software Architecture
Ä Architectural Patterns (next lecture)

Ü Useful Notation
Ä UML Packages and Dependencies

University of Toronto Department of Computer Science

© Easterbrook 2004 19

Refresher: Lifecycle models
Waterfall modelWaterfall model

reqts

architecture
(high level design)

code
(low level design)

integrate

unit test

maintain

perceived
need V modelV model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

analyse
and 

design

test
and 

integrate

time

L
ev

el
 o

f 
ab

st
ra

ct
io

n

design code test
integ-
rate O&Mreqts

design code test
integ-
rate O&Mreqts

design code test
integ-
ratereqts

version 1

version 2

version 3

lessons 
learnt

lessons 
learntEvolutionary 

development
(each version 

incorporates new 
requirements)

Spiral
model

Evaluate
alternatives
and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1prototype2prototype3prototype4

alt
er

na
tiv

es
4

alt
er

na
tiv

es
3

Al
te

rn
-

ati
ve

s 2

constraints 4

constraints 3

Constr -

aints 2altern

ative
s

constr

aints

risk analysis
4

risk analysis
3

riskanalysis
2

risk
analysis1
concept of
operation

so
ftw

are
req

uir
em

en
ts

validated

requirements so
ftw

are
de

sig
n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

unit

test
system

testacceptance

test

requirements,lifecycle plan
development plan

integration and test plan

implementation plan

University of Toronto Department of Computer Science

© Easterbrook 2004 20

Analysis vs. Design
Ü Analysis

Ä Asks “what is the problem?”
Ø what happens in the current system?
Ø what is required in the new system?

Ä Results in a detailed understanding of:
Ø Requirements
Ø Domain Properties

Ä Focuses on the way human activities are conducted

Ü Design
Ä Investigates “how to build a solution”

Ø How will the new system work?
Ø How can we solve the problem that the analysis identified?

Ä Results in a solution to the problem
Ø A working system that satisfies the requirements
Ø Hardware + Software + Peopleware

Ä Focuses on building technical solutions

Ü Separate activities, but not necessarily sequential



6

University of Toronto Department of Computer Science

© Easterbrook 2004 21

Refresher: different worlds

Application Domain Machine Domain

Analysis is all about
studying this world

Design is all about
building this world

But who builds the bridge?

University of Toronto Department of Computer Science

© Easterbrook 2004 22

Four design philosophies
Decomposition & Synthesis

ÄDrivers:
Ø Managing complexity
Ø Reuse

Ä Example:
Ø Design a car by designing 

separately the chassis, engine, 
drivetrain, etc. Use existing 
components where possible

Decomposition & Synthesis

ÄDrivers:
Ø Managing complexity
Ø Reuse

Ä Example:
Ø Design a car by designing 

separately the chassis, engine, 
drivetrain, etc. Use existing 
components where possible

Situated Design
Ä Drivers

Ø Errors in existing designs
Ø Evolutionary Change

Ä Example:
Ø Design a car by observing what’s 

wrong with existing cars as they 
are used, and identifying 
improvements

Situated Design
Ä Drivers

Ø Errors in existing designs
Ø Evolutionary Change

Ä Example:
Ø Design a car by observing what’s 

wrong with existing cars as they 
are used, and identifying 
improvements

Negotiation
Ä Drivers

Ø Stakeholder Conflicts
Ø Dialogue Process

Ä Example:
Ø Design a car by getting each

stakeholder to suggest (partial) 
designs, and them compare and 
discuss them  

Negotiation
Ä Drivers

Ø Stakeholder Conflicts
Ø Dialogue Process

Ä Example:
Ø Design a car by getting each

stakeholder to suggest (partial) 
designs, and them compare and 
discuss them  

Search
ÄDrivers

Ø Transformation
Ø Heuristic Evaluation

Ä Example:
Ø Design a car by transforming an 

initial rough design to get closer 
and closer to what is desired

Search
ÄDrivers

Ø Transformation
Ø Heuristic Evaluation

Ä Example:
Ø Design a car by transforming an 

initial rough design to get closer 
and closer to what is desired

University of Toronto Department of Computer Science

© Easterbrook 2004 23

Logical vs. Physical Design

Logical
Design

Physical
Design

Choose
Platform

Ü Logical Design concerns:
Ä Anything that is platform-independent:

Ø Interactions between objects
Ø Layouts of user interfaces
Ø Nature of commands/data passed between subsystems

Ä Logical designs are usually portable to different platforms

Ü Physical Design concerns:
Ä Anything that depends on the choice of platform:

Ø Distribution of objects/services over networked nodes
Ø Choice of programming language and development environment
Ø Use of specialized device drivers
Ø Choice of database and server technology
Ø Services provided by middleware

University of Toronto Department of Computer Science

© Easterbrook 2004 24

System Design vs. Detailed Design
Ü System Design

Ä Choose a System Architecture
Ø Networking infrastructure
Ø Major computing platforms
Ø Roles of each node (e.g. client-server; clients-broker-servers; peer-to-peer,…)

Ä Choose a Software Architecture
Ø (see next lecture for details)

Ä Identify the subsystems
Ä Identify the components and connectors between them

Ø Design for modularity to maximize testability and evolveability
Ø E.g. Aim for low coupling and high cohesion

Ü Detailed Design
Ä Decide on the formats for data storage

Ø E.g. design a data management layer
Ä Design the control functions for each component

Ø E.g. design an application logic layer
Ä Design the user interfaces

Ø E.g. design a presentation layer



7

University of Toronto Department of Computer Science

© Easterbrook 2004 25

Global System Architecture
Ü Choices:

Ä Allocates users and other external systems to each node
Ä Identify appropriate network topology and technologies
Ä Identify appropriate computing platform for each node

Ü Example:
Ä See next slide…

University of Toronto Department of Computer Science

© Easterbrook 2004 26

University of Toronto Department of Computer Science

© Easterbrook 2004 27

System Architecture Questions
Ü Key questions for choosing platforms:

ÄWhat hardware resources are needed?
Ø CPU, memory size, memory bandwidth, I/O, disk space, etc.

ÄWhat software/OS resources are needed?
Ø application availability, OS scalability

ÄWhat networking resources are needed?
Ø network bandwidth, latency, remote access.

ÄWhat human resources are needed?
Ø OS expertise, hardware expertise,
Ø system administration requirements, 
Ø user training/help desk requirements.

ÄWhat other needs are there?
Ø security, reliability, disaster recovery, uptime requirements.

Ü Key questions constraining the choice:
ÄWhat funding is available?
ÄWhat resources are already available?

Ø Existing hardware, software, networking
Ø Existing staff and their expertise
Ø Existing relationships with vendors, resellers, etc.

University of Toronto Department of Computer Science

© Easterbrook 2004 28

Data Management Questions
Ü How is data entry performed?

Ä E.g. Keyless Data entry 
Ø bar codes; Optical Character Recognition (OCR)

Ä E.g. Import from other systems
Ø Electronic Data Interchange (EDI), Data interchange languages,… 

Ü What kinds of data persistence is needed?
Ä Is the operating system’s basic file management sufficient?
Ä Is object persistence important?
Ä Can we isolate persistence mechanisms from the applications?

Ü Is a Database Management System (DBMS) needed?
Ä Is data accessed at a fine level of detail

Ø E.g. do users need a query language?
Ä Is sophisticated indexing required?
Ä Is there a need to move complex data across multiple platforms?

Ø Will a data interchange language suffice?
Ø E.g. HTML, SGML, XML…

Ä Is there a need to access the data from multiple platforms?



8

University of Toronto Department of Computer Science

© Easterbrook 2004 29

Software Architecture
Ü A software architecture defines:

Ä the components of the software system 
Ä how the components use each other’s functionality and data
Ä How control is managed between the components

Ü An example: client-server 
Ä Servers provide some kind of service; clients request and use services
Ä applications are located with clients

Ø E.g. running on PCs and workstations;
Ä data storage is treated as a server

Ø E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle 
Ø Consistency checking is located with the server

Ä Advantages:
Ø Breaks the system into manageable components
Ø Makes the control and data persistence mechanisms clearer

Ä Variants:
Ø Thick clients have their own services, thin ones get everything from servers

ÄNote: This is a SOFTWARE architecture
Ø Clients and server could be on the same machine or different machines…

University of Toronto Department of Computer Science

© Easterbrook 2004 30

Coupling
Given two units (e.g. methods, classes, modules, …), A and B:

Form Features Desirability

Data coupling A & B communicate by
simple data o nly

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Form Features Desirability

Data coupling A & B communicate by
simple data o nly

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

University of Toronto Department of Computer Science

© Easterbrook 2004 31

Cohesion
How well do the contents of an object (module, package,…) go together?

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

University of Toronto Department of Computer Science

© Easterbrook 2004 32

UML Packages
Ü We need to represent our architectures

Ä UML elements can be grouped together in packages
Ä Elements of a package may be:

Ø other packages (representing subsystems or modules);
Ø classes;
Ø models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

Ä Each element of a UML model is owned by a single package
Ä Packages need not correspond to elements of the analysis or the design

Ø they are a convenient way of grouping other elements together

Ü Criteria for decomposing a system into packages: 
Ä Ownership

Ø who is responsible for working on which diagrams
Ä Application

Ø each problem has its own obvious partitions;
Ä Clusters of classes with strong cohesion

Ø e.g., course, course description, instructor, student,…
Ä Or use an architectural pattern to help find a suitable decomposition



9

University of Toronto Department of Computer Science

© Easterbrook 2004 33

Package notation

Ü 2 alternatives for showing package containment:

University of Toronto Department of Computer Science

© Easterbrook 2004 34

Persons

Meetings

Constraints

dependency
(read as 

“depends on”)

Package Diagrams
Ü Dependencies:

Ä Similar to compilation dependencies
Ä Captures a high-level view of coupling 

between packages:
ØIf you change a class in one package, 
you may have to change something in 
packages that depend on it

Ü A good architecture minimizes 
dependencies
Ä Fewer dependencies means lower 

coupling
Ä Dependency cycles are especially 

undesirable

University of Toronto Department of Computer Science

© Easterbrook 2004 35

…Dependency Cycles
University of Toronto Department of Computer Science

© Easterbrook 2004 36

Application Logic Layer Package

Storage Layer Package

Presentation Layer Package

Architectural Patterns

E.g. 3 layer 
architecture:

Presentation
Layer

Presentation
Layer

Application
Logic Layer

Application
Logic Layer

Storage
Layer

Storage
Layer

Java AWT

Application
Windows

Control
Objects

Business
Objects

Object to
Relational

JDBC

Java SQL


