

Background
● First year python course – fairly late in the term

– Variables, how python works
– standard data types, control flow, functions
– pot_hole_case and camelCase both used
– encourage code reuse
– Have just covered basics of time complexity and

went through some simple examples
● e.g. x in List is O(len(List)) and x in Set is O(len(Set))

– Full slides for this lecture have been posted shortly
before lecture, but the example we will consider has
been provided beforehand for students to think
about, along with some questions. (See next slide)

Background Material
● In this lecture, we’ll discuss how to write code with

time complexity in mind.
● Given a problem to solve, what can we do to make

sure our implementation is good enough?
● “Scrabble” game example:

– Given a hand of 7 letters and a list of English words,
find a word with the highest score.

– Think about what the code would look like to do this

– What is the time complexity of your algorithm?

● See Problem 6A: Computer Word Choose in Problem Set 3 at:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/unit-1/lecture-7-debugging/

● Or look at the 2008 version of the assignment:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/assignments/pset6.pdf

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/unit-1/lecture-7-debugging/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/assignments/pset6.pdf

Thinking about Time Complexity
when you program

● Usually there are multiple ways to implement
the same code specification.

● Code needs to be correct and sufficiently fast
for the application
– Video game frame rate ~ 60 fps
– UI needs to be responsive
– Keep in mind what hardware code will run on

● Poor implementation can lead to code that may
be surprisingly slow
– Be aware of the the time complexity of any

functions you are calling (check documentation)

Domain Knowledge
● Understanding the problem you are solving can

help you determine the best implementation
– What ranges of values do the inputs take?
– Are certain inputs more likely to occur? Or do some
never occur?

– What parts of the code are going to potentially
make the program slow? And just how slow?

● e.g. Short-circuiting: if B is more expensive to evaluate
than A, which code is cheaper to run?

B and A

OR

A and B

Example: “Scrabble” assignment
from MIT's CSC6.00.1x course

● The full assignment implements a “Scrabble”
game, where the player (human or computer)
tries to form words given a set of letters, such
that they get the highest score.

● e.g. Hand: r p o t r s a =>
● Program depends on a list of valid English

words that are read in from a file (words.txt)
● words.txt contains 83667 words
● See Problem 6A: Computer Word Choose in Problem Set 3 at:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/unit-1/lecture-7-debugging/MIT6_00SCS11_ps3.pdf

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/unit-1/lecture-7-debugging/MIT6_00SCS11_ps3.pdf

Scrabble Game Example

● We’ll focus on the code for the computer player:

comp_choose_word(hand,word_list)
● Given a hand of letters, pick the highest scoring word
● hand = frequency dictionary
● e.g. hand = {‘a’: 1, ‘u’ : 1, ‘l’ : 1, ‘c’: 1, ‘t’: 2, ‘f’: 1}
● word_list = list of English words
● Word score = len(word)*sum(letter values)

 + bonus 50 points if use all letters

– Best word?
– (score?)
–

Domain Knowledge
Example

● Consider English words
– A word is a string of letters that has meaning
– e.g. There are 267 possible strings of length 7

● That’s 8,031,810,176 or ~8 billion
● Only ~24,000 are words

– Most strings aren’t words
– How does this relate to our Scrabble game?

● A hand of 7 letters won’t contain many words

https://www.reddit.com/r/dataisbeautiful/comments/6jbt4d/a_distribution_of_english_words_by_length_using/

https://www.reddit.com/r/dataisbeautiful/comments/6jbt4d/a_distribution_of_english_words_by_length_using/

● We are first going to look at two
implementations and try to identify how they
can be improved:
– a student’s code
– a solution posted in an offering of the course

● Time permitting, we’ll consider two more
solutions based on the original assignment:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/assignments/pset6.pdf

comp_choose_word(hand,word_list)

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/assignments/pset6.pdf

A Student Solution

● Time Complexity in terms of n = len(word_list)?

 Run-time: seconds!

This function was implemented
in an earlier part of the
assignment and was not
intended to be used as it was by
the student.

How can we change the
student’s code?

Can switch the order that
we check the 2 conditions.

Why is this better?

Run-time:
 seconds!

● Define a new function is_word_in_hand
● student’s code still takes (0.12s)
● student’s code can call

is_word_in_hand instead (0.11s)
● Why is the run-time so similar?

● How often does “word in word_list” get
evaluated?

comp_choose_word
(the posted solution)

● The assignment provided a utility function:

get_perms(hand,length)

– returns a list of all permutations of the given length using the
letters in hand

● e.g. hand = { ‘c’ : 1, ‘a’ : 1, ‘t’ : 1 }
– get_perms(hand,1) -> []

– get_perms(hand,2) -> []

● Multiple calls to get_perms gives us all potential words in hand
● With a 7 letter hand, this gives 13669 potential words to check
● Recall, word_list contains 83667 words

Run-time: seconds!

Time
Complexity?

Remember, the student’s code took ~3x
longer. We reduced the number of loops
from 83667 to 13669 (a factor of 6, so
why only ~3x speedup?)

But wait, this is the “solution”?

● The modified student’s code is much faster than
the posted solution code (and arguably simpler)

● How can we fix this?
– Could use sets
– We want the intersection of possibleWords and

word_list
– Set intersection time complexity?
– Run-time: 0.059 seconds! (student code was 0.12s)

Code using sets

Student Solution: can we do better?
● What if we need the code to be faster than this?
● Can we avoid calls to is_valid_word?

– Use one (or more) cheaper checks combined with
short circuiting

– if and is_valid_word(...)
– if and (or) and

is_valid_word(...)

What if word_list doesn’t have to be a list?

of extra checks 0 1 2 3 4
Run-time 0.12s 0.031s 0.014s 0.0082s 0.0073s

comp_choose_word(hand,word_map)
● In the original version of the assignment, you

are asked to implement 2 improvements – both
based on making dictionaries that map
strings to scores.

● Why might using a dictionary be better here?
–

comp_choose_word
(based on 2008 course offering)

Word to Score dictionary

Run-time: 0.055 seconds!

Note, about the same run-time as when we used sets.
Why doesn’t storing the word scores in the dictionary help much?

●

Permutations and Combinations

● Can view a hand as a combination rather than
a permutation if we sort the hand

● e.g. ‘car’ and ‘arc’ are permutations of ‘acr’
– A hand can be turned into a key by sorting the

letters in alphabetical order
● The dictionary can map combinations of letters

rather than permutations (words).
● This reduces the dictionary to 69091 keys (from

the original 83667 words)

Permutations and Combinations

●
n
C

k
= n! / k!(n-k)!

●
n
P

k
= k!

n
C

k
= n! / (n-k)!

● Considering combinations instead of
permutations drops a factor of k!

● Recall, a hand of 7 letters contains 13699
permutations
– Only 127 combinations!
– 13699 / 127 => expect about 100x faster code!

Constructing the combination based
dictionary

● The keys are no longer words, so need to store
(one of) the words too (dict{str : tuple(str,int)})

Run-time:
 seconds!

About x faster, as
expected

Summary of Scrabble Example
● Student code 46s

– With short circuiting 0.0073s
● Posted solution 14s

– Using sets 0.059s
● word_to_score dictionary 0.055s
● hand_to_score dictionary 0.00041s

– Switching from permutations to combinations helped

We didn’t talk about it, but constructing the word_to_score and hand_to_score
dictionaries isn’t without cost. Depending on the context, this fixed startup cost
may outweigh the benefit of comp_choose_word being faster per call.

What about if we increase the hand size? How does each approach scale with
hand size?

Summary
● Understand the problem you are solving

– Try to use domain knowledge to make the problem
simpler

● Consider time complexity of all operations
– Given the expected inputs, will the run-time be fast

enough?
● If necessary, optimize the code to achieve the

required level of performance
– Identify bottlenecks in the code and try to find a

more efficient algorithm
– Avoid unnecessary computations

– (e.g. use short circuited and)

Additional Resources

● There are many websites with coding problems:
– https://www.hackerrank.com/
– https://codingcompetitions.withgoogle.com/codejam
– https://projecteuler.net/

● Mostly math / combinatorics / number theory problems

https://www.hackerrank.com/
https://codingcompetitions.withgoogle.com/codejam
https://projecteuler.net/

Wrap-Up

● A more practical lecture, which is to follow a
more formal discussion of time complexity and
code run-time.

● A case study of a simple task that can be
solved in several similar ways – with drastically
different performance.

● Designed so it could be a straight lecture, but
with opportunities for students to volunteer
ideas / think about what is going on
– Attempt to give some hints as to what ideas we

would be seeing later in the case study

Thanks for Listening!

Questions or comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

