Lecture 20: Requirements Prioritization

- Why Prioritization is needed
 - Basic Trade-offs
- Cost-Value Approach
 - Sorting Requirements by cost/value
 - Estimating Relative Costs/Values using AHP
- What if stakeholders disagree?
 - Visualizing differences in priority
 - Resolving Disagreements

Basics of Prioritization

- Need to select what to implement
 - Customers (usually) ask for way too much
 - Balance time-to-market with amount of functionality
 - Decide which features go into the next release
- For each requirement/feature, ask:
 - How important is this to the customer?
 - How much will it cost to implement?
 - How risky will it be to attempt to build it?
- Perform Triage:
 - Some requirements "must" be included
 - Some requirements should definitely be excluded
 - That leaves a pool of "nice-to-haves", which we must select from.
A Cost-Value Approach

- **Calculate return on investment**
 - Assess each requirement’s importance to the project as a whole
 - Assess the relative cost of each requirement
 - Compute the cost-value trade-off:

![Cost-Value Trade-Off Chart]

- **Estimating Cost & Value**
 - **Two approaches:**
 - Absolute scale (e.g., dollar values)
 - Requires much domain experience
 - Relative values (e.g., less/more; a little, somewhat, very)
 - Much easier to elicit
 - Prioritization becomes a sorting problem
 - **Comparison Process - options**
 - Basic sorting – for every pair of requirements \((i, j)\), ask if \(i > j\)?
 - E.g., bubblesort - start in random order, and swap each pair if out of order
 - Requires \(n(n-1)/2\) comparisons
 - Construct a Binary Sort Tree
 - Requires \(O(n \log n)\) comparisons
 - Construct a Minimal Spanning Tree
 - For each pair \((R_i, R_{i+1})\) get the distance between them
 - Requires \(n-1\) comparisons
Some complications

- Hard to quantify differences
 - easier to say "x is more important than y"
 - than to estimate by how much.
- Not all requirements comparable
 - E.g. different level of abstraction
 - E.g. core functionality vs. customer enhancements
- Requirements may not be independent
 - No point selecting between X and Y if they are mutually dependent
- Stakeholders may not be consistent
 - E.g. If X > Y, and Y > Z, then presumably X > Z?
- Stakeholders might not agree
 - Different cost/value assessments for different types of stakeholder

Hierarchical Prioritization

- Group Requirements into a hierarchy
 - E.g. A goal tree
 - E.g. A NFR tree
- Only make comparisons between branches of a single node:
Analytic Hierarchy Process (AHP)

- **Create n x n matrix (for n requirements)**
 - For element \((x,y)\) in the matrix enter:
 - 1 - if \(x\) and \(y\) are of equal value
 - 3 - if \(x\) is slightly more preferred than \(y\)
 - 5 - if \(x\) is strongly more preferred than \(y\)
 - 7 - if \(x\) is very strongly more preferred than \(y\)
 - 9 - if \(x\) is extremely more preferred than \(y\)
 - (use the intermediate values, 2, 4, 6, 8 if compromise needed)
 - ...and for \((y,x)\) enter the reciprocal.

- **Estimate the eigenvalues:**
 - E.g. "averaging over normalized columns"
 - Calculate the sum of each column
 - Divide each element in the matrix by the sum of it's column
 - Calculate the sum of each row
 - Divide each row sum by the number of rows

- **This gives a value for each reqt:**
 - ...giving the estimated percentage of total value of the project

AHP example - estimating costs

<table>
<thead>
<tr>
<th></th>
<th>Req1</th>
<th>Req2</th>
<th>Req3</th>
<th>Req4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req1</td>
<td>1</td>
<td>1/3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Req2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Req3</td>
<td>1/2</td>
<td>1/5</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>Req4</td>
<td>1/4</td>
<td>1/3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Normalise columns

<table>
<thead>
<tr>
<th></th>
<th>Req1</th>
<th>Req2</th>
<th>Req3</th>
<th>Req4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req1</td>
<td>0.21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.48</td>
</tr>
<tr>
<td>Req2</td>
<td>0.63</td>
<td>0.54</td>
<td>0.45</td>
<td>0.56</td>
</tr>
<tr>
<td>Req3</td>
<td>0.11</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Req4</td>
<td>0.05</td>
<td>0.18</td>
<td>0.27</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Result

- Req1 - 26% of the cost
- Req2 - 50% of the cost
- Req3 - 9% of the cost
- Req4 - 16% of the cost

Source: Adapted from Karlsson & Ryan 1997
Plot ROI graph

- Repeat AHP process twice:
 - Once to estimate relative value
 - Once to estimate relative cost

- Use results to calculate ROI ratio:

![ROI Graph]

Other selection criteria

- ROI ratio is not the only way to group requirements

![Other Selection Criteria Graph]
Visualizing “Value by stakeholder”

- 10 Stakeholders:
 - M1
 - M2
 - M3
 - M4
 - M5
 - M6
 - M7
 - M8
 - M9
 - M10

Variation coefficient (right hand scale)
"Level of disagreement for each feature"

Percentage of total value

Source: Adapted from Regnell et al, 2000

Visualizing stakeholder satisfaction

- Graph showing correlation between stakeholder’s priorities and the group’s priorities
- Can also be thought of as “influence of each stakeholder on the group”

Source: Adapted from Regnell et al, 2000
Can also weight each stakeholder

- Weight each stakeholder
 - E.g. to reflect credibility?
 - E.g. to reflect size of constituency represented?

- Example:

Result:
(The priorities have changed)

Resolving Stakeholder Conflict

- Causes of Conflict
 - Deutsch (1973):
 - control over resources
 - preferences and nuisances (tastes or activities of one party impinge upon another)
 - values (a claim that a value or set of values should dominate)
 - beliefs (dispute over facts, information, reality, etc.)
 - the nature of the relationship between the parties.
 - Robbins (1989):
 - communication (insufficient exchange of information, noise, selective perception)
 - structural (goal compatibility, jurisdictional clarity, leadership style)
 - personal factors, (individual value systems, personality characteristics)

- Interesting Results
 - deviant behaviour & conflict are normal in small group decision making
 - more aggression and less co-operation when communication is restricted
 - a decrease in communication tends to intensify a conflict (the contact hypothesis)
 - heterogeneous teams experience more conflict;
 - homogeneous groups are more likely to make high risk decisions (groupthink)
 - effect of personality is overshadowed by situational and perceptual factors
Conflict Resolution - basics

Defining Conflict

In Social psychology, focus is on interdependence and perception:
- "the interaction of interdependent people who perceive opposition of goals, aims, and values, and who see the other party as potentially interfering with the realization of these goals" [Putnam & Poole, 1987]

In RE, focus typically is on logical inconsistency:
- E.g. conflict is a divergence between goals - there is a feasible boundary condition that makes the goals inconsistent [van Lamsweerde et al. 1998]

Note:
- conflict may occur between individuals, groups, organizations, or different roles played by one person

Resolution Method:

The approach used to settle a conflict
- Methods include negotiation, competition, arbitration, coercion, and education
- Not all conflicts need a resolution method: not all conflicts need to be resolved.

Three broad types of resolution method can be distinguished:
- Co-operative (or collaborative) methods, which include negotiation and education;
- Competitive methods, which include combat, coercion and competition;
- Third Party methods, which include arbitration and appeals to authority.

Basic approaches to conflict resolution

Negotiation

-is collaborative exploration:
- participants attempt to find a settlement that satisfies all parties as much as possible.
- also known as:
- integrative behaviour
- constructive negotiation
- distinct from:
- distributive/competitive negotiation

Competition

-is maximizing your own gain:
- no regard for the degree of satisfaction of other parties.
- but not necessarily hostile.
- Extreme form:
- when all gains by one party are at the expense of others
- i.e. a zero-sum game.

Third Party Resolution

participants appeal to outside source
- the rule-book, a figure of authority, or the toss of a coin.
- can occur with the breakdown of either negotiation or competition as resolution methods.

types of third party resolution
- judicial: cases presented by each participant are taken into account
- extra-judicial: a decision is determined by factors other than the cases presented (e.g. relative status of participants)
- arbitrary: e.g. toss of a coin