CSC165
0]

GARY BAUMGARTNER

We’d like to be able to say that binary search is in some sense faster than linear search. But the
time taken depends on exactly how we code the algorithms. And even if we decide on a particular
implementation in code, we need to know how long the different instructions take. The effect of
these details is roughly to multiply the time by some constant.

If we pick time units so that our binary search of n elements takes roughly ¢, (n) = logn units of
time, then linear search takes roughly ¢; (n) = c¢n units of time for some ¢ > 0. We know from
Calculus that t, is eventually below ¢;. So a binary search is going to be better than linear search
for large enough numbers of elements, regardless of the exact implementations. Since it’s usually
only with large numbers of elements that the speed matters, this is a useful result.

What we make precise now is, for a function f:
The set of functions that are eventually no worse than a constant multiple of f.

To describe running times, we usual have an input size from N, and a positive time in R. We
might want to talk about space as well, and then 0 becomes a possible output as well. So we
restrict ourselves to functions from N — R2°. Now we can give a precise definition.

For f: N — R>° let
O(f)={9:N—=R=>3ce Rt,3be NVne N,;n>b— g(n) <cf (n)}.

“O(f)” is pronounced “big oh of f”. We think of O (f) informally as the functions that grow no
faster than f.

We can summarize part of our discussion of binary and linear search by: logn € O (n). CSC108
and CSC148 give you some more intuition and concrete examples. Here we do the precise details.

Let’s prove that 3n? + 2 € O (n?). We need to find a point at and after which 3n? + 2 is no more
than some (positive) constant multiple of n?. From n = 2 onward, 2 < n? and so 3n? + 2 < 4n?.
Let’s now do this formally:

Date: March 18, 2004.

CSC165 (0] 2

Let ¢ = 4. Then c € RT.
Let b = 2. Then b€ N.
Let n € N.
Suppose n > b.
Then n > b =2,s0n? > 2,50 3n?+2 < 3n? +n? = 4n? = cn’.
Thus n > b — 3n? + 2 < cn?.
Since n € N is arbitrary: Vn € N,n > b — 3n? + 2 < cn?.
Since ce€ RT and b € N:
dee RT,3be N,Yn € N,n>b — 3n?+2 < cn’.
Therefore, 3n* + 2 € O (n?).

For another example, is n* € O (3n%)? Is n eventually no more than some constant multiple
of 3n2? No. No matter how big a constant ¢ we use, n? is eventually bigger than 3cn?. More
precisely:

(*) Ve € R",Vb€ N,3n € N,n > bAn* > c-3n’.
Let’s do some rough work to determine what n we should pick based on ¢ and b.

We want n* > 3cn? for some n € N with n > b.

This would be true if n2 > 3¢, n? > 0, n € N and n > b.

This would be true if n > /3¢, n >0, n € N and n > b.
This would be true if n > /3¢, n > b and n € N, since ¢ > 0.
This would be true if n = [max (1 + \/&, bﬂ

Now we can do our proof that n* & O (3n?), by proving the negation () (the negation of n* €
O (3n?)):

Let ce RT.
Let b € N.
Let n = (max (b,1+\/§ﬂ.
Since max (b, 1+ \/?;) >14++/3¢> 1, it’s ceiling n is in N.
Letm:max(b,l—i—\/%).
Then m > b, m>14+v3¢> 0, and m > 1+ /3¢ > V/3c.
Sincen:[m]2m,wehaven2b,n>0andn2\/§.
So n* = n?n? > (\/&)Qn2 (since n > v/3c and n? > 0) = 3¢en? = ¢ 3n?.
Thus n > bAn* > ¢ 3n2.
Sincen € N: I3n € N,n > bAn* > c-3n?.
Since m > b > 0, it’s ceiling is in N, son € N.
Since ¢ € R and b € N are arbitrary:
Vee RY,WYbe N,In € N,n>bAn* > c-3n’
Therefore n* ¢ O (3n?).

CSC165 (0] 3

Can f € O(g) and g € O(f)? Yes. We proved that 3n*> + 2 € O (n?). It’s also true (exercise!)
that n? € O (3n? + 2). Even simpler, just let f = g.

Theorem. If f: N — R2° then f € O (f).

We said that logn € O (n). We can also show that n € O (n?). Thinking informally about time
or space, we can say that logn is no worse than n, and n is no worse than n?. This should let us
conclude that logn is no worse than n?. This is correct reasoning in general.

Theorem. If f,g,h: N — R>°, f € O(g) and g € O (h), then f € O (h).

Before we prove this, let’s play around. Suppose f € O (g) because for all n > 200 we have
f (n) <3g(n), and suppose g € O (h) because for all n > 400 we have g (n) < 5g (n). Then for all
n > 400, f (n) < 15k (n). In general, we get our b as the maximum of the two bs, and our ¢ from
the product of the two cs. Now we can do our proof.

Suppose f,g,h: N — R>%, f € O(g) and g € O (h).
Then f € O(g),s0o dce Rt,Fbe N,Vne N,n>b— f(n) <cg(n).
Let ¢; € R* and by € N such that Vn € N,n > b; — f(n) < crg(n).
Also, g € O (h), so dc € R*,3b € N,Vn € N, g(n) < ch (n).
Let ¢, € RT and by, € N such that Vn € N,n > b, — g (n) < ¢;h (n).
Let ¢ =¢s - ¢,. Then ¢ € R" since ¢f,¢y € RT.
Let b = max (by, by). Then b € N since by, b, € N.
Let n € N.
Suppose n > b.
Then n > by, so f(n) < crg(n).
Also n > by, so g (n) < cyh ().
Thus f (n) < cpg(n) < cpegh (n)(using ¢y > 0 and the previous line) = ch (n).
Thus n > b — f(n) < ch(n).
Since n € N is arbitrary: Vn € N,n > b — f(n) < ch(n).
Since ¢ € R and b € N:
Jdee RT,3be N,VYne N,n>b— f(n) <ch(n).
Thus f € O (h).
Therefore (f,g,h: N = RZ°Af € O(g)Age O(h)) = f €O (h).

