Numerical Computation of ODE Sensitivities

Jonathan Calver

Department of Computer Science University of Toronto

CAIMS 2017 Halifax, Nova Scotia July 17-21, 2017

Outline

Motivation

Computing Sensitivities

Computing Sensitivities in Parallel

Motivation

- Mathematical models contain unknown parameters
- Estimating these parameters can take the form of a least squares (LSQ) minimization
- $n_o = \#$ of observations
- $\hat{\mathbf{y}}(t_i) =$ observation at time t_i
- $\mathbf{y}(t_i, \mathbf{p}) = \text{ model prediction at time } t_i$
- **p** = vector of unknown parameters

$$\blacktriangleright J(\mathbf{p}) = \sum_{i=1}^{n_o} \frac{\|\tilde{\mathbf{y}}(t_i)\|\mathbf{y}(t_i,\mathbf{p})|}{2}$$

 If the model is non-linear, this optimization requires gradient information (sensitivities)

This problem may be computationally expensive if

- the model is complex (i.e system of nonlinear ODEs)
- ▶ a good initial guess for **p** is unavailable
- observations are only available for a subset of y

Definitions ODEs

We consider the initial value problem (IVP),

$$\dot{\mathbf{y}}(t) = \mathbf{f}(t, \mathbf{y}(t), \mathbf{p})$$

 $\mathbf{y}(0) = \mathbf{y}_0$
 $t \in (0, T)$

Computing Sensitivities I

In order to solve our LSQ optimization using a gradient based optimizer, we require sensitivity information.

- Finite Differences
- Variational Equations

- Complex Step Method (Automatic Differentiation)
- Adjoint Method (gradient)

All results in this presentation are for the Calcium Ion test problem [?, ?]:

- mildly stiff system of ODEs
- ▶ *n_p* = 17
- ▶ *n_y* = 4
- ▶ *n*_o = 11

Finite Differences I

Forward Differences (FD)

$$\frac{y(p + \epsilon_{FD}) - y(p)}{\epsilon_{FD}} = y'(p) + O(\epsilon_{FD})$$

Centered Differences (CD)

$$\frac{y(p + \epsilon_{CD}) - y(p - \epsilon_{CD})}{2\epsilon_{CD}} = y'(p) + O(\epsilon_{CD}^2)$$

- can suffer from cancellation error and truncation error
- ► the finite difference perturbations \(\epsilon_{FD}\) and \(\epsilon_{CD}\) should be chosen to balance the cancellation and truncation error, keeping in mind the tolereance of the ODE solver (\(\epsilon_{ODE}\))

э

(日)、

Results for Calcium Ion Problem in Matlab I

Figure: Experimental results demonstrating the poor performance of FD when a common step size is not used.

(日) (同) (日) (日)

Results for Calcium Ion Problem in Matlab II

Figure: Experimental results demonstrating the relative performance of several of the methods in Matlab.

(日) (同) (日) (日)

Variational Approach I

The variational approach results in the following ODE, which we obtain by taking the time derivative of $\frac{\partial y}{\partial \mathbf{n}}(t)$,

$$\begin{aligned} \frac{d}{dt} \frac{\partial \mathbf{y}}{\partial \mathbf{p}}(t) &= \frac{\partial}{\partial \mathbf{p}} \frac{d \mathbf{y}}{dt}(t) \\ &= \frac{\partial}{\partial \mathbf{p}} \mathbf{f}(t, \mathbf{y}(t, \mathbf{p}), \mathbf{p}) \\ &= \frac{\partial \mathbf{f}}{\partial \mathbf{y}}(t) \frac{\partial \mathbf{y}}{\partial \mathbf{p}}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{p}}(t). \end{aligned}$$

This matrix valued ODE can be approximated simultaneously with the original system,(4), with the initial conditions, $\frac{\partial \mathbf{y}}{\partial \mathbf{p}}(0)$, whose (i, j) entry is,

$$\frac{\partial \mathbf{y}_i}{\partial \mathbf{p}_j}(0) = \begin{cases} 1, & \text{if } \mathbf{p}_j \text{ is the initial condition for } \mathbf{y}_i \\ 0, & \text{otherwise} \end{cases}.$$

Green's Function Method (GFM) [?] I

$$\mathcal{K}'(t, au) = f_y(t)\mathcal{K}(t, au), \ \mathcal{K}(au, au) = \mathbf{1}$$
 $\mathcal{K}(t, au) = rac{dy(t)}{dy(au)}$
 $y_p(t) = \mathcal{K}(t,0)y_p(0) + \int_0^t \mathcal{K}(t, au)f_p(au) d au$

This reduces the variational equations to n_y^2 differential equations and $n_y n_p$ integrals. Kernel Propagation:

$$K(t,\tau) = K(t,s)K(s,\tau)$$

Forward Green's Function Method I

$$y_p(t + \Delta t) = K(t + \Delta t, t)y_p(t) + \int_t^{t + \Delta t} K(t, \tau)f_p(\tau) d\tau$$

Step $y_p(t)$ through time, using the Piecewise Magnus Method (PMM) to obtain $K(t + \Delta t, t)$.

$$K(t + \Delta t, t) = \exp \Omega(t + \Delta t, t)$$

- Ω(t + Δt, t) is the Magnus series (truncate and approximate numerically)
- Need to compute the matrix exponential
- Forward propagation of $y_p(t)$ amplifies errors
- At each quadrature point, t_q , in $\int_t^{t+\Delta t} K(t,\tau) f_p(\tau) d\tau$, we have to approximate $K(t + \Delta t, t_q)$.

Adjoint Green's Function Method I

$$K(t,\tau) = K^{\dagger}(\tau,t)$$

$$\mathcal{K}^{\dagger\prime}(au,t)=\mathcal{K}^{\dagger}(au,t)\mathit{f}_{\mathcal{Y}}(au),\;\mathcal{K}^{\dagger}(t,t)=\mathbf{1}$$

- Can simulate the adjoint Green's function kernel in reverse between observation points.
- Can then propagate $y_p(t)$ forward between observation points.

$$y_{p}(t_{i}) = K(t_{i}, t_{i-1})y_{p}(t_{i-1}) + \int_{t_{i-1}}^{t_{i}} K(t_{i}, t_{i-1})f_{p}(\tau) d\tau$$

Method Comparison I

method	TOL on $y(t)$	remarks
FD	highest	$n_p + 1$ trajectories, most limited accuracy
CD	high	$2n_p$ trajectories, limited accuracy
CS	above normal	n_p trajectories, complex arithmetic
Vari	normal	requires f_y and f_p , direct error control
GFM	above normal	requires f_y and f_p , indirect error control

Parallel Finite Differences I

Assuming that we have N threads available, the maximum number of simulations a single thread must perform is:

► FD -
$$\lceil \frac{n_p+1}{N_p} \rceil$$

► CD - $\lceil \frac{2n_p}{N_p} \rceil$

Figure: Speedups for FD and CD for $TOL = 10^{-4}$

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Parallel Variational Approach I

Also best suited for parallelism across parameters

operation	cost (flops)
f	50
f_y	100
f_{p_k}	4
$f_y y_{p_k}$	16
$f_y y_{p_k} + f_{p_k}$	4

- The right hand side requires at least 150 + 24 flops, no matter how many parameters are being considered.
- The cost associated with a single parameter is roughly 24 flops.

• Max speedup =
$$\frac{150+(17)24}{150+24} \approx 3.2$$
.

Parallel Variational Approach II

æ

(日)、

Parallel Variational Approach III

Figure: Experimental results demonstrating how our parallel version of the Variational approach scales with the number of processors.

Parallel Forward GFM I

- Majority of the work is in approximating the Green's function kernel (independent of the parameters).
- $K(t + \Delta t, t)$ only depends on y(s), $s \in [t, t + \Delta t]$.
- We can approximate $K(t + \Delta t, t)$ before we actually have $y_p(t)$
- Parallelism across the time domain.
- Lower bound on cost will be the cost of simulating y(t).
- Experimentally, cost of simulating y(t) goes up as the number of threads increases.

The parallel version of the adjoint GFM is the same.

Parallel Forward GFM II

Figure: Speedups for the parallel forward GFM. This is done for $TOL = 10^{-4}$.

▲ロト ▲課 ト ▲注 ト ▲注 ト - 注 - のへ

Parallel Forward GFM III

Theoretical speedups are based on,

$$S_{\text{theo}} = rac{1}{f + rac{1-f}{N_p}}$$

• f = fraction of computation that is not parallelizable (6%)

æ

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Theoretical Results I

Runtime vs # of Processors

Figure: Experimental results demonstrating how the parallel algorithms compare. This is done for $TOL = 10^{-4}$.

э

・ロト ・ 雪 ト ・ ヨ ト

Experimental Results I

Runtime vs # of Processors

Figure: Experimental results demonstrating how the parallel algorithms compare. This is done for $TOL = 10^{-4}$.

э

(日)、

Complex Step (CS) Method [?] I

$$y(p+i\epsilon_{CS}) = y(p) + i\epsilon_{CS}y'(p) - O(\epsilon_{CS}^2) - iO(\epsilon_{CS}^3).$$

Taking the imaginary part and isolating y'(p), we obtain,

$$y'(p) = \frac{1}{\epsilon_{CS}} \Im[y(p + i\epsilon_{CS})] + O(\epsilon_{CS}^2).$$

Furthermore, if we instead take the real part and isolate y(p), we obtain,

$$y(p) = \Re[y(p + i\epsilon_{CS})] + O(\epsilon_{CS}^2).$$

- Similar to forward version of automatic differentiation
- Unlike FD and CD, does not suffer from cancellation
- Requires complex arithmetic

3

・ロット (雪) (山) (日)

Summary

- Reviewed several methods for computing sensitivities of ODEs
- Studied how each method can exploit parallelism and presented numerical results
- Most methods lend themselves to parallelism across parameters
- The Green's Function Method is best parallised across time

Thanks for listening.

(日) (個) (E) (E) (E)

