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ODEs

We consider the initial value problem (IVP),

ẏ(t) = f (t, y(t),p)
y(0) = y0

t ∈ [0,T ]

I Numerous numerical methods exist for approximating y(t, p)
that satisfy this IVP

I Most methods simulate the trajectory, y(t, p), starting from
y(0). (e.g. continuous Runge-Kutta with defect control
Enright and Yan (2010))
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Parameter Estimation

I The goal of parameter estimation is to estimate the
parameters, p̂, that make the model best fit the observed data
(ŷ(ti ) = y(ti ) + N(0, σ2), i = 1, . . . , no ).

I This is a non-linear least squares problem.
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I The goal of parameter estimation is to estimate the
parameters, p̂, that make the model best fit the observed data
(ŷ(ti ) = y(ti ) + N(0, σ2), i = 1, . . . , no ).

I This is a non-linear least squares problem.

p̂ = arg min
p

no∑
i=1

‖ŷ(ti )− y(ti ,p)‖2

2σ2

= arg min
p

L(p)

We will consider using shooting approaches - Given p, simulate
the ODE IVP to approximate y(t,p) whenever evaluating L(p).
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Shooting Approaches

Simple (or single) shooting (e.g. Bard (1974))
I Choose an initial guess, po

I Apply a suitable local optimizer to find p̂.

Common criticisms:

I might converge to a local minimum instead of p̂
I simulation may fail for some values of p before time T
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Shooting Approaches

Simple (or single) shooting (e.g. Bard (1974))
I Choose an initial guess, po
I Apply a suitable local optimizer to find p̂.

Common criticisms:
I might converge to a local minimum instead of p̂
I simulation may fail for some values of p before time T

If po is close enough to p̂, single shooting typically works quite
well.
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

I oscillatory trajectory
I global minimum sometimes

found with single shooting.

I local minimum sometimes
found with single shooting.

y ′1(t) = p1y1(t)− p2y1(t)yt(2)
y ′2(t) = p2y1(t)yt(2)− p3y2(t)

p = [1, 1, 1]
y(0) = [1, 0.3]
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y ′2(t) = p2y1(t)yt(2)− p3y2(t)

p = [1, 1, 1]
y(0) = [1, 0.3]

Insight: Once the trajectory begins to diverge, how
well it fits the rest of the data isn’t really useful. 6 / 27



Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

I oscillatory trajectory
I global minimum sometimes

found with single shooting.
I local minimum sometimes

found with single shooting.

y ′1(t) = p1y1(t)− p2y1(t)yt(2)
y ′2(t) = p2y1(t)yt(2)− p3y2(t)

p = [1, 1, 1]
y(0) = [1, 0.3]

Idea: Only fit to the first part of the data initially.
6 / 27



More Robust Shooting Approaches

Incremental (or progressive) shooting (Michalik et al., 2009; Krogh
et al., 1985)
I simulate the ODE IVP to approximate y(t,p) from t = 0 up

to s (s ≤ T ).

I Apply a suitable local optimizer to find p̂(s).
I Set po = p̂(s).
I Increment s and repeat until s = T . (p̂(T ) = p̂)
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

Initially s = 2, we increment by
2

I Incremental shooting can
succeed here - less sensitive
to po.

I Poor local minimum still
sometimes found with
incremental shooting.
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

I Incremental shooting can
succeed here - less sensitive
to po.

I Poor local minimum still
sometimes found with
incremental shooting.

Insight: It might help to use all of the observations
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

I Incremental shooting can
succeed here - less sensitive
to po.

I Poor local minimum still
sometimes found with
incremental shooting.

Idea: reset the trajectory and keep simulating
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More Robust Shooting Approaches

Multiple shooting (Bock and Plitt, 1984; Peifer and Timmer, 2007)
I Split the interval [0,T ] into nMS sub-intervals (i.e. generate a

mesh, {0 = τ0, τ1, . . . , τnMS = T})

I simulate the ODE IVP to approximate y(t,p) on each of the
nMS sub-intervals.

I Add an equality constraint at each sub-interval boundary
y(τi )− = y(τi )+

I Apply a suitable local optimizer to find p̂.
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I Split the interval [0,T ] into nMS sub-intervals (i.e. generate a

mesh, {0 = τ0, τ1, . . . , τnMS = T})
I simulate the ODE IVP to approximate y(t,p) on each of the

nMS sub-intervals.
I Add an equality constraint at each sub-interval boundary

y(τi )− = y(τi )+

I Apply a suitable local optimizer to find p̂.

Can initialize each y(τi)+ using nearby observed
data points
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

We used nMS = 4, uniform
spacing

I multiple shooting can
succeed here - less sensitive
to po.

I local minimum still
sometimes found with
multiple shooting.
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

I multiple shooting can
succeed here - less sensitive
to po.

I local minimum still
sometimes found with
multiple shooting.

Try 100 random samples for po from [0, 10]3
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Example: Barnes Problem
Lotka-Volterra Predator-Prey Model

I multiple shooting can
succeed here - less sensitive
to po.

I local minimum still
sometimes found with
multiple shooting.

Try 100 random samples for po from [0, 10]3

simple incremental multiple
convergence 5% 39 % 48 %
median time 0.1s 0.36s 0.15s

10 / 27



Methods for obtaining a suitable po

I Smooth and match estimator (SME) (Gugushvili et al., 2012)

I Numerical Discretization based estimation (DBE) is similar
(Wu et al., 2012)

I Gradient Matching (Macdonald and Husmeier, 2015) in the
ML literature

I Varah (1982); Bellman and Roth (1971) and others recognized
that if one uses the observed values of y(t) to approximate
y ′(t), then one can formulate a related least squares problem,

I ỹ is obtained by smoothing the observations

11 / 27



Methods for obtaining a suitable po

I Smooth and match estimator (SME) (Gugushvili et al., 2012)
I Numerical Discretization based estimation (DBE) is similar

(Wu et al., 2012)

I Gradient Matching (Macdonald and Husmeier, 2015) in the
ML literature

I Varah (1982); Bellman and Roth (1971) and others recognized
that if one uses the observed values of y(t) to approximate
y ′(t), then one can formulate a related least squares problem,
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Integral smooth and match (INT-SME)

I Gugushvili et al. (2012) proposed using the integral form of
the ODE IVP instead.

I Similar approach to DBE that uses the integral form also
recently appeared in the UQ literature (Green and Rindler,
2019)

min
y0,p

∫ T

0

∥∥∥∥ỹ(t)−
(
y0 +

∫ t

0
f (s, ỹ(s),p) ds

)∥∥∥∥2
dt,

where y0 are the initial conditions to be estimated.
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Case of Linear Parameters

I Sometimes the parameters appear linearly in f (t, y(t),p).
I p = r

f (t, y(t),p) = G(t, y(t))r

I INT-SME becomes:

arg min
r ,y0

∫ T

0

∥∥∥∥ỹ(t)−
(
y0 +

[ ∫ t

0
G(s, ỹ(s)) ds

]
r
)∥∥∥∥2

dt.
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INT-SME is a linear least squares problem
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I Sometimes the parameters appear linearly in f (t, y(t),p).
I p = r

f (t, y(t),p) = G(t, y(t))r

I INT-SME becomes:

arg min
r ,y0

∫ T

0

∥∥∥∥ỹ(t)−
(
y0 +

[ ∫ t

0
G(s, ỹ(s)) ds

]
r
)∥∥∥∥2

dt.

For a given ỹ(t), this gives only one candidate po
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Calcium Ion Test Problem [Kummer et al. (2000) Peifer
and Timmer (2007)]

G∗α′ = k1 + k2G∗α − k3PLC∗ G∗
α

G∗
α+Km1

− k4Cacyt
G∗

α
G∗

α+Km2
,

PLC∗′ = k5G∗α − k6
PLC∗

PLC∗+Km3
,

Cacyt
′ = k7PLC∗Cacyt

Caer
Caer +Km4

+ k8PLC∗ + k9G∗α − k10
Cacyt

Cacyt+Km5
− k11

Cacyt
Cacyt+Km6

,

Caer
′ = −k7PLC∗Cacyt

Caer
Caer +Km4

+ k11
Cacyt

Cacyt+Km6
,

I 11 linear parameters (k) to
be estimated

I 6 non-linear parameters
(Km) [held fixed]

I 6.5% relative noise added to
true trajectory sampled at
200 uniformly spaced times

I initial conditions assumed
known
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Calcium Ion Test Problem Results

method converged avg time of converged (s)
SS 4 % 44± 16
MS 49 % 48± 58

Table: Results reported in Peifer and Timmer (2007). The trajectory
simulations were performed using ODESSA and a Gauss-Newton
optimizer. They generated one set of noisy data and ran each of simple
shooting (SS) and multiple shooting (MS) with nMS = 17 from 250
random initial guesses for po , which were drawn uniformly from [0, 1]11.

I We generated 100 sets of noisy data

I 63% success rate if we use INT-SME to generate po and then
use simple shooting.

I time: 1.1s ± 2.2s
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Proposed Methods
Motivation

Why does INT-SME sometimes fail?
The integrals, ∫ t

0
G(s, ỹ(s)) ds,

may accumulate errors.
I only use a subset of the data? (like progressive shooting)

I restart the integrals periodically? (like multiple shooting)
I try a different smoother? (i.e. change ỹ(t))
I try a different quadrature rule?
I we used simple shooting for the final optimization - could try

incremental or multiple shooting instead
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I only use a subset of the data? (like progressive shooting)
I restart the integrals periodically? (like multiple shooting)
I try a different smoother? (i.e. change ỹ(t))
I try a different quadrature rule?
I we used simple shooting for the final optimization - could try

incremental or multiple shooting instead
We consider the first two ideas here.
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Proposed Methods

First, we define INT-SME(s):

min
r

∫ s

0

∥∥∥∥ỹ(t)−
(
y0 +

[ ∫ t

0
G(τ, ỹ(τ)) dτ

]
r
)∥∥∥∥2

dt,

where 0 < s ≤ T .

Incremental Shooting - only consider data up to time s.
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Proposed Methods

INT-SME(m,s)

m∑
i=1

[ ∫ ti+1

ti

∥∥∥ỹ(t)−
(
y(ti )+ +

[ ∫ t

ti
G(τ, ỹ(τ)) dτ

]
r
)∥∥∥2

dt
]
,

I m is the number of intervals used

I the set of ti ’s partition the interval from 0 to s.
I In our numerical experiments, we use uniform partitions.
I Unlike true multiple shooting, we do not enforce equality

constraints at the end of each shooting interval.
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Calcium Ion Results

m s 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 96 98 98 92 93 85 95 92 94 95 92 84 72 66 65 63
2 93 100 92 90 98 98 98 100 95 95 98 91 80 66 55 64
4 98 100 98 92 97 100 100 99 98 97 98 96 94 93 86 91
8 98 100 99 100 100 100 99 99 100 100 100 99 98 99 98 100

16 99 100 100 98 100 100 100 100 100 100 100 100 100 100 99 100
PS 96 97 100 98 100 100 100 99 100 100 100 100 100 100 100 100

Table: What percentage of times the final optimization succeeded when
INT-SME(m,s) was used to generate po using different values of m and
the data up to time s.

I top row: simple shooting is poor if we use all the data (63%)

I multiple shooting improves as we add more intervals
I bottom row: INT-SME(S) generates more candidates for po

as we move right in the table
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Additional Remarks

m s 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.87 0.84 0.92 0.89 1.00 0.85 0.83 0.98 0.91 0.85 0.86 1.01 1.45 1.48 1.31 1.65
2 0.93 0.84 0.85 0.93 0.91 0.86 0.89 0.93 1.05 0.80 0.93 1.18 1.17 1.55 1.32 1.57
4 0.91 0.77 0.84 0.97 0.80 0.83 0.83 0.89 0.86 0.85 0.93 0.92 1.04 1.08 1.31 1.19
8 0.87 0.81 0.86 0.86 0.81 0.81 0.83 0.81 0.82 0.85 0.85 0.86 0.94 0.98 0.90 0.95

16 0.98 0.92 0.93 0.89 0.90 0.92 0.92 0.95 0.92 0.95 0.91 0.96 0.98 1.04 1.01 1.03
PS 0.94 0.82 0.82 0.79 0.80 0.79 0.83 0.79 0.82 0.76 0.81 0.79 0.79 0.78 0.77 0.78

Table: Time taken for the full procedures.

I in all cases, run time is 0.8s - 1.6s.
I most of this time is for the final optimization.
I PS-INT-SME generates a better po as more candidates are

considered.
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Which INT-SME(s) is PS-INT-SME([5:20]) using for po?

Histogram of which INT-SME(s) is being used as po, overlaid with
the true trajectory
I The best po’s don’t use all of the data.
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Summary

I Discussed shooting approaches for ODE IVP parameter
estimation

I Demonstrated how the same ideas can be applied when
determining po.

I Proposed progressive and multiple shooting versions of
INT-SME.

I Demonstrated the performance of the procedures on the
Calcium Ion problem from the literature.
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Joint work with Wayne Enright and Jienan Yao
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Thanks for Listening
Questions?
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