Intro to Object Detection

CSC2548, 2018 Winter Bin Yang 17 Jan. 2018

"If I have seen further it is by standing on the shoulders of giants." - Isaac Newton

slides adopted from Ross Girshick, Chris McIntosh, Sanja Fidler, Mubarak Shah and many others

Object detection

- Introduction
- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model** \bullet
 - **Region-CNN** •
 - Fast versions of R-CNN •
 - · YOLO/SSD
- Future directions

Object detection

Introduction

- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model**
 - **Region-CNN** •
 - Fast versions of R-CNN
 - YOLO/SSD
- Future directions

Formalizing the object detection task

Many possible ways, this one is popular:

slide credit: Ross Girshick

Formalizing the object detection task

Many possible ways, this one is popular:

slide credit: Ross Girshick

Performance summary:

Average Precision (AP) 0 is worst 1 is perfect

Object detection

- Introduction
- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model**
 - **Region-CNN** •
 - Fast versions of R-CNN
 - YOLO/SSD
- Future directions

- using data from previous stage.

Viola/Jones face detector (2001, The Longuet-Higgins Prize in 2011)

• A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.

• A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)

• A 20 feature classifier achieve 100% detection

rate with 10% false positive rate (2% cumulative)

VJ face detection results

CNN based face detector (H. Qin, 2016)

Reference: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Qin_Joint_Training_of_CVPR_2016_paper.pdf

Demo

Object detection

- Introduction
- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model**
 - **Region-CNN** •
 - Fast versions of R-CNN
 - YOLO/SSD
- Future directions

The HOG Detector

N. Dalal and B. Triggs

Histograms of oriented gradients for human detection **CVPR**, 2005

Paper: http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Slide credit: Sanja Fidler

cited by 17,502

HOG detector: pipeline

Object detections with bounding boxes

Slide credit: Sanja Fidler

I. Sliding window

Object detections with bounding boxes

Slide credit: Sanja Fidler

locations

Detection window

14

II. Histograms of Oriented Gradients

Slide credit: Sanja Fidler

Weighted vote into spatial & orientation cells

Contrast normalize over overlapping spatial blocks

II. Histograms of Oriented Gradients

Slide credit: Sanja Fidler

II. Histograms of Oriented Gradients

Slide credit: Sanja Fidler

Compute gradients

Weighted vote into spatial & orientation cells

Contrast normalize over overlapping spatial blocks

۰.			۰.	x					+	1	1		1		-				-	-	 		+			. +				-	÷		Υ.	Υ.		
																													4							
																												÷								
									c	1																										
			1			-																														
											r.			-						1																
							1																													
																÷																				
																					Ŀ															
																		• •			۰.						-						-			
																			••																	
												•				+		•																		
										•						••																				
					4			••					2												1											
						••																														
											•*																									
										•																										
	+	-	-		-		•*		-	×.	.#	-	-	-	-	-	-					-		-							_					

9-dim feature vector

Slide credit: Sanja Fidler

III. SVM classifier

Slide credit: Sanja Fidler

Training:

٠

Detection:

Train a classifier (eg, person vs no person)

Use the trained classifier to predict

presence/absence of object class in each

window in the image

III. SVM classifier - training

Slide credit: Sanja Fidler

Predict presence/absence of object class in each image window

object to also capture **context** (works better!)

III. SVM classifier - training

Slide credit: Sanja Fidler

III. SVM classifier - training

Slide credit: Sanja Fidler

Train classifier. SVM (Support Vector Machines) is typically used.

22

III. SVM classifier - detection

Slide credit: Sanja Fidler

• Computing the score $\mathbf{w}^T \cdot \mathbf{x} + b$ in every location is the same as performing cross-correlation with template w (and add b to result).

Detection Phase

[Pic from: R. Girshik]

23

IV. Non-Maxima Suppression (NMS)

Slide credit: Sanja Fidler

overlap =

Remove all boxes that overlap more than XX (typically 50%) with the chosen box

24

IV. Non-Maxima Suppression (NMS)

Slide credit: Sanja Fidler

Non-maxima suppression (NMS)

- ٠
- ٠

Greedy algorithm.

At each iteration pick the highest scoring box.

Remove all boxes that overlap more than XX (typically 50%) with the chosen box

25

HOG detector: summary

Dalal & Triggs '05

- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick

Example: How can we deal with this guy?

Dalal & Triggs '05

- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick Pic credit: <u>http://www.deceptology.com/2011/02/participants-in-facebook-game-of-lying.html</u>

HOG detector: limitations

Dalal & Triggs '05

- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

We need flexible models!

Fischler & Elschlager '73 Felzenszwalb & Huttenlocher '00

- Pictorial structures
- Weak appearance models
- Non-discriminative training

Slide credit: Sanja Fidler, Ross Girshick Pic credit: http://www.deceptology.com/2011/02/participants-in-facebook-game-of-lying.html

The DPM Detector

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan

Object Detection with Discriminatively Trained Part Based Models

Paper: http://cs.brown.edu/~pff/papers/lsvm-pami.pdf Code: http://www.cs.berkeley.edu/~rbg/latent/

cited by 5,084

Slide credit: Sanja Fidler

T-PAMI, 2010

Deformable Part Model (DPM): key idea

Port the success of Dalal & Triggs into a part-based model

Slide credit: Ross Girshick

DPM: Model representation

- A model has a root filter F_0 and npart models (F_i, v_i, d_i)
 - F_i: *i*-th part filter
 - v_i : anchor position of *i*-th part relative to the root
 - d_i : deformation parameters for *i*-th part

Slide credit: Mubarak Shah, Ross Girshick

Coarse root filter

Higher resolution part filters

Deformation models

DPM: Object Hypothesis

In HOG feature pyramid

- root filter coarser scale
- part filters finer scale

Slide credit: Mubarak Shah

 $z = (p_0, ..., p_n)$ p_0 : location of root $p_1, ..., p_n$: location of parts Score is sum of filter scores minus deformation costs

DPM: Score of a Hypothesis

Slide credit: Mubarak Shah

 $score(z) = \beta \cdot \psi(H, z)$

 $\beta = (F_0, \dots, F_n, d_1, \dots, d_n, b)$ Unknown $\psi(H, z) = (\phi(H, p_0), \dots, \phi(H, p_n), -\phi_d(dx_1, dy_1), \dots, -\phi_d(dx_n, dy_n), 1)$ Unknown Known

33

DPM: Score of a Hypothesis

Slide credit: Mubarak Shah

Deformation models

DPM: Detection

- possible placement of the parts
- High-scoring root locations define detections
- Sliding-window approach
- distance transforms

root filter

part filters

Deformation models

The overall score of a root location is computed according to the best

```
score(p_0) = \max_{p_1, \dots, p_n} score(p_0, \dots, p_n)
```

Efficient computation (O(nk)): dynamic programming + generalized

DPM: Detection

Distance transform

- Response of the *i*-th part filter in the *l*-th level of the feature pyramid $R_{i,l}(x,y) = F_i \cdot \phi(H,(x,y,l))$
- Transformed response, given root is at (x,y) $D_{i,l}(x,y) = \max_{dx,dy} (R_{i,l}(x + dx, y + dy) - d_i \cdot \phi_d(dx, dy))$

(x,y)

Slide credit: Mubarak Shah

root filter

Higher resolution part filters

The *l*-th level of the feature pyramid $\phi(H, (x, y, l))$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$

$$d_i = (0, 0, 1, 1)$$

DPM: Detection

Slide credit: Mubarak Shah, Ross Girshick

DPM: Training

- No part location is available during training (latent)

Slide credit: Mubarak Shah

Positive training examples are labeled with bounding boxes • Aim: learn model parameters $\beta = (F_0, \dots, F_n, d_1, \dots, d_n, b)$

38

DPM: Latent Variables

- The positions of the parts are not given in both the training and the testing images
- The variables that exist but not known in training samples are called latent variables
- The learning algorithm must be able to find/discover the optimal values for the latent variables, namely the position of the parts.

Slide credit: Mubarak Shah

DPM: Training

- The classifier scores an example x by
 - β : the model parameters
 - z: latent values
 - Z(x): the possible latent values for example x

Slide credit: Mubarak Shah

$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$

DPM: Training

- Minimize the objective function
 - Labeled training examples $D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$ • $y_i \in \{-1,1\}$

Slide credit: Mubarak Shah

41

DPM: Latent SVM

- A latent SVM is semi-convex
 - $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$ is convex in β
 - For negative examples ($y_i = -1$), the hinge loss is convex $\max(0,1-y_i f_\beta(x_i)) = \max(0,1+f_\beta(x_i))$
 - (the maximum of two convex function)
 - For positive examples ($y_i = 1$), the hinge loss is not convex $\max\left(0,1-y_if_\beta(x_i)\right)=\max(0,1-f_\beta(x_i))$
 - (the maximum of a convex function and a concave function) If the latent value for positive examples are fixed, the hinge loss is convex

Slide credit: Mubarak Shah

42

DPM: Latent SVM

- for all the positive examples
- Iterative optimization:
 - (exactly the same with detection!)
 - Optimize β : fix z, optimize β by solving the convex problem

Slide credit: Mubarak Shah

• Initialize β using standard SVM by assuming the same parts locations

• Relabel positive examples: fix β , find the best z for each positive example

DPM: Mixture model

- A mixture model consists of *m* components
- Captures extreme intra-class variation

Mixture Model Example - Person

Slide credit: Mubarak Shah

• Split the positive bounding boxes into *m* groups by aspect ratio

Mixture Model Example - Bicycle

44

DPM on PASCAL VOC

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

Slide credit: Ross Girshick

Ross Girshick

Lifetime Achievement Award by PASCAL VOC

41% Selective Search, DPM++, MKL

♦Top competition results (2007 -2012)

VOC'12

Object detection

- Introduction
- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model**
 - **Region-CNN** •
 - Fast versions of R-CNN •
 - YOLO/SSD
- Future directions

Object detection renaissance (2013-present)

Slide credit: Renjie Liao

Deep object detection

Object Detection

🛗 Published: 09 Oct 2015 🛛 🗁 Category: deep_learning

Slide credit: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

SSD

- Inside-Outside Net (ION)
- G-CNN
- HyperNet
- MultiPathNet
- CRAFT
- OHEM
- R-FCN
- MS-CNN
- PVANET
- GBD-Net
- StuffNet
- Feature Pyramid Network (FPN)
- YOLOv2
- DSSD

R-CNN: Regions with CNN features

Slide credit: Girshick R, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR2014

Training

Training

Training

R-CNN Results

- DPM v5 (Girshick
- Regionlets (Wang
 - R-CNN (Ale>
 - **R-CNN** (AlexNe
 - R-CNN (VGC
 - R-CNN (VGGNe

	VOC2007
et al. 2011)	33.7%
et al. 2013)	41.7%
xNet)	54.2%
et) + BB	58.5%
GNet)	62.2%
et) + BB	66.0%

R-CNN Results

- DPM v5 (Girshick
- Regionlets (Wang
 - R-CNN (Ale>
 - R-CNN (AlexNe
 - R-CNN (VGC
 - R-CNN (VGGNe
 - R-CNN (VG
 - Train
 - Test

	VOC2007
et al. 2011)	33.7%
et al. 2013)	41.7%
xNet)	54.2%
et) + BB	58.5%
GNet)	62.2%
et) + BB	66.0%
GNet)	Time
	84 hours
	47 s/im

Slow R-CNN

Slide credit: Ross Girshick

Object Detection System

Getting Proposals Feature Extraction

Classifier

Object Detection System

Getting Proposals Feature Extraction

Classifier

Spatial Pyramid Pooling

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014

Spatial Pyramid Pooling

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014

Frozen (13 layers)

Slide credit: Ross Girshick

SPP-net

R-CNN (ZFNet) R-CNN (VGGNet) SPP (ZFNet) SPP (VGGNet)

SPP-net Results

VOC2007	Speed
59.2%	14.5 s/im
66.0%	47.0 s/im
59.2%	0.38 s/im
63.1%	2.3 s/im

Object Detection System

Getting Proposals Feature Extraction

Classifier

SPP

Object Detection System

Getting Proposals Feature Extraction Classifier

Fast R-CNN

Totally end-to-end!

Multi-task loss

Fast R-CNN Results

SPPNet BB R-CNN BB Fast RCNN Fast RCNN (07+12)

\mathbf{V}	\bigcap	$\bigcirc 2$	\bigcap	$\cap 7$	7
			U	U I	

63.1%

66.0%

66.9%

70.0%

Object Detection System

Getting Proposals Feature Extraction Classifier Fast R-CNN

Object Detection System

Getting Proposals Feature Extraction Classifier

(e.g. selective search)

Faster R-CNN

Slide credit: Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS2015

Region Proposal Network

anchor	$128^2, 2:1$	$128^2, 1:1$	128 ² , 1:2	256 ² , 2:1	$256^2, 1:1$	256 ² , 1:2	$512^2, 2:1$	512^2 , 1:1	512 ² , 1:2
proposal	188×111	113×114	70×92	416×229	261×284	174×332	768×437	499×501	355×715

- Sliding window style
- Multi-scale predictions on fix-sized window for efficiency (take advantage of the large receptive field of CNN features)
- Same loss as R-CNN (cls+bbox)

Region Proposal Network

Faster R-CNN Results

• Fewer and better proposals not only bring speedup, but also detection performance boost.

method	# proposals	data	mAP (%)	time (ms)
SS	2k	07	66.9	1830
SS	2k	07+12	70.0	1830
RPN+VGG, unshared	300	07	68.5	342
RPN+VGG, shared	300	07	69.9	196
RPN+VGG, shared	300	07+12	73.2	196

Object Detection System

Getting ProposalsFeature ExtractionClassifierFaster R-CNN
Efficient Object Detection System

Getting Proposals Feature Faster R-CNN

66.0% 47 s/im

Feature ExtractionClassifierSPPFast R-CNN

66.0% —> 73.2%

47 s/im --> 0.2 s/im

Example: Driving

	Pascal 2007 mAP	Speed		
DPM v5	33.7	.07 FPS	14 s/img	
R-CNN	66.0	.05 FPS	20 s/img	

Slide credit: Joseph Chet Redmon

1/3 Mile, 1760 feet

74

Example: Driving

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img

Slide credit: Joseph Chet Redmon

75

Example: Driving

_

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

12 feet

Slide credit: Joseph Chet Redmon

76

Real-time object detectors?

Slide credit: Wei Liu

YOLO: You Only Look Once

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016

locations

class prob.

78

YOLO: output parameterization

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = **1470 outputs**

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016

79

YOLO: limitations

- Small objects
- Objects with different shapes/sizes
- Occluded objects

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016

SSD: Single Shot MultiBox Detector

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

81

SSD: Single Shot MultiBox Detector

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

81

SSD: YOLO + default box shape + multi-scale

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

82

SSD: YOLO + default box shape + multi-scale

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

83

Object detection

- Introduction
- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model**
 - **Region-CNN** •
 - Fast versions of R-CNN
 - YOLO/SSD
- Future directions

84

85

Real-time 3D object detection

<u>Car</u>

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard	
1	AVOD	•••		85.44 %	86.80 %	77.73 %	
2	<u>F-PointNet</u>	•••		84.00 %	88.70 %	75.33 %	
3	DF-PC_CNN	•••		80.69 %	88.89 %	76.04 %	
4	<u>NVLidarNet</u>	•••		80.04 %	84.44 %	74.31 %	

- Real-time 3D object detection
- Adversarial examples for object detection

85

- Real-time 3D object detection
- Adversarial examples for object detection
- Weakly-supervised instance segmentation

kitchen 0.54 oven 0.51 stove 0.56	refrigerator 0.54
burner 0.52	pot 0.74 bottle 0.56
knob 0.83 0.57ob 0. knob 0.knob 0.71b 0.7 handle 0.51	chelf 0.61 shelf 0.73
door 0.55	jar 0.55

tection entation

85

- Real-time 3D object detection
- Adversarial examples for object detection
- Weakly-supervised instance segmentation
- High-level scene graph construction

Object detection

- Introduction
- Face detection: from Viola-Jones to CNN
- General object detection
 - HOG detector
 - **Deformable Part-based Model** •
 - **Region-CNN** •
 - Fast versions of R-CNN •
 - · YOLO/SSD
- Future directions

