
● How soon we switch greatly impacts performance of the hybrid 

 

● Model trajectories and gradients are accurately computed 
using a Continuous Runge-Kutta (CRK) method, 
implemented in the DDEM package
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Problem Statement:
Given noisy observations of the system state 
and a model of the system dynamics, determine 
model parameters which best fit the data, in the 
least squares sense:

Example: Barnes Problem
Simple Predator-Prey Model specified by:

● Parameters: a = b = c = x
1
(0) =1, x

2
(0) = 0.3
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Results:

Stages II / III: Hybrid Optimization

Local

● Fast, Gradient-Based

● We use a Levenberg
Marquardt algorithm for
least squares problems

Stage I: Refined Initial Guess

● Apply expert knowledge

● Use the noisy observations and the model to 
formulate an alternative optimization problem, 
which should be inexpensive.

Divided 
Differences

Data driven 
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Error
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(s)
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Error

0.021 0.35 1.5 0.15
20

0.2

0.022 0.24 1.1 0.08 0.1

0.021 0.21 1.0 0.05
100

0.2

0.022 0.07 0.98 0.04 0.1

Inexpensive Expensive Optimizations 
performed in 
MATLABData Sensitive

   Initial Parameter
Range

Refined
Initial
Guess

Global
Optimization

Local
Optimization

Hybrid Optimization

   Parameter
Estimates

Method Stage 1 
Time (s)

Stage 2 
Time (s)

Stage 3 
Time (s)

Total Time 
(s)

Stage II 
Only - 9.98 - 9.98

Stages II 
and III - 5.05 0.08 5.13

All Stages 0.016 1.716 0.078 1.81

Multiple 
Shooting - - - 2.47

Divided Differences:

Global
● Slow, Heuristic-Based

● Black-box Optimization

● We use a Cross-Entropy
based approach
(importance sampling)

dx
dt

(t)=f (t , x(t),p);x (0)=x0; t∈[0,T ]

x̂ (ti)=x(ti)+N(0,σ)

∑i=1

nt ∣∣x̂(ti)−x(ti ,p)∣∣2

dx1

dt
(t)=ax1(t)−bx1(t)x2(t)

dx2

dt
(t)=bx1(t)x2(t)−cx2(t)

dx̂
dt

(ti)≈
x̂(ti+1)−x̂ (ti)

ti+1−ti

∑i=1

nt−1
∣∣d x̂

dt
(ti)−f (ti , x̂ (ti),p)∣∣2

dx
dt

(t)= f (t , spline ( x̂ , t) , p)

I.

II.

III.

Data Driven Simulation:

Hybrid
Local

Global

Noisy Observations (σ = 0.2)
And

Underlying True Trajectory

Best Fit Trajectory

● Replace the dependence on x with dependence on 
the observations

● Still use the original least squares objective function, 
so still have to simulate the trajectory  

● Avoid simulating
the model

Convergence Rate Comparison

● Addition of each stage reduces total time

● Timing of 3-stage procedure comparable to
multiple shooting

Gaussian 
Noise

ODE 
model

Least Squares Objective Function

Motivation:
● If the parameter search space is large, this 

optimization can be expensive.

● Can we take advantage of the model and observations 
to reduce the search space?

● Once the search space is reduced, should a global or 
local optimization strategy be used?

● Differentiate the observations

Comparison of Stage I Strategies:

Future Work:
● Application to stochastic models and larger systems

● Efficient solution of the data driven simulation Stage I optimization

● Alternative Stage I techniques for the case of partial observations


