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Motivation

I Mathematical models contain parameters

I Estimating these parameters often involves a least squares
(LSQ) minimization, where we want to minimize the sum of
squared errors between the model predictions and
observations

I If the model is non-linear, this optimization requires gradient
information (sensitivities)



Least Squares Objective Function

J(p) =
no∑
i=1

ny∑
j=1

(
ỹj(ti )− yj(ti ,p)

)2
2

I ỹ(ti ) = observation at time ti
I y(ti ,p) = model prediction at time ti
I yj = j th state variable

I p = vector of unknown parameters

I ny = number of state variables

I np = number of parameters

I no = number of observations



Least Squares Objective Function

J(p) =
no∑
i=1

ny∑
j=1

(
ỹj(ti )− yj(ti ,p)

)2
2

To optimize, we require the sensitivities, ∂J
∂p . The rest of this talk

is about numerically approximating ∂J
∂p , for the cases where y(ti ,p)

satisfies:

I a system of Ordinary Differential Equations (ODEs)

I a system of Delay Differential Equations (DDEs)



Approximating Sensitivities
using Finite Differences (FD)

I Standard method for approximating the gradient of a function

Jp ≈
J(p + ε)− J(p)

ε
+O(ε)

I Requires J to be computed an additional time for each
parameter

I Limited accuracy available, due to numerical issues



Definitions
ODEs

We consider the initial value problem (IVP),

ẏ(t) = f(t, y(t),p)

y(0) = y0
t ∈ (0,T )



Numerical Solution of ODE IVPs

I Starting from t = 0, advance the solution through time, such
that y(t) approximately satisfies the ODE, up to a user
specified error tolerance.

I Many numerical schemes exist for doing this

I We use a high order, explicit continuous Runge-Kutta (CRK)
solver

I CRK provides a piece-wise continuous polynomial
approximation to y(t) over the interval [0,T ].



Example
Solution of an ODE IVP



Cost of Obtaining y(t)
RK vs CRK



Variational Method
for ODEs

d

dt
yp(t) =

∂

∂p

dy

dt
(t)

=
∂

∂p
f(t, y(t,p),p)

= fy(t)yp(t) + fp(t)

Initial conditions: yp(0), whose (k , j) entry is,

∂yj
∂pk

(0) =

{
1, if pk is the initial condition for yj
0, otherwise

.



Variational Method
for ODEs

Solving the Variational Equations, we obtain yp(t). Then we
compute Jp:

Jp =
no∑
i=1

(ỹj(ti )− yj(ti ,p))Typ(ti ,p)

I The system of variational equations is of size nynp

I Directly approximates the model sensitivities, yp(t)



Least Squares Objective Function
for adjoint method

J(p) =

∫ T

0
g(s, y(s,p))ds

g(s, y(s,p)) =
no∑
i=1

ny∑
j=1

(ỹj(ti )− yj(ti ,p))2

2
δ(ti − s)

I δ(ti − s) is the Dirac-delta function



Adjoint Method
for ODEs

The adjoint vector, λT (t), satisfies the IVP,

λ̇
T

(t) = gy(t)− λT (t)fy(t) ;λT (T ) = 0

Jp = −
∫ T

0
λT (t)fp(t) dt − λT (0)yp(0)

See [1] for full derivation



Adjoint Method
for ODEs

The adjoint vector, λT (t), satisfies the IVP,

λ̇
T

(t) = gy(t)− λT (t)fy(t) ;λT (T ) = 0

Jp = −
∫ T

0
λT (t)fp(t) dt − λT (0)yp(0)

We handle each δ(ti − t), in gy(t), by forcing the solver to hit
t = ti and applying the jump:

λT (ti )
− = λT (ti )

+ + (ỹ(ti )− y(ti ,p))



Solution of Adjoint System



Method Comparison

Finite Differences Adjoint Variational

simulations np + 1 2 1
system size ny ny , np ny + nynp



Runtime vs Number of Observations
for ODEs



Definitions
DDEs

ẏ(t) = f(t, y(t), y(t − τ1), . . . , y(t − τnl ),p)

t ∈ (0,T )

y(t) = h(t,p) ; t < 0

h is the history function



Numerical Solution of DDEs

I We use the DDEM package developed by Hossein Zivari Piran
[3]

I To evaluate the lagged values of y, we require a continuous
approximation to be maintained

I Between discontinuity points, problem reduces to solving an
ODE

In the following, we define ν = y(t − τ).



Example
DDE



Variational Method
for DDEs

d

dt
yp(t) =

∂

∂p

dy

dt
(t)

=
∂

∂p
f(t, y(t,p), y(t − τ,p),p)

= fy(t)yp(t) + fp(t) + fν(t)yp(t − τ)− y′(t − τ)τp



Adjoint Method
for DDEs

λ̇
T

(t) = gy(t)−λT (t)fy(t)− λT (t + τ)fν(t + τ) ;λT (t) = 0, for t ≥ T .

Jp = −
∫ T

0
λT (t)

(
fν(t)y′(t − τ)αp(t) + fp(t)

)
dt

−λT (0)yp(0)−
∫ 0

−τ
λT (t + τ)fν(t + τ)hp(t) dt

See derivation in [4] for a more general class of DDEs



Solution of Adjoint System
3 observations



Solution of Adjoint System
20 observations



Tracking Discontinuities

Adjoint Steps Time Max Rel Error Tol Max Order
282 0.0369 5.39e-05 1e-05 0
182 0.0223 5.39e-05 1e-05 1
163 0.0186 5.39e-05 1e-05 2
175 0.019 5.39e-05 1e-05 3
200 0.0206 5.39e-05 1e-05 4
224 0.0223 5.39e-05 1e-05 5

To efficiently solve the adjoint system, we should track up to
second order discontinuities



Runtime vs Number of Observations
for DDEs



Ways to Improve Performance of Adjoint Approach
for DDEs

I Use a lower order CRK solver for the adjoint system

I Remove the discontinuities in λ(t) by approximating the least
squares objective function



Recall: Least Squares Objective Function
for adjoint method

J(p) =

∫ T

0
g(s, y(s,p))ds

g(s, y(s,p)) =
no∑
i=1

ny∑
j=1

(ỹj(ti )− yj(ti ,p))2

2
δ(ti − s)

I Can approximate δ(ti − s)

δ(ti − t) = lim
σ→0

1

σ
√
π

e−(
t−ti
σ

)2



Approximation by Continuous Objective

Figure: The cost-accuracy trade-off for approximating the LSQ objective
function by a sum of Gaussian distributions with standard deviation of σ.



Approximation by Continuous Objective



Exploiting Parallelism

J(p) =
no∑
i=1

||ỹ(ti )− y(ti ,p)||2

2

=

no
2∑

i=1

||ỹ(ti )− y(ti ,p)||2

2
+

no∑
i= no

2
+1

||ỹ(ti )− y(ti ,p)||2

2

= J1(p) + J2(p)

∂J

∂p
(p) =

no∑
i=1

||ỹ(ti )− y(ti ,p)||2

2

=

no
2∑

i=1

||ỹ(ti )− y(ti ,p)||2

2
+

no∑
i= no

2
+1

||ỹ(ti )− y(ti ,p)||2

2

=
∂J1
∂p

(p) +
∂J2
∂p

(p)



CheckPointing (Petzold [2])

I Concerned with reducing memory requirements of Adjoint
approach

I During forward simulation of the system, store intormation
periodically to allow for the forward simulation to be restarted
during the backward simulation, as the solution of the forward
system is required.

I Alternatively, one could simulate the system in reverse, but it
may be unstable



Summary

I Cost of Adjoint Method scales with the number of
observations for LSQ objective functions.

I This cost is due to the observations limiting the step size
taken by the solver

I In the case of DDEs, discontinuities in λ(t) make this cost
prohibitively expensive.

I Demonstrated use of a lower order method for approximating
the adjoint equations and sensitivities for ODEs.

I Demonstrated a continuous approximation to the objective
function to reduce the dependence on the number of
observations for DDEs.
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Approximation by Continuous Objective

Figure: The adjoint trajectories computed using a continuous
approximation with σ = 0.05 (dotted lines) and the exact adjoint
trajectories (solid lines).
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