Lid University of Toronto Department of Computer Science

Lecture 12, Part 1:
Software Evolution

o Basics of Software Evolution
% Laws of software evolution
% Requirements Growth
% Software Aging

o Basics of Change Management

% Baselines, Change Requests and Configuration Management
o Software Families - The product line approach
© Requirements Traceability

% Importance of traceability
% Traceability tools

© Easterbrook 2004 1

Lid University of Toronto Department of Computer Science

Program Types
Source: Adapted from Lehman 1980, pp1061-1063
> S-type Programs (“Specifiable”)
% problem can be stated formally and completely
% acceptance: Is the program correct according to its specification?

% This software does not evolve.
» A change to the specification defines a new problem, hence a new program

o P-type Programs (“Problem-solving”)
% imprecise statement of a real-world problem
% acceptance: Is the program an acceptable solution to the problem?

% This software is likely to evolve continuously
» because the solution is never perfect, and can be improved
» because the real-world changes and hence the problem changes

o E-type Programs (“Embedded”)
% A system that becomes part of the world that it models
% acceptance: depends entirely on opinion and judgement

% This software is inherently evolutionary
» changes in the software and the world affect each other

© Easterbrook 2004 2

Lid University of Toronto Department of Computer Science

Source: Adapted from Lehman 1980, pp1061-1063

formal
may I statement h controls the
relate . roduction U
to. of problem \)f vp
PROGRAM

Aides
maybe of * solution

interest to S-type

requirements

....... abstract
""""" view of world
specification

".

solution PROGRAM

E-type

real world

-"*{PROGRAM

requirements|
specification

\ model

abstract
view of world

© Easterbrook 2004

Lid University of Toronto Department of Computer Science

Laws of Program Evolution
Source: Adapted from Lehman 1980, pp1061-1063

o Continuing Change

% Any software that reflects some external reality undergoes continual change

or becomes progressively less useful
» change continues until it is judged more cost effective to replace the system

o Increasing Complexity

% As software evolves, its complexity increases...
» ..unless steps are taken to control it.

o Fundamental Law of Program Evolution

% Software evolution is self-regulating
» ..with statistically determinable trends and invariants

o Conservation of Organizational Stability

% During the active life of a software system, the work output of a
development project is roughly constant (regardless of resources!)

o Conservation of Familiarity
% The amount of change in successive releases is roughly constant

© Easterbrook 2004 4

Lid University of Toronto Department of Computer Science

- Requirements Growth

Source: Adapted from Davis 1988, pp1453-1455

o Davis's model:

% User needs evolve continuously conventional
» Imagine a graph showing growth
of needs over time
» May not be linear or continuous
(hence no scale shown)
& Traditional development always

lags behind needs growth

» first release implements only
part of the original requirements

» functional enhancement adds new
functionality

» eventually, further enhancement
becomes too costly, and a
replacement is planned

» the replacement also only
implements part of its
requirements,

User needs

Functionality

>and so on... & &>
’ (Q»‘&(\ \‘?',g?e &Q&& Q\%&bé$é &Q&&
S @ @
& (& S&
& & 2o &
6‘210 S ;((& @,Q\ S
© Easterbrook 2004 5
Lid University of Toronto Department of Computer Science
= Alternative lifecycle models
Squrce: Adapted from Davis 1988, pp1455-1459))
. Throwaway Prototyping e > * Evolutionary Prototyping
£ 2
= User needs, / T User needs,
c o
2 S
- 7 2l A,
c : 2
5 1 5
B Time Time
> Incremental Development S Automated Software Synthesis
£ s
S User needs, 5 User needs
= S
=l Y Y = N S
% =
= i
Time v Time

© Easterbrook 2004 6

Lid University of Toronto Department of Computer Science

-2 Software “maintenance”

Source: Adapted from Blum, 1992, p492-495

© Maintenance philosophies

% “throw-it-over-the-wall” - someone else is responsible for maintenance
» investment in knowledge and experience is lost
» maintenance becomes a reverse engineering challenge
% “mission orientation” - development team make a long term commitment to
maintaining/enhancing the software

o Basili’'s maintenance process models:

% Quick-fix model
» changes made at the code level, as easily as possible
» rapidly degrades the structure of the software
% Iterative enhancement model
» Changes made based on an analysis of the existing system
» attempts to control complexity and maintain good design
% Full-reuse model
» Starts with requirements for the new system, reusing as much as possible
» Needs a mature reuse culture to be successful

© Easterbrook 2004 7

Lid University of Toronto Department of Computer Science

I Software Aging

Source: Adapted from Parnas, 1994

o Causes of Software Aging

% Failure to update the software to meet changing needs
» Customers switch to a new product if benefits outweigh switching costs

% Changes to software tend to reduce its coherence

o Costs of Software Aging
% Owners of aging software find it hard to keep up with the marketplace
% Deterioration in space/time performance due to deteriorating structure

% Aging software gets more buggy
» Each “bug fix” introduces more errors than it fixes

2 Ways of Increasing Longevity
& Design for change
% Document the software carefully
% Requirements and designs should be reviewed by those responsible for its
maintenance
% Software Rejuvenation...

© Easterbrook 2004 8

Lid University of Toronto Department of Computer Science

Managing Requirements Change

© Managers need to respond to requirements change
% Add new requirements during development
» But not succumbing to feature creep

% Modify requirements during development
» Because development is a learning process

% Remove requirements during development
» requirements “scrub” for handling cost/schedule slippage

© Key techniques
% Change Management Process
% Release Planning
% Requirements Prioritization (previous lecture!)
% Requirements Traceability
% Architectural Stability (next week’s lecture)

© Easterbrook 2004

Lid University of Toronto Department of Computer Science

Change Management

o Configuration Management
% Each distinct product is a Configuration Item (CI)
% Each configuration item is placed under version control
% Control which version of each CI belongs in which build of the system

© Baselines
% A baseline is a stable version of a document or system
» Safe to share among the team
% Formal approval process for changes to be incorporated into the next
baseline

> Change Management Process
% All proposed changes are submitted formally as change requests

% A review board reviews these periodically and decides which to accept
» Review board also considers interaction between change requests

© Easterbrook 2004

10

Lid University of Toronto Department of Computer Science

b Towards Software Families

o Libraries of Reusable Components
% domain specific libraries (e.g. Math libraries)
% program development libraries (e.g. Java AWT, C libraries)

o Domain Engineering

% Divides software development into two parts:
» domain analysis - identifies generic reusable components for a problem domain
» application development - uses the domain components for specific applications.

o Software Families

% Many companies offer a range of related software systems
» Choose a stable architecture for the software family
» identify variations for different members of the family
% Represents a strategic business decision about what software to develop
% Vertical families
» e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
% Horizontal families
» similar systems used in related domains

© Easterbrook 2004 11
Lid University of Toronto Department of Computer Science
(%, T LN B
- Requirements Traceability
> From IEEE-STD-830:
% Backward traceability
» i.e. to previous stages of development.
» the origin of each requirement should be clear
% Forward traceability
» i.e., to all documents spawned by the SRS.
» Facilitation of referencing of each requirement in future documentation
» depends upon each requirement having a unique name or reference number.
2 From DOD-STD-2167A:
% A requirements specification is traceable if:
» “(1) it contains or implements all applicable stipulations in predecessor document
» (2) a given term, acronym, or abbreviation means the same thing in all documents
» (3) a given item or concept is referred to by the same name in the documents
» (4) all material in the successor document has its basis in the predecessor
document, that is, no untraceable material has been introduced
» (5) the two documents do not contradict one another”
© Easterbrook 2004 12

Lid University of Toronto Department of Computer Science

Importance of Traceability

o Verification and Validation > Document access
% assessing adequacy of test suite % ability to find information quickly in
% assessing conformance to large documents

requirements

% assessing completeness, consistency, > Process VISIbIIIty

impact analysis % ability to see how the software was
& assessing over- and under-design developed _ _
% investigating high level behavior & provides an audit trail

impact on detailed specifications = Management
% detecting requirements conflicts

% checking consistency of decision
making across the lifecycle

% change management
% risk management
% control of the development process
> Maintenance
% Assessing change requests
% Tracing design rationale

© Easterbrook 2004 Source: Adapted from Palmer, 1996, p365 13
% University of Toronto Department of Computer Science
= Traceability Difficulties

o Cost
% very little automated support
& full traceability is very expensive and time-consuming
o Delayed gratification
% the people defining traceability links are not the people who benefit from it
» development vs. V&V
% much of the benefit comes late in the lifecycle
» testing, integration, maintenance
o Size and diversity
% Huge range of different document types, tools, decisions, responsibilities,...
% No common schema exists for classifying and cataloging these
% In practice, traceability concentrates only on baselined requirements
© Easterbrook 2004 14

Source: Adapted from Palmer, 1996, p365-6

Lid University of Toronto Department of Computer Science

e Current Practice

o Coverage:
% links from requirements forward to designs, code, test cases,
% links back from designs, code, test cases to requirements
% links between requirements at different levels

o Traceability process
% Assign each sentence or paragraph a unique id number
% Manually identify linkages
% Use manual tables to record linkages in a document
% Use a traceability tool (database) for project wide traceability

% Tool then offers ability to
» follow links
» find missing links
» measure overall traceability

© Easterbrook 2004 Source: Adapted from Palmer, 1996, p367-8 15
Lid University of Toronto Department of Computer Science
= Limitations of Current Tools
o Informational Problems
% Tools fail to track useful traceability information
» e.g cannot answer queries such as “who is responsible for this piece of
information?”
% inadequate pre-requirements traceability
» “where did this requirement come from?”
o Lack of agreement...
% ..over the quantity and type of information to trace
o Informal Communication
% People attach great importance to personal contact and informal
communication
» These always supplement what is recorded in a traceability database
% But then the traceability database only tells part of the story!
» Even so, finding the appropriate people is a significant problem
© Easterbrook 2004 16

Source: Adapted from Gotel & Finkelstein, 1993, p100

Lid University of Toronto Department of Computer Science

Problematic Questions

© Involvement
% Who has been involved in the production of this requirement and how?

© Responsibility & Remit
% Who is responsible for this requirement?
» who is currently responsible for it?
» at what points in its life has this responsibility changed hands?
% Within which group’s remit are decisions about this requirement?

© Change
% At what points in the life of this requirements has working arrangements of
all involved been changed?

© Notification
% Who needs to be involved in, or informed of, any changes proposed to this
requirement?

o Loss of knowledge
% What are the ramifications regarding the loss of project knowledge if a
specific individual or group leaves?

© Easterbrook 2004 17

Source: Adapted from Gotel & Finkelstein, 1997, p100

Lid University of Toronto Department of Computer Science

Lecture 12, Part 2:
Moving into Design

o Analysis vs. Design
% Why the distinction?

o Design Processes
% Logical vs. Physical Design
% System vs. Detailed Design

2 Architectures
% System Architecture
% Software Architecture
& Architectural Patterns (next lecture)

o Useful Notation
% UML Packages and Dependencies

© Easterbrook 2004 18

Lid University of Toronto Department of Computer Science

- Refresher: Lifecycle models

V model

perceived
need

Waterfall model

........... m
..Jcomponent

architecture

high level design

Level of abstraction

test
and
integrate

analyse
and
design

maintain

version 1 Evaluate
alternatives
) integ- model
reqts |design| code | test ":;?g O&M| and risks
lessops
version 2 learn
reqts |design | code | test integ- | 5em
rate

) lessops
Evolutionary vefsion 3 llearnt l
development

(each version

integ-

incorporates new reqts | design| code | test rate Develop
requirements) Plan and
test
© Easterbrook 2004 19
Lid University of Toronto Department of Computer Science

- Analysis vs. Design

o Analysis

% Asks “what is the problem?”
» what happens in the current system?
» what is required in the new system?

% Results in a detailed understanding of:
» Requirements
» Domain Properties

% Focuses on the way human activities are conducted

o Design

% Investigates “how to build a solution”

» How will the new system work?

» How can we solve the problem that the analysis identified?
% Results in a solution to the problem

» A working system that satisfies the requirements

» Hardware + Software + Peopleware

% Focuses on building technical solutions

o Separate activities, but not necessarily sequential

© Easterbrook 2004 20

Lid University of Toronto

Department of Computer Science

Analysis is all about
studying this world

Application Domain

R - requirements

b Refresher: different worlds

But who builds the bridge?

Design is all about
building this world

Machine Domain

e COMPUTE

e prog)relt!

© Easterbrook 2004

21

Lid University of Toronto

Department of Computer Science

v Four design philosophies

Decomposition & Synthesis

% Drivers:
» Managing complexity

& Example:

» Design a car by designing
separately the chassis, engine,
drivetrain, etc. Use existing
components where possible

> Reuse ‘C’?

Search @]
) ——o
% Drivers

» Transformation
» Heuristic Evaluation @ —0
& Example:
» Design a car by transforming an
initial rough design to get closer
and closer to what is desired

Negotiation

% Drivers

» Stakeholder Conflicts

» Dialogue Process

& Example:

» Design a car by getting each
stakeholder to suggest (partial)
designs, and them compare and
discuss them

o

Situated Design e

—_—

% Drivers
» Errors in existing designs
» Evolutionary Change

% Example:

» Design a car by observing what'’s
wrong with existing cars as they
are used, and identifying
improvements

© Easterbrook 2004

22

Lid University of Toronto Department of Computer Science

= Logical vs. Physical Design

Choose
Platform

Logical Physical

Design Design

o Logical Design concerns:

% Anything that is platform-independent:
» Interactions between objects
» Layouts of user interfaces
» Nature of commands/data passed between subsystems

% Logical designs are usually portable to different platforms

o Physical Design concerns:

% Anything that depends on the choice of platform:
» Distribution of objects/services over networked nodes
» Choice of programming language and development environment
» Use of specialized device drivers
» Choice of database and server technology
» Services provided by middleware

© Easterbrook 2004 23

Lid University of Toronto Department of Computer Science

- System Design vs. Detailed Design

o System Design

% Choose a System Architecture
» Networking infrastructure
» Major computing platforms
» Roles of each node (e.g. client-server; clients-broker-servers; peer-to-peer,..)
% Choose a Software Architecture
» (see next lecture for details)
% Identify the subsystems
% Identify the components and connectors between them
» Design for modularity to maximize testability and evolveability
» E.g. Aim for low coupling and high cohesion

o Detailed Design
% Decide on the formats for data storage
» E.g. design a data management layer
% Design the control functions for each component
» E.g. design an application logic layer

% Design the user interfaces
» E.g. design a presentation layer

© Easterbrook 2004 24

Lid University of Toronto Department of Computer Science

Global System Architecture

o Choices:
% Allocates users and other external systems to each node
% Identify appropriate network topology and technologies
% Identify appropriate computing platform for each node

> Example:
% See next slide...

© Easterbrook 2004 25

Lid University of Toronto Department of Computer Science

norih carofing
EUFERCOMPUTING

® fen-t &

Matwork Dhagram - 1100

T

Traking Room

0 18 S Comacty High S
o File Survicas

© Easterbrook 2004 26

Lid University of Toronto Department of Computer Science

System Architecture Questions

o Key questions for choosing platforms:

& What hardware resources are needed?
» CPU, memory size, memory bandwidth, 1/0, disk space, etc.
% What software/OS resources are needed?
» application availability, OS scalability
% What networking resources are needed?
» network bandwidth, latency, remote access.
& What human resources are needed?
» OS expertise, hardware expertise,
» system administration requirements,
» user training/help desk requirements.
% What other needs are there?
» security, reliability, disaster recovery, uptime requirements.

o Key questions constraining the choice:
% What funding is available?

% What resources are already available?
» Existing hardware, software, networking
» Existing staff and their expertise
» Existing relationships with vendors, resellers, etc.

© Easterbrook 2004

27

Lid University of Toronto Department of Computer Science

Data Management Questions

© How is data entry performed?
% E.g. Keyless Data entry
» bar codes; Optical Character Recognition (OCR)

% E.g. Import from other systems
» Electronic Data Interchange (EDI), Data interchange languages,...

2 What kinds of data persistence is needed?
% Is the operating system’s basic file management sufficient?
% Is object persistence important?
% Can we isolate persistence mechanisms from the applications?

o Is a Database Management System (DBMS) needed?
% Is data accessed at a fine level of detail
» E.g. do users need a query language?
% Is sophisticated indexing required?

% Is there a need to move complex data across multiple platforms?
» Will a data interchange language suffice?
> E.g. HTML, SGML, XML..

% Is there a need to access the data from multiple platforms?

© Easterbrook 2004

28

? University of Toronto

Department of Computer Science

v

% Advantages:

% Variants:

Software Architecture

o A software architecture defines:
% the components of the software system
% how the components use each other’s functionality and data
% How control is managed between the components

> An example: client-server

% Servers provide some kind of service; clients request and use services

% applications are located with clients
» E.g. running on PCs and workstations;

% data storage is treated as a server
» E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
» Consistency checking is located with the server

» Breaks the system into manageable components
» Makes the control and data persistence mechanisms clearer

» Thick clients have their own services, thin ones get everything from servers

% Note: This is a SOFTWARE architecture
» Clients and server could be on the same machine or different machines...

© Easterbrook 2004

29

? University of Toronto

Department of Computer Science

L4

Form

Data coupling

Coupling

Given two units (e.g. methods, classes, modules, ..), A and B:

Features

A & B communicate by
simple data o nly

Desirability

High (use parameter passing &
only pass necessary info)

Stamp coupling

A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call

Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment|
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling

A changes B’s data, or
passes control to the
middle of B

Extremely Foolish (almost
impossible to debug!)

© Easterbrook 2004

Lid University of Toronto Department of Computer Science
3

v Cohesion
How well do the contents of an object (module, package,..) go together?
Form Features Desirability
. all part of a well defined data :
Data cohesion abstraction Very High
Sieianal celEean all part of a sn;gle problem solving High
ask
. . outputs of one part form inputs to
Sequential cohesion the next Okay
Communicational operations that use the same input Mod t
cohesion or output data oderate
Prencel Al caEsan a set of operations that must be L
executed in a particular order ow
el caleehe elements must be active around the i
p same time (e.g. at startup) w
. - elements perform logically similar I
Logical cohesion operations (e.g. printing things) No way!
Coincidental elements have no conceptual link N T
cohesion other than repeated code 0 way=
© Easterbrook 2004
? University of Toronto Department of Computer Science

v UML Packages

> We need to represent our architectures
% UML elements can be grouped together in packages

% Elements of a package may be:

» other packages (representing subsystems or modules);

» classes;

» models (e.g. use case models, interaction diagrams, statechart diagrams, etc)
% Each element of a UML model is owned by a single package

% Packages need not correspond to elements of the analysis or the design
» they are a convenient way of grouping other elements together

o Criteria for decomposing a system into packages:
% Ownership
» who is responsible for working on which diagrams
& Application
» each problem has its own obvious partitions;

& Clusters of classes with strong cohesion
» e.g., course, course description, instructor, student,..

% Or use an architectural pattern to help find a suitable decomposition

© Easterbrook 2004 32

Lid University of Toronto Department of Computer Science

v

Package notation

1 — 1
Use Cases Campaign Ill Use Case
Management Model
A A A
! 1)
Package Sub-system Model

o 2 alternatives for showing package containment:

—
Agate IJ'I
Agate
1 1)
Campaigns l'LI Staff 1J'| — —
Campaigns IJT Staff lJ'I
© Easterbrook 2004 33
? University of Toronto Department of Computer Science
= Package Diagrams
— o Dependencies:
% Similar to compilation dependencies
Persons % Captures a high-level view of coupling
between packages:
A »If you change a class in one package,
_| you may have to change something in
: packages that depend on it
I Constraints | = A good architecture minimizes
1 — dependencies
11 i % Fewer dependencies means lower
e coupling
Meetings o - % Dependency cycles are especially
undesirable
dependency
(read as
“depends on”)

© Easterbrook 2004

University of Toronto

Department of Computer Science

?
v

..Dependency Cycles

1

«client»

Sub-system A

1

[]

«peer»

Sub-system C

1

«servern

Sub-system B

«peern

Sub-system D

The server sub-system does

not depend on the client sub-system
and is not affected by changes

to the client’s interface.

Each peer sub-system depends on
the other and each is affected by
changes in the other’s interface.

© Easterbrook 2004

35

University of Toronto

Department of Computer Science

*
L 4

E.g. 3 layer
architecture:

Architectural Patterns

I

—

Presentation Layer Package

—

Application
Windows

Java AWT =

Application Logic Layer Package

—

Business
Objects

Presentation]
Layer L
- = e, —
Application “y Control
Logic Layer Objects
Storage
Layer]
Storage Layer Package
—
JDBC Objectto | | T
Relational [€]”
.. =
K al Java SQL

© Easterbrook 2004

36

