Numerical Computation of ODE Sensitivities

Jonathan Calver

Department of Computer Science
University of Toronto

CAIMS 2017
Halifax, Nova Scotia
July 17-21, 2017
Outline

Motivation

Computing Sensitivities

Computing Sensitivities in Parallel
Motivation

- Mathematical models contain unknown parameters
- Estimating these parameters can take the form of a least squares (LSQ) minimization
- \(n_o = \# \) of observations
- \(\hat{y}(t_i) = \) observation at time \(t_i \)
- \(y(t_i, p) = \) model prediction at time \(t_i \)
- \(p = \) vector of unknown parameters
- \(J(p) = \sum_{i=1}^{n_o} \frac{||\hat{y}(t_i)||^2 ||y(t_i, p)||^2}{2} \)
- If the model is non-linear, this optimization requires gradient information (sensitivities)

This problem may be computationally expensive if
- the model is complex (i.e., system of nonlinear ODEs)
- a good initial guess for \(p \) is unavailable
- observations are only available for a subset of \(y \)
We consider the initial value problem (IVP),

\[
\dot{y}(t) = f(t, y(t), p) \\
y(0) = y_0 \\
t \in (0, T)
\]
Computing Sensitivities I

In order to solve our LSQ optimization using a gradient based optimizer, we require sensitivity information.

▶ Finite Differences
▶ Variational Equations
▶ Complex Step Method (Automatic Differentiation)
▶ Adjoint Method (gradient)

All results in this presentation are for the Calcium Ion test problem [?, ?]:

▶ mildly stiff system of ODEs
▶ \(n_p = 17 \)
▶ \(n_y = 4 \)
▶ \(n_o = 11 \)
Finite Differences I

Forward Differences (FD)

\[y(p + \epsilon_{FD}) - y(p) = \frac{y'(p) + O(\epsilon_{FD})}{\epsilon_{FD}} \]

Centered Differences (CD)

\[\frac{y(p + \epsilon_{CD}) - y(p - \epsilon_{CD})}{2\epsilon_{CD}} = y'(p) + O(\epsilon_{CD}^2) \]

- can suffer from cancellation error and truncation error
- the finite difference perturbations \(\epsilon_{FD} \) and \(\epsilon_{CD} \) should be chosen to balance the cancellation and truncation error, keeping in mind the tolerance of the ODE solver (\(\epsilon_{ODE} \))
Results for Calcium Ion Problem in Matlab I

Figure: Experimental results demonstrating the poor performance of FD when a common step size is not used.
Results for Calcium Ion Problem in Matlab II

Figure: Experimental results demonstrating the relative performance of several of the methods in Matlab.
Variational Approach I

The variational approach results in the following ODE, which we obtain by taking the time derivative of \(\frac{\partial y}{\partial p}(t) \),

\[
\frac{d}{dt} \frac{\partial y}{\partial p}(t) = \frac{\partial}{\partial p} \frac{dy}{dt}(t)
\]

\[
= \frac{\partial}{\partial p} f(t, y(t, p), p)
\]

\[
= \frac{\partial f}{\partial y}(t) \frac{\partial y}{\partial p}(t) + \frac{\partial f}{\partial p}(t).
\]

This matrix valued ODE can be approximated simultaneously with the original system, (4), with the initial conditions, \(\frac{\partial y}{\partial p}(0) \), whose \((i,j)\) entry is,

\[
\frac{\partial y_i}{\partial p_j}(0) = \begin{cases}
1, & \text{if } p_j \text{ is the initial condition for } y_i \\
0, & \text{otherwise}
\end{cases}
\]
Green’s Function Method (GFM) [?] 1

\[K'(t, \tau) = f_y(t)K(t, \tau), \quad K(\tau, \tau) = 1 \]

\[K(t, \tau) = \frac{dy(t)}{dy(\tau)} \]

\[y_p(t) = K(t, 0)y_p(0) + \int_0^t K(t, \tau)f_p(\tau) \, d\tau \]

This reduces the variational equations to \(n^2 \) differential equations and \(n_y n_p \) integrals. Kernel Propagation:

\[K(t, \tau) = K(t, s)K(s, \tau) \]
Forward Green’s Function Method I

\[y_p(t + \Delta t) = K(t + \Delta t, t)y_p(t) + \int_t^{t+\Delta t} K(t, \tau)f_p(\tau)\,d\tau \]

Step \(y_p(t) \) through time, using the Piecewise Magnus Method (PMM) to obtain \(K(t + \Delta t, t) \).

\[K(t + \Delta t, t) = \exp \Omega(t + \Delta t, t) \]

- \(\Omega(t + \Delta t, t) \) is the Magnus series (truncate and approximate numerically)
- Need to compute the matrix exponential
- Forward propagation of \(y_p(t) \) amplifies errors
- At each quadrature point, \(t_q \), in \(\int_t^{t+\Delta t} K(t, \tau)f_p(\tau)\,d\tau \), we have to approximate \(K(t + \Delta t, t_q) \).
Adjoint Green’s Function Method I

\[K(t, \tau) = K^\dagger(\tau, t) \]

\[K^{\dagger'}(\tau, t) = K^\dagger(\tau, t)f_y(\tau), \quad K^\dagger(t, t) = 1 \]

- Can simulate the adjoint Green’s function kernel in reverse between observation points.
- Can then propagate \(y_p(t) \) forward between observation points.

\[y_p(t_i) = K(t_i, t_{i-1})y_p(t_{i-1}) + \int_{t_{i-1}}^{t_i} K(t_i, t_{i-1})f_p(\tau) \, d\tau \]
Method Comparison I

<table>
<thead>
<tr>
<th>method</th>
<th>TOL on (y(t))</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>highest</td>
<td>(n_p + 1) trajectories, most limited accuracy</td>
</tr>
<tr>
<td>CD</td>
<td>high</td>
<td>(2n_p) trajectories, limited accuracy</td>
</tr>
<tr>
<td>CS</td>
<td>above normal</td>
<td>(n_p) trajectories, complex arithmetic</td>
</tr>
<tr>
<td>Vari</td>
<td>normal</td>
<td>requires (f_y) and (f_p), direct error control</td>
</tr>
<tr>
<td>GFM</td>
<td>above normal</td>
<td>requires (f_y) and (f_p), indirect error control</td>
</tr>
</tbody>
</table>
Parallel Finite Differences I

Assuming that we have N threads available, the maximum number of simulations a single thread must perform is:

- **FD** - $\left\lceil \frac{n_p + 1}{N_p} \right\rceil$
- **CD** - $\left\lceil \frac{2n_p}{N_p} \right\rceil$

Figure: Speedups for FD and CD for $TOL = 10^{-4}$
Parallel Variational Approach I

Also best suited for parallelism across parameters

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (flops)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>50</td>
</tr>
<tr>
<td>f_y</td>
<td>100</td>
</tr>
<tr>
<td>f_{p_k}</td>
<td>4</td>
</tr>
<tr>
<td>$f_y y_{p_k}$</td>
<td>16</td>
</tr>
<tr>
<td>$f_y y_{p_k} + f_{p_k}$</td>
<td>4</td>
</tr>
</tbody>
</table>

- The right hand side requires at least $150 + 24$ flops, no matter how many parameters are being considered.
- The cost associated with a single parameter is roughly 24 flops.
- Max speedup $= \frac{150+(17)24}{150+24} \approx 3.2$.
Parallel Variational Approach II

![Graph showing speedup for parallel variational equations vs. number of processors. The graph includes experimental data points and a fitted model equation: \(0.06 + 0.01\left[\frac{n_p}{N_p}\right]\).]
Parallel Variational Approach III

Figure: Experimental results demonstrating how our parallel version of the Variational approach scales with the number of processors.
Parallel Forward GFM I

- Majority of the work is in approximating the Green’s function kernel (independent of the parameters).
- $K(t + \Delta t, t)$ only depends on $y(s)$, $s \in [t, t + \Delta t]$.
- We can approximate $K(t + \Delta t, t)$ before we actually have $y_p(t)$
- Parallelism across the time domain.
- Lower bound on cost will be the cost of simulating $y(t)$.
- Experimentally, cost of simulating $y(t)$ goes up as the number of threads increases.

The parallel version of the adjoint GFM is the same.
Figure: Speedups for the parallel forward GFM. This is done for $TOL = 10^{-4}$.
Parallel Forward GFM III

Theoretical speedups are based on,

\[S_{\text{theo}} = \frac{1}{f + \frac{1-f}{N_p}}. \]

- \(f = \text{fraction of computation that is not parallelizable (6\%)} \)
Theoretical Results I

Figure: Experimental results demonstrating how the parallel algorithms compare. This is done for $TOL = 10^{-4}$.
Experimental Results I

Figure: Experimental results demonstrating how the parallel algorithms compare. This is done for $TOL = 10^{-4}$.
Complex Step (CS) Method \[?\] I

\[y(p + i\epsilon_{CS}) = y(p) + i\epsilon_{CS}y'(p) - O(\epsilon_{CS}^2) - iO(\epsilon_{CS}^3)\].

Taking the imaginary part and isolating \(y'(p)\), we obtain,

\[y'(p) = \frac{1}{\epsilon_{CS}} \Im[y(p + i\epsilon_{CS})] + O(\epsilon_{CS}^2)\].

Furthermore, if we instead take the real part and isolate \(y(p)\), we obtain,

\[y(p) = \Re[y(p + i\epsilon_{CS})] + O(\epsilon_{CS}^2)\].

- Similar to forward version of automatic differentiation
- Unlike FD and CD, does not suffer from cancellation
- Requires complex arithmetic
Summary

- Reviewed several methods for computing sensitivities of ODEs
- Studied how each method can exploit parallelism and presented numerical results
- Most methods lend themselves to parallelism across parameters
- The Green’s Function Method is best parallelised across time

Thanks for listening.