
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 11, Part 1:
Requirements Prioritization

ÜWhy Prioritization is needed
Ä Basic Trade-offs

Ü Cost-Value Approach
Ä Sorting Requirements by cost/value
Ä Estimating Relative Costs/Values using AHP

ÜWhat if stakeholders disagree?
Ä Visualizing differences in priority
Ä Resolving Disagreements

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Basics of Prioritization
Ü Need to select what to implement

Ä Customers (usually) ask for way too much
Ä Balance time-to-market with amount of functionality
Ä Decide which features go into the next release

Ü For each requirement/feature, ask:
ÄHow important is this to the customer?
ÄHow much will it cost to implement?
ÄHow risky will it be to attempt to build it?

Ü Perform Triage:
Ä Some requirements *must* be included
Ä Some requirements should definitely be excluded
Ä That leaves a pool of “nice-to-haves”, which we must select from. 



2

University of Toronto Department of Computer Science

© Easterbrook 2004 3

A Cost-Value Approach
Ü Calculate return on investment

Ä Assess each requirement’s importance to the project as a whole
Ä Assess the relative cost of each requirement
Ä Compute the cost-value trade-off: 

Cost (percent)

Va
lu

e 
(p

er
ce

nt
)

Low priority

Medium
priority

High
priority

5 10 15 20 25 30

5

10

15

20

25

30

Source: Adapted from Karlsson & Ryan 1997

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Estimating Cost & Value
Ü Two approaches:

Ä Absolute scale (e.g. dollar values)
Ø Requires much domain experience

Ä Relative values (e.g. less/more; a little, somewhat, very)
Ø Much easier to elicit
Ø Prioritization becomes a sorting problem

Ü Comparison Process - options
Ä Basic sorting - for every pair of requirements (i,j), ask if i>j?

Ø E.g. bubblesort - start in random order, and swap each pair if out of order
Ø requires n*(n-1)/2 comparisons

Ä Construct a Binary Sort Tree
Ø Requires O(n log n) comparisons

Ä Contruct a Minimal Spanning Tree
Ø for each pair (Ri, Ri+1) get the distance between them
Ø Requires n-1 comparisons



3

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Some complications
Ü Hard to quantify differences

Ä easier to say “x is more important than y”…
Ä …than to estimate by how much.

Ü Not all requirements comparable
Ä E.g. different level of abstraction
Ä E.g. core functionality vs. customer enhancements

Ü Requirements may not be independent
ÄNo point selecting between X and Y if they are mutually dependent

Ü Stakeholders may not be consistent
Ä E.g. If X > Y, and Y > Z, then presumably X > Z?

Ü Stakeholders might not agree
Ä Different cost/value assessments for different types of stakeholder

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Hierarchical Prioritization

minimize
costsserve more

passengers
improve
safety

add new
tracks

increase
safe distance

more 
frequent
trains

increase
train speed

minimize
operation

costs
minimize

development
costs

clearer
signalling

Ü Group Requirements into a hierarchy
Ä E.g. A goal tree
Ä E.g. A NFR tree

Ü Only make comparisons between branches of a single node:

Better
train system

Comparison set 1

Comparison set 2

Comparison set 3
Comparison set 4



4

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Analytic Hierarchy Process (AHP)
Ü Create n x n matrix (for n requirements)

Ä For element (x,y) in the matrix enter:
Ø 1 - if x and y are of equal value
Ø 3 - if x is slightly more preferred than y
Ø 5 - if x is strongly more preferred than y
Ø 7 - if x is very strongly more preferred than y
Ø 9 - if x is extremely more preferred than y
Ø (use the intermediate values, 2,4,6,8 if compromise needed)

Ä …and for (y,x) enter the reciprocal.

Ü Estimate the eigenvalues:
Ä E.g. “averaging over normalized columns”

Ø Calculate the sum of each column
Ø Divide each element in the matrix by the sum of it’s column
Ø Calculate the sum of each row
Ø Divide each row sum by the number of rows

Ü This gives a value for each reqt:
Ä …giving the estimated percentage of total value of the project

Source: Adapted from Karlsson & Ryan 1997

Source: Adapted from Karlsson & Ryan 1997

University of Toronto Department of Computer Science

© Easterbrook 2004 8

131/31/4Req4

1/311/51/2Req3

3513Req2

421/31Req1

Req4Req3Req2Req1

0.12

0.04

0.36

0.48

Req4

0.270.180.05Req4

0.090.110.11Req3

0.450.540.63Req2

0.180.180.21Req1

Req3Req2Req1

Normalise
columns

Sum
the
rows

0.160.62

0.090.34

0.501.98

0.261.05

sum/
4

sum

AHP example - estimating costs

Source: Adapted from Karlsson & Ryan 1997

Req1 - 26% of the cost
Req2 - 50% of the cost
Req3 - 9% of the cost
Req4 - 16% of the cost

Req1 - 26% of the cost
Req2 - 50% of the cost
Req3 - 9% of the cost
Req4 - 16% of the cost

Result



5

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Plot ROI graph

Cost (percent)

Va
lu

e 
(p

er
ce

nt
)

Low priority

Medium
priority

High
priority

5 10 15 20 25 30

5

10

15

20

25

30

x

x
x

x x

Ü Repeat AHP process twice:
Ä Once to estimate relative value
Ä Once to estimate relative cost

Ü Use results to calculate ROI ratio:

Source: Adapted from Karlsson & Ryan 1997

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Other selection criteria
Ü ROI ratio is not the only way to group requirements

Cost (percent)

Va
lu

e 
(p

er
ce

nt
)

Above average cost
Below average value

Above average
in both cost and value

5 10 15 20 25 30

5

10

15

20

25

30

x

x
x

x x

Relative Loss

Re
la

ti
ve

 P
ro

ba
bi

lit
y

High 
Risk Exposure

Low 
Risk Exposure

5 10 15 20 25 30

5

10

15

20

25

30 x

x
x

x

x

Above average value
Below average cost

Source: Adapted from Park et al, 1999



6

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Visualizing “Value by stakeholder”
10 Stakeholders:

M1
M2
M3
M4
M5
M6
M7
M8
M9
M10

0%

2%

4%

6%

8%

10%

12%

Variation coefficient
(right hand scale)

“Level of disagreement
for each feature”

1

2

0

3

Pe
rc

en
ta

ge
 o

f 
to

ta
l 
va

lu
e

Source: Adapted from Regnell et al, 2000

18 Features 
(labeled A-Q +Z)

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Visualizing stakeholder satisfaction
Ü Graph showing correlation between stakeholder’s priorities and 

the group’s priorities
Ä Can also be thought of as “influence of each stakeholder on the group”

Source: Adapted from Regnell et al, 2000



7

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Can also weight each stakeholder
Ü Weight each 

stakeholder
Ä E.g. to reflect 

credibility?
Ä E.g. to reflect size of 

constituency 
represented?

Ü Example:

Result:
(The priorities have changed)

Source: Adapted from Regnell et al, 2000

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Resolving Stakeholder Conflict
Ü Causes of Conflict

Ä Deutsch (1973):
Ø control over resources
Ø preferences and nuisances (tastes or activities of one party impinge upon another)
Ø values (a claim that a value or set of values should dominate)
Ø beliefs (dispute over facts, information, reality, etc.)
Ø the nature of the relationship between the parties.

Ä Robbins (1989):
Ø communicational (insufficient exchange of information, noise, selective perception)
Ø structural (goal compatibility, jurisdictional clarity, leadership style)
Ø personal factors, (individual value systems, personality characteristics.

Ü Interesting Results
Ä deviant behaviour & conflict are normal in small group decision making
Ämore aggression and less co-operation when communication is restricted

Ø a decrease in communication tends to intensify a conflict (the contact hypothesis)
Ä heterogeneous teams experience more conflict; 
Ä homogeneous groups are more likely to make high risk decisions (groupthink)
Ä effect of personality is overshadowed by situational and perceptual factors



8

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Conflict Resolution - basics
Ü Defining Conflict

Ä In Social psychology, focus is on interdependence and perception:
Ø “the interaction of interdependent people who perceive opposition of goals, aims, 

and values, and who see the other party as potentially interfering with the 
realization of these goals” [Putnam & Poole, 1987]

Ä In RE, focus typically is on logical inconsistency:
Ø E.g. conflict is a divergence between goals - there is a feasible boundary 

condition that makes the goals inconsistent [van Lamsweerde et al. 1998]
ÄNote:

Ø conflict may occur between individuals, groups, organizations, or different roles 
played by one person

Ü Resolution Method:
Ä The approach used to settle a conflict

Ø Methods include negotiation, competition, arbitration, coercion, and education
Ø Not all conflicts need a resolution method: not all conflicts need to be resolved.

Ä Three broad types of resolution method can be distinguished:
Ø Co-operative (or collaborative) methods, which include negotiation and education;
Ø Competitive methods, which include combat, coercion and competition; 
Ø Third Party methods, which include arbitration and appeals to authority.

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Basic approaches to conflict resolution
Ü Negotiation 

Ä …is collaborative exploration: 
Øparticipants attempt to find a 
settlement that satisfies all parties as 
much as possible.

Ä also known as:
Øintegrative behaviour
Øconstructive negotiation

Ä distinct from:
Ødistributive/competitive negotiation

Ü Competition
Ä is maximizing your own gain:

Øno regard for the degree of 
satisfaction of other parties.
Øbut not necessarily hostile!

Ä Extreme form: 
Øwhen all gains by one party are at the 
expense of others
ØI.e a zero-sum game.

Ü Third Party Resolution 
Ä participants appeal to outside source

Øthe rule-book, a figure of authority, 
or the toss of a coin. 
Øcan occur with the breakdown of either 
negotiation or competition as resolution 
methods.

Ä types of third party resolution
Øjudicial: cases presented by each 
participant are taken into account
Øextra-judicial: a decision is determined 
by factors other than the cases 
presented (e.g. relative status of 
participants).
Øarbitrary: e.g. toss of a coin



9

University of Toronto Department of Computer Science

© Easterbrook 2004 17

Lecture 11, Part 2:
Software Evolution

Ü Basics of Software Evolution
Ä Laws of software evolution
Ä Requirements Growth
Ä Software Aging

Ü Basics of Change Management
Ä Baselines, Change Requests and Configuration Management

Ü Software Families - The product line approach
Ü Requirements Traceability

Ä Importance of traceability
Ä Traceability tools

University of Toronto Department of Computer Science

© Easterbrook 2004 18

Program Types
Ü S-type Programs (“Specifiable”)

Ä problem can be stated formally and completely
Ä acceptance: Is the program correct according to its specification?
Ä This software does not evolve.

Ø A change to the specification defines a new problem, hence a new program

Ü P-type Programs (“Problem-solving”)
Ä imprecise statement of a real-world problem
Ä acceptance: Is the program an acceptable solution to the problem?
Ä This software is likely to evolve continuously

Ø because the solution is never perfect, and can be improved
Ø because the real-world changes and hence the problem changes

Ü E-type Programs (“Embedded”)
Ä A system that becomes part of the world that it models
Ä acceptance: depends entirely on opinion and judgement
Ä This software is inherently evolutionary

Ø changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063



10

University of Toronto Department of Computer Science

© Easterbrook 2004 19

real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare

P-type

real world

PROGRAM

abstract
view of worldrequirements

specification

model

E-type

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to

change

change

change

S-type

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 20

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
Ü Continuing Change

Ä Any software that reflects some external reality undergoes continual change 
or becomes progressively less useful
Ø change continues until it is judged more cost effective to replace the system

Ü Increasing Complexity
Ä As software evolves, its complexity increases… 

Ø …unless steps are taken to control it.

Ü Fundamental Law of Program Evolution
Ä Software evolution is self-regulating

Ø …with statistically determinable trends and invariants

Ü Conservation of Organizational Stability
Ä During the active life of a software system, the work output of a 

development project is roughly constant (regardless of resources!)

Ü Conservation of Familiarity
Ä The amount of change in successive releases is roughly constant



11

University of Toronto Department of Computer Science

© Easterbrook 2004 21

Requirements Growth
ÜDavis’s model:
ÄUser needs evolve continuously
Ø Imagine a graph showing growth 

of needs over time
ØMay not be linear or continuous 

(hence no scale shown)
ÄTraditional development always 
lags behind needs growth
Ø first release implements only 

part of the original requirements
Ø functional enhancement adds new 

functionality
Ø eventually, further enhancement 

becomes too costly, and a 
replacement is planned
Ø the replacement also only 

implements part of its 
requirements,
Ø and so on...

Time
Fu

nc
ti

on
al

it
y

User needs

ide
nti

fy 
req

uir
em

ent
s

fir
st 

rel
eas

e

enh
anc

em
ent

 ph
ase

fre
eze

 an
d r

epl
ace

rep
lac

em
ent

 de
live

red

enh
anc

em
ent

 ph
ase

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

University of Toronto Department of Computer Science

© Easterbrook 2004 22

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Evolutionary Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Incremental Development

Time

Fu
nc

ti
on

al
it
y

User needs

Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459



12

University of Toronto Department of Computer Science

© Easterbrook 2004 23

Software “maintenance”
Ü Maintenance philosophies

Ä “throw-it-over-the-wall” - someone else is responsible for maintenance
Ø investment in knowledge and experience is lost
Ø maintenance becomes a reverse engineering challenge

Ä “mission orientation” - development team make a long term commitment to 
maintaining/enhancing the software

Ü Basili’s maintenance process models:
ÄQuick-fix model

Ø changes made at the code level, as easily as possible
Ø rapidly degrades the structure of the software

Ä Iterative enhancement model
Ø Changes made based on an analysis of the existing system
Ø attempts to control complexity and maintain good design

Ä Full-reuse model
Ø Starts with requirements for the new system, reusing as much as possible
Ø Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495

University of Toronto Department of Computer Science

© Easterbrook 2004 24

Software Aging
Ü Causes of Software Aging

Ä Failure to update the software to meet changing needs
Ø Customers switch to a new product if benefits outweigh switching costs

Ä Changes to software tend to reduce its coherence

Ü Costs of Software Aging
ÄOwners of aging software find it hard to keep up with the marketplace
Ä Deterioration in space/time performance due to deteriorating structure
Ä Aging software gets more buggy

Ø Each “bug fix” introduces more errors than it fixes

ÜWays of Increasing Longevity
Ä Design for change
Ä Document the software carefully
Ä Requirements and designs should be reviewed by those responsible for its 

maintenance
Ä Software Rejuvenation…

Source: Adapted from Parnas, 1994



13

University of Toronto Department of Computer Science

© Easterbrook 2004 25

Managing Requirements Change
Ü Managers need to respond to requirements change

Ä Add new requirements during development
Ø But not succumbing to feature creep

ÄModify requirements during development
Ø Because development is a learning process

Ä Remove requirements during development
Ø requirements “scrub” for handling cost/schedule slippage

Ü Key techniques
Ä Change Management Process
Ä Release Planning
Ä Requirements Prioritization (previous lecture!)
Ä Requirements Traceability
Ä Architectural Stability (next week’s lecture)

University of Toronto Department of Computer Science

© Easterbrook 2004 26

Change Management
Ü Configuration Management

Ä Each distinct product is a Configuration Item (CI)
Ä Each configuration item is placed under version control
Ä Control which version of each CI belongs in which build of the system

Ü Baselines
Ä A baseline is a stable version of a document or system

Ø Safe to share among the team
Ä Formal approval process for changes to be incorporated into the next 

baseline

Ü Change Management Process
Ä All proposed changes are submitted formally as change requests
Ä A review board reviews these periodically and decides which to accept

Ø Review board also considers interaction between change requests



14

University of Toronto Department of Computer Science

© Easterbrook 2004 27

Towards Software Families
Ü Libraries of Reusable Components

Ä domain specific libraries (e.g. Math libraries)
Ä program development libraries (e.g. Java AWT, C libraries)

Ü Domain Engineering
Ä Divides software development into two parts:

Ø domain analysis - identifies generic reusable components for a problem domain
Ø application development - uses the domain components for specific applications.

Ü Software Families
ÄMany companies offer a range of related software systems

Ø Choose a stable architecture for the software family
Ø identify variations for different members of the family

Ä Represents a strategic business decision about what software to develop
Ä Vertical families

Ø e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
ÄHorizontal families

Ø similar systems used in related domains

University of Toronto Department of Computer Science

© Easterbrook 2004 28

Requirements Traceability
Ü From IEEE-STD-830:

Ä Backward traceability
Ø i.e. to previous stages of development.
Ø the origin of each requirement should be clear 

Ä Forward traceability
Ø i.e., to all documents spawned by the SRS.
Ø Facilitation of referencing of each requirement in future documentation
Ø depends upon each requirement having a unique name or reference number.

Ü From DOD-STD-2167A:
Ä A requirements specification is traceable if:

Ø “(1) it contains or implements all applicable stipulations in predecessor document
Ø (2) a given term, acronym, or abbreviation means the same thing in all documents
Ø (3) a given item or concept is referred to by the same name in the documents
Ø (4) all material in the successor document has its basis in the predecessor 

document, that is, no untraceable material has been introduced
Ø (5) the two documents do not contradict one another”



15

University of Toronto Department of Computer Science

© Easterbrook 2004 29

Importance of Traceability
Ü Verification and Validation

Ä assessing adequacy of test suite
Ä assessing conformance to 

requirements
Ä assessing completeness, consistency, 

impact analysis
Ä assessing over- and under-design
Ä investigating high level behavior 

impact on detailed specifications
Ä detecting requirements conflicts
Ä checking consistency of decision 

making across the lifecycle

Ü Maintenance
Ä Assessing change requests
Ä Tracing design rationale

Ü Document access
Ä ability to find information quickly in 

large documents

Ü Process visibility
Ä ability to see how the software was 

developed
Ä provides an audit trail

Ü Management
Ä change management
Ä risk management
Ä control of the development process 

Source: Adapted from Palmer, 1996, p365

University of Toronto Department of Computer Science

© Easterbrook 2004 30

Traceability Difficulties
Ü Cost

Ä very little automated support
Ä full traceability is very expensive and time-consuming

Ü Delayed gratification
Ä the people defining traceability links are not the people who benefit from it

Ø development vs. V&V
Ämuch of the benefit comes late in the lifecycle

Ø testing, integration, maintenance

Ü Size and diversity
ÄHuge range of different document types, tools, decisions, responsibilities,…
ÄNo common schema exists for classifying and cataloging these
Ä In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6



16

University of Toronto Department of Computer Science

© Easterbrook 2004 31

Current Practice
Ü Coverage:

Ä links from requirements forward to designs, code, test cases,
Ä links back from designs, code, test cases to requirements
Ä links between requirements at different levels

Ü Traceability process
Ä Assign each sentence or paragraph a unique id number
ÄManually identify linkages
Ä Use manual tables to record linkages in a document
Ä Use a traceability tool (database) for project wide traceability
Ä Tool then offers ability to

Ø follow links
Ø find missing links
Ø measure overall traceability

Source: Adapted from Palmer, 1996, p367-8

University of Toronto Department of Computer Science

© Easterbrook 2004 32

Limitations of Current Tools
Ü Informational Problems

Ä Tools fail to track useful traceability information
Ø e.g cannot answer queries such as “who is responsible for this piece of 

information?”
Ä inadequate pre-requirements traceability 

Ø “where did this requirement come from?”

Ü Lack of agreement…
Ä …over the quantity and type of information to trace

Ü Informal Communication
Ä People attach great importance to personal contact and informal 

communication
Ø These always supplement what is recorded in a traceability database

Ä But then the traceability database only tells part of the story!
Ø Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100



17

University of Toronto Department of Computer Science

© Easterbrook 2004 33Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
Ü Involvement

ÄWho has been involved in the production of this requirement and how?

Ü Responsibility & Remit
ÄWho is responsible for this requirement?

Ø who is currently responsible for it?
Ø at what points in its life has this responsibility changed hands?

ÄWithin which group’s remit are decisions about this requirement?

Ü Change
Ä At what points in the life of this requirements has working arrangements of 

all involved been changed?

Ü Notification
ÄWho needs to be involved in, or informed of, any changes proposed to this 

requirement?

Ü Loss of knowledge
ÄWhat are the ramifications regarding the loss of project knowledge if a 

specific individual or group leaves?


