
Numerical Computation of ODE Sensitivities

Jonathan Calver

Department of Computer Science
University of Toronto

CAIMS 2017
Halifax, Nova Scotia

July 17-21, 2017

Outline

Motivation

Computing Sensitivities

Computing Sensitivities in Parallel

Motivation

I Mathematical models contain unknown parameters

I Estimating these parameters can take the form of a least
squares (LSQ) minimization

I no = # of observations

I ŷ(ti) = observation at time ti
I y(ti ,p) = model prediction at time ti
I p = vector of unknown parameters

I J(p) =
∑no

i=1
‖ỹ(ti)‖y(ti ,p)2

2

I If the model is non-linear, this optimization requires gradient
information (sensitivities)

This problem may be computationally expensive if

I the model is complex (i.e system of nonlinear ODEs)

I a good initial guess for p is unavailable

I observations are only available for a subset of y

Definitions
ODEs

We consider the initial value problem (IVP),

ẏ(t) = f(t, y(t),p)

y(0) = y0

t ∈ (0,T)

Computing Sensitivities I

In order to solve our LSQ optimization using a gradient based
optimizer, we require sensitivity information.

I Finite Differences

I Variational Equations

I Complex Step Method
(Automatic Differentiation)

I Adjoint Method (gradient)
All results in this presentation are for the Calcium Ion test problem
[?, ?]:

I mildly stiff
system of
ODEs

I np = 17

I ny = 4

I no = 11

Finite Differences I

Forward Differences (FD)

y(p + εFD)− y(p)

εFD
= y ′(p) + O(εFD)

Centered Differences (CD)

y(p + εCD)− y(p − εCD)

2εCD
= y ′(p) + O(ε2

CD)

I can suffer from cancellation error and truncation error

I the finite difference perturbations εFD and εCD should be
chosen to balance the cancellation and truncation error,
keeping in mind the tolereance of the ODE solver (εODE)

Results for Calcium Ion Problem in Matlab I

Figure: Experimental results demonstrating the poor performance of FD
when a common step size is not used.

Results for Calcium Ion Problem in Matlab II

Figure: Experimental results demonstrating the relative performance of
several of the methods in Matlab.

Variational Approach I
The variational approach results in the following ODE, which we
obtain by taking the time derivative of ∂y

∂p(t),

d

dt

∂y

∂p
(t) =

∂

∂p

dy

dt
(t)

=
∂

∂p
f(t, y(t,p),p)

=
∂f

∂y
(t)

∂y

∂p
(t) +

∂f

∂p
(t).

This matrix valued ODE can be approximated simultaneously with
the original system,(4), with the initial conditions, ∂y

∂p(0), whose
(i , j) entry is,

∂yi
∂pj

(0) =

{
1, if pj is the initial condition for yi
0, otherwise

.

Green’s Function Method (GFM) [?] I

K ′(t, τ) = fy (t)K (t, τ), K (τ, τ) = 1

K (t, τ) =
dy(t)

dy(τ)

yp(t) = K (t, 0)yp(0) +

∫ t

0
K (t, τ)fp(τ) dτ

This reduces the variational equations to n2
y differential equations

and nynp integrals. Kernel Propagation:

K (t, τ) = K (t, s)K (s, τ)

Forward Green’s Function Method I

yp(t + ∆t) = K (t + ∆t, t)yp(t) +

∫ t+∆t

t
K (t, τ)fp(τ) dτ

Step yp(t) through time, using the Piecewise Magnus Method
(PMM) to obtain K (t + ∆t, t).

K (t + ∆t, t) = exp Ω(t + ∆t, t)

I Ω(t + ∆t, t) is the Magnus series (truncate and approximate
numerically)

I Need to compute the matrix exponential

I Forward propagation of yp(t) amplifies errors

I At each quadrature point, tq, in
∫ t+∆t
t K (t, τ)fp(τ) dτ , we

have to approximate K (t + ∆t, tq).

Adjoint Green’s Function Method I

K (t, τ) = K †(τ, t)

K †′(τ, t) = K †(τ, t)fy (τ), K †(t, t) = 1

I Can simulate the adjoint Green’s function kernel in reverse
between observation points.

I Can then propagate yp(t) forward between observation points.

yp(ti) = K (ti , ti−1)yp(ti−1) +

∫ ti

ti−1

K (ti , ti−1)fp(τ) dτ

Method Comparison I

method TOL on y(t) remarks

FD highest np + 1 trajectories, most limited accuracy
CD high 2np trajectories, limited accuracy
CS above normal np trajectories, complex arithmetic
Vari normal requires fy and fp, direct error control
GFM above normal requires fy and fp, indirect error control

Parallel Finite Differences I

Assuming that we have N threads available, the maximum number
of simulations a single thread must perform is:

I FD - dnp+1
Np
e

I CD - d2np
Np
e

Figure: Speedups for FD and CD for TOL = 10−4

Parallel Variational Approach I

Also best suited for parallelism across parameters

operation cost (flops)

f 50
fy 100
fpk 4
fyypk 16

fyypk + fpk 4

I The right hand side requires at least 150 + 24 flops, no
matter how many parameters are being considered.

I The cost associated with a single parameter is roughly 24
flops.

I Max speedup = 150+(17)24
150+24 ≈ 3.2.

Parallel Variational Approach II

Parallel Variational Approach III

Figure: Experimental results demonstrating how our parallel version of
the Variational approach scales with the number of processors.

Parallel Forward GFM I

I Majority of the work is in approximating the Green’s function
kernel (independent of the parameters).

I K (t + ∆t, t) only depends on y(s), s ∈ [t, t + ∆t].

I We can approximate K (t + ∆t, t) before we actually have
yp(t)

I Parallelism across the time domain.

I Lower bound on cost will be the cost of simulating y(t).

I Experimentally, cost of simulating y(t) goes up as the number
of threads increases.

The parallel version of the adjoint GFM is the same.

Parallel Forward GFM II

Figure: Speedups for the parallel forward GFM. This is done for
TOL = 10−4.

Parallel Forward GFM III

Theoretical speedups are based on,

Stheo =
1

f + 1−f
Np

.

I f = fraction of computation that is not parallelizable (6%)

Theoretical Results I

Figure: Experimental results demonstrating how the parallel algorithms
compare. This is done for TOL = 10−4.

Experimental Results I

Figure: Experimental results demonstrating how the parallel algorithms
compare. This is done for TOL = 10−4.

Complex Step (CS) Method [?] I

y(p + iεCS) = y(p) + iεCSy
′(p)− O(ε2

CS)− iO(ε3
CS).

Taking the imaginary part and isolating y ′(p), we obtain,

y ′(p) =
1

εCS
=[y(p + iεCS)] + O(ε2

CS).

Furthermore, if we instead take the real part and isolate y(p), we
obtain,

y(p) = <[y(p + iεCS)] + O(ε2
CS).

I Similar to forward version of automatic differentiation

I Unlike FD and CD, does not suffer from cancellation

I Requires complex arithmetic

Summary

I Reviewed several methods for computing sensitivities of ODEs

I Studied how each method can exploit parallelism and
presented numerical results

I Most methods lend themselves to parallelism across
parameters

I The Green’s Function Method is best parallised across time

Thanks for listening.

	Motivation
	Computing Sensitivities
	Computing Sensitivities in Parallel

