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“If | have seen further it is by standing on the shoulders of giants.” - Isaac Newton
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- Deformable Part-based Model
Region-CNN
Fast versions of R-CNN
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- Future directions
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Formalizing the object detection task

Many possible ways, this one is popular:
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Formalizing the object detection task
Many possible ways, this one is popular:
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Object detection

Introduction
Face detection: from Viola-dones to CNN

General object detection

HOG detector

Deformable Part-based Model
Region-CNN

Fast versions of R-CNN
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Future directions




VIO\a/JOﬂeS faCe deteCtOr (2001, The Longuet-Higgins Prize in 2011)

Cascaded Classifier
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A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

* A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)

— using data from previous stage.

o A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative)

slide from David Lowe



VJ tface detection results
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CNN based face detector . ain, 2016)
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Demo

Reference: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Qin_Joint_Training_of CVPR_2016_paper.pdf



http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Qin_Joint_Training_of_CVPR_2016_paper.pdf

Object detection

+ (General object detection
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Slide credit: Sanja Fidler

The HOG Detector

N. Dalal and B. Triggs

Histograms of oriented gradients for human detection

CVPR, 2005

Pa pe I'. http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

cited by 17,502
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HOG detector

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

Slide credit: Sanja Fidler

- pipeline
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. Sliding window

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

Slide credit: Sanja Fidler
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Detection window
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. Histograms of Oriented Gradients

Scan image(s) at all
scales and locations

Extract features over
windows
Run linear SVM

classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

Slide credit: Sanja Fidler

Compute

gradients

Weighted vote
—>»| into spatial &
orientation cells

Contrast normalize

—>»| over overlapping
spatial blocks




. Histograms of Oriented Gradients

Weighted vote Contrast normalize
over overlapping
Scan image(s) at all orientation cells spatial blocks

scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with |
bounding boxes | ,\
| }/] '_\-’\ > grad ient

Slide credit: Sanja Fidler e 260*  Onewtodtion
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. Histograms of Oriented Gradients

Compute Weighted vote Contrast normalize
gradients into spatial & —>| over overlapping
Scan image(s) at all orientation cells spatial blocks

scales and locations

Extract features over VP -
windows
Run linear SVM

classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

) 9-dim feature vector

Slide credit: Sanja Fidler
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. Histograms of Oriented Gradients

Compute Weighted vote Contrast normalize
gradients into spatial &  |—> over overlapping
Scan image(s) at all orientation cells spatial blocks

scales and locations

Extract features over Cell —
windows

Block
Run linear SVM
classifier on all
locations Overlap — N\
of Blocks %
Fuse multiple
detections in 3-D
position & scale space Feature vector [ = [ T iT ]
Object detections with £

bounding boxes L2 normalization in f

Slide credit: Sanja Fidler each block: \/‘ ‘f‘ |§ -+ 62




[[l. SVM classifier

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM

classifier on all

Fuse multiple
detections in 3-D
position & scale space

Object detections with
bounding boxes

Slide credit: Sanja Fidler

Train Predict presence/absence
classifier of object class in each
image window

Training:

* Train a classifier (eg, person vs no person)

Detection:

* Use the trained classifier to predict

presence/absence of object class in each
window in the image

19



[1l. SVM classifier - training

Learning phase

Input: Annotations on training
images

Create fixed-resolution

normalised training image
data set

Encode images into feature
spaces

v

Learn binary classifier

Pics: S. Lazebnik
Slide credit: Sanja Fidler

Train Predict presence/absence
classifier of object class in each
image window

positive training examples

i Wl

negative training examples

All image crops are scaled to the same size (for this
example (15x8) x (7x8) pixels), where 8 is the width/
height of each HOG cell in pixels

Cool trick: take a bigger region than each annotated

object to also capture context (works better!)
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[1l. SVM classifier - training

Train Predict presence/absence
classifier of object class in each
=

positive training examples

Learning phase

Input: Annotations on training
Images

Create fixed-resolution negaﬁve training examp'es
normalised training image ‘

data set

Encode images into feature
spaces

Learn binary classifier “picture” is really a 15x7x31 feature matrix.

*** These are just feature visualizations. Each

Before training a classifier, we vectorize each of
these examples: f=f(:)

Slide credit: Sanja Fidler



[1l. SVM classifier - training

Trai Predict presence/absence
e f object class in each
classifier . i ) .
image window

Learning phase

Input: Annotations on training
Images

Create fixed-resolution
normalised training image
data set

pOS W

Encode images into feature
spaces

Train classifier. SVM (Support Vector Machines)

Is typically used.

Slide credit: Sanja Fidler



[[l. SVM classifier - detection

@ Computing the score w’ - x + b in every location is the same as performing

. cross-correlation with template w (and add b to result).
Scan image(s) at all

scales and locations Train Predict presence/absence
classifier of object class in each
image window

' Detection Phase
Extract features over
windows

SCOI’E(/, P) =Rk ¢(Ia P)

Run linear SVM

classifier on all

e

T

Fuse multiple
detections in 3-D
position & scale space

gﬁ
i
i

Image pyramid HOG feature pyramid
[Pic from: R. Girshik]

i

Object detections with
bounding boxes

Slide credit: Sanja Fidler



V. Non-Maxima Suppression (NMS)

w'.

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple

detections in 3-D
position & scale space

Object detections with
bounding boxes

Slide credit: Sanja Fidler

Non-maxima suppression (NMS)

overlap =

area(box1 U boxs) remove

I~
> 0.5 = box s

Remove all boxes that overlap more than XX (typically
50%) with the chosen box

area(box; Nboxs)



V. Non-Maxima suppression (NMs)

W 2

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple

detections in 3-D
position & scale space

Non-maxima suppression (NMS)

* Greedy algorithm.
Object detections with * At each iteration pick the highest scoring box.

bounding boxes * Remove all boxes that overlap more than XX (typically

50%) with the chosen box
Slide credit: Sanja Fidler



HOG detector: summary

Dalal & Triggs ’05
- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick
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Example: How can we deal with this guy”

Dalal & Triggs 05
- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick
Pic credit: http://www.deceptology.com/2011/02/participants-in-facebook-game-of-lying.htm|

27
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HOG detector: [Imitations

Dalal & Triggs 05
- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

We need flexible models!

PR Fischler & Elschlager’73
4 Felzenszwalb & Huttenlocher ’00
- Pictorial structures

- Weak appearance models
- Non-discriminative training

Slide credit: Sanja Fidler, Ross Girshick
Pic credit: http://www.deceptology.com/2011/02/participants-in-facebook-game-of-lying.htm|
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Slide credit: Sanja Fidler

The DPM Detector

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan
Object Detection with Discriminatively Trained Part Based Models

T-PAMI, 2010

Pa PEr. http://cs.brown.edu/~pff/papers/lsvm-pami.pdf
Code: http://www.cs.berkeley.edu/~rbg/latent/

cited by 5,084

29



Deformable Part Model (DPM): key idea

Port the success of Dalal & Triggs
into a part-based model

AP 12% 27 % 36% 45%
2005 2008 2009 2010

Slide credit: Ross Girshick
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DPM: Model representation

* Amodel has a root filter F, and n
part models (Fj, v;, d;)
* F;:1-th part filter
* v;: anchor position of i-th part relative
to the root

* d;: deformation parameters for i-th part

Slide credit; Mubarak Shah, Ross Girshick

Coarse
root filter

Higher resolution
part filters

Deformation
models

31



DPM: Object Hypothesis

* In HOG feature pyramid
* root filter - coarser scale
* part filters - finer scale

SEEramnms
EED JEEEN

Image pyramid HOG feature pyramid

Slide credit: Mubarak Shah

po: location of root

..... P» - location of parts

Score 1s sum of filter
SCores minus
deformation costs

32



DPM: Score of a Hypothesis

data term spatial prior

n n
score(po, ...,Pn) = Z F; - ¢g<t i) — Z di - ¢a(dx;, dy;)+ b
= =l

P et ot o 5

Deformation  Displacement of Bias

Filters  subwindow barameters part i relative to

at location p, its anchor position

Score of a hypothesis z is
score(z) =B -yY(H, z)
where
B = (F,,..,E,dy,..,d,,b) Unknown
l/J(H, Z) — (¢(H, pO)' eee ) d)(Hr pn): _¢d (dxll dy1); ee ) _d)d (dxn' d)’n)r 1) Known

Slide credit: Mubarak Shah



DPM: Score of a Hypothesis

score(py, ...

Slide credit: Mubarak Shah

data term spatial prior
n
,pn) Fi - d’(H Di) — d; - ¢d(dxi: d)’i)
7/ =1 \
Feature of Deformation
Filters subwindow
, parameters
at location p.
Oqldr.,dy) = ((/.1'.’(/,1/. d.r
Initial Value

(to be learned)

+b "

Displacement of
part i relative to
its anchor position

F (/,1/2)

Bias

Py

-
-

Deformation
models
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DPM: Detection

Coarse Higher resolution = Deformation
root filter  part filters models

* The overall score of a root location is computed according to the best
possible placement of the parts
score(py) = max score(py, ..., Pn)

pl:---:pn

* High-scoring root locations define detections
* Sliding-window approach

* Efficient computation (O(nk)): dynamic programming + generalized
distance transforms

Slide credit: Mubarak Shah



DPM: Detection

Coarse Higher resolution = Deformation
root filter  part filters models

e Distance transform

* Response of the i-th part filter in the [-th level of the feature pyramid
Ri,l(x:y) — Fi ' ¢(Hr (x,y, l))
* Transformed response, given root is at (x,y)

Di(x,y) = max (Ri;(x +dx,y +dy) —d; - ¢pq(dx,dy))
(X/y) (Ii — (0 O 1 1)

dq(de.dy) = (dx, dy. de?, dy?)

Slide credit: Mubarak Shah
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DPM: Detection

Slide credit: Mubarak Shah, Ross Girshick

model
feature map at twice the resolution

‘‘‘‘‘‘

.....

llllllllll

----------

-
. A response of part filters

response of root filter & .
s D =
. -

e - -

transformed responses I

color encoding of filter
response values
_ . ol combined score of
low value high value i root locations
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DPM: Training

* Positive training examples are labeled with bounding boxes
* No part location is available during training (latent)
* Aim: learn model parameters § = (F,, ..., E,,d4, ...,d,, b)

Training 57 )

Slide credit: Mubarak Shah
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DPM: Latent Variables

* The positions of the parts are not given in both the training and the
testing images

* The variables that exist but not known in training samples are called
latent variables

* The Iearninﬁ algorithm must be able to find/discover the optimal
values for the latent variables, namely the position of the parts.

Slide credit: Mubarak Shah

39



DPM: Training

* The classifier scores an example x by

fp(x) = max B-®(x,z)

* [5:the model parameters
* Z: latent values

* Z(x):the possible latent values for example x

Slide credit: Mubarak Shah
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DPM: Training

* Minimize the objective function

Lo(B) =5 1B I+ C Y max(0,1 — yifp (x)
=1

* Labeled training examples D = ({x1, V1), -, (X0, ¥n))
* Vi € {_1'1}

Slide credit: Mubarak Shah
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DPM: Latent SVM

* A latent SVM is semi-convex

* fp(x) = ngzeg()ﬁ - ®(x,z) is convex in f§

* For negative examples (y; = —1), the hinge loss is convex
max (0,1 —Yifp (Xi)) = max(0,1 + fp(x;))

(the maximum of two convex function)
* For positive examples (y; = 1), the hinge loss is not convex

max (0,1~ yifp (x)) ) = max(0,1 — f(x))

(the maximum of a convex function and a concave function)
* |f the latent value for positive examples are fixed, the hinge loss is convex

Slide credit: Mubarak Shah
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DPM: Latent SVM

* |nitialize [ using standard SVM by assuming the same parts locations
for all the positive examples

* |terative optimization:

* Relabel positive examples: fix 5, find the best z for each positive example
(exactly the same with detection!)

* Optimize (: fix z, optimize 8 by solving the convex problem

Slide credit: Mubarak Shah
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DPM: Mixture moaqel

* A mixture model consists of m components
* Captures extreme intra-class variation
* Split the positive bounding boxes into m groups by aspect ratio

Mixture Model Example - Bicycle

Slide credit: Mubarak Shah
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DPM on PASCAL VOC

70
60
50 plateau & increasing complexity
é
41% 41%
5 40 38% ng S l<> ti
o ++, Selective N
) vaos  DPM™  MKL  Search Ross Girshick
% ~ 23% < Selective DPM++, ®Top
17% O DPM, Search MKL competition
20 o DPM,  MKL results (2007 - - |
opM HOG+BOW 2012) Lifetime Achievement Award
10 by PASCAL VOC
0

vOC'07 VOC'08 VOC'09 VOC10 VOC'1ll VOC12

PASCAL VOC challenge dataset
[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

Slide credit: Ross Girshick



Object detection

- Region-CNN
- Fast versions of R-CNN
- YOLO/SSD

46



Object detection renaissance (2013-present)

80% PASCAL VOC

A

™ 70% A
= A
£ 60% Before deep convnets R-CNNv1
S \
2 2% r \ )
@
& 40% A A |
L A Using deep convnets
1) 0
§E 30% A
< A

20%
= A
QD
£ 10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

Slide credit: Renjie Liao



Deep object detection

Object Detection
Published: 09 Oct 2015 % Category: deep_learning

e Inside-Outside Net (ION)

e G-CNN
Jump to... « HyperNet
e Leaderboard e MultiPathNet
« Papers e CRAFT
« R-CNN « OHEM
o MultiBox « R-FCN
+ MS-CNN
e DeeplD-Net e PVANET
e NoC e GBD-Net
e Fast R-CNN e StuffNet
e DeepBox e Feature Pyramid Network (FPN)
« MR-CNN e YOLOv2
+ DSSD

o AttentionNet

e DenseBox

Slide credit: https://handong1587.github.io/deep learning/2015/10/09/object-detection.htm
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R-CNN

7 acroplane? no.

~>{person? yes.

N\

A :
tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
Image proposals (~2k) CNN features regions

Slide credit: Girshick R, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR2014



1. Pre-train CNN for image classification

large auxiliary
dataset (ImageNet)

Slide credit: Ross Girshick



1. Pre-train CNN for image classification

large auxiliary
dataset (ImageNet)

2. Fine-tune CNN on target dataset
and task

iw ' ~ (optional)

small target
dataset (PASCAL VOC)

Slide credit: Ross Girshick



1. Pre-train CNN for image classification

large auxiliary
dataset (ImageNet)

2. Fine-tune CNN on target dataset
and task

o Fre-une oy

small target
dataset (PASCAL VOC)

~2000 warped per class

windows / image SVM
small target

dataset (PASCAL VOC)

Slide credit: Ross Girshick



R-CNN Results

VOC2007

DPM v5 (Girshick et al. 2011) 33.7%

Regionlets (Wang et al. 2013) 41.7%

R-CNN (AlexNet) 54.2%
R-CNN (AlexNet) + BB 58.5%
R-CNN (VGGNet) 62.2%

R-CNN (VGGNet) + BB 66.0%



R-CNN Results

VOC2007

DPM v5 (Girshick et al. 2011) 33.7%

Regionlets (Wang et al. 2013) 41.7%

R-CNN (AlexNet) 54.2%
R-CNN (AlexNet) + BB 58.5%
R-CNN (VGGNet) 62.2%
R-CNN (VGGNet) + BB 66.0%

R-CNN (VGGNet) Time
Train 84 hours

Test 47 s/im



Slow R-CNN

Apply bounding-box regressors

Bbox reg

SVMs

Classify regions with SVMs

Bbox reg

Bbox reg

Slide credit: Ross Girshick

ConvNet

ConvNet

b Warped image regions

Forward each region
through ConvNet

 —

—

Regions of Interest (Rol)
from a proposal method

(~2k)




Object Detection System

7 2croplane? no.

tvmonitor? no.

Getting Proposals  Feature Extraction Classitier



Object Detection System

Feature Extraction



Spatial Pyramid Pooling

Image - » conv layers » fc layers » output

Image > conv layers > > fc layers > output

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014



fully-connected layers (fcg, fcy)

4 16%x256-d

4 4x%256-d

LT,

4 256-d

spatial pyrémid pooling layer

feature maps of convs
(arbitrary size)

|| convolutional layers

input image

[pool3x3]
type=pool
pool=max
inputs=conv5
sizeX=5
stride=4

[fc6]
type=fc

outputs=4096

[pool2x2]
type=pool
pool=max
iInputs=conv>5
sizeX=7
stride=6

inputs=pool3x3,pool2x2,poollxl

[poollx1]
type=pool
pool=max
inputs=conv5
sizeX=13
stride=13

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014



SPP-net

pr—

SVMs

Bbox reg

Trainable =<
(3 layers)

o |
- i
= & =

Frozen —

(13 layers) ConvNet

Slide credit: Ross Girshick



SPP-net Results

VOC2007 Speed

R-CNN (ZFNet) 59.2% 14.5 s/im
R-CNN (VGGNet) 66.0% 47.0 s/im
SPP (ZFNet) 59.2% 0.38 s/im

SPP (VGGNet) 63.1% 2.3 s/im



Object Detection System

Feature Extraction

SPP



7 2croplane? no.

> person? yes.

Classifier



Fast R-CNN

Totally end-to-end!

Log loss + smooth L1 loss Multi-task loss

) A ¥ _

softmax Linear

LY 'd

FCs

% 1 \N
A o &S

|

ConvNet

& \: , =
\ - 5 -
o r =4
- ‘7 m( ‘-/%.\
. S . .- ~-
-l - o _ .‘. N — -

Slide credit: Ross Girshick



Fast R-CNN Results

VOC2007
SPPNet BB 63.1%
R-CNN BB 66.0%
Fast RCNN 66.9%

Fast RCNN (07+12) 70.0%



Object Detection System

acroplane? no.

N

> person? yes.

tvmonitor? no.

Classifier

Fast R-CNN



Object Detection System

aeroplane? no.
person? yes.

Getting Proposals caiure Exiraction Classifier

(e. . selective search)



classifier

Rol pooling

proposals

Region Proposal Network

feature maps

conv layers /

L

Slide credit: Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS2015



2k scores

cls layer \

4k coordinates

’ reg layer

256-d

t intermediate layer

sliding window

conv feature map

—

k anchor boxes

Sliding window style

Multi-scale predictions on fix-sized
window for efficiency (take advantage of
the large receptive field of CNN features)

Same loss as R-CNN (cls+bbox)




300 proposals 1000 proposals 2000 proposals

— RPN VGG — RPN VGG — RPN VGG

OL |  ( l 1 OL | 1 1 OL 1 I
0.5 0.6 0.7 0.8 0.9 1 05 0.6 0.7 0.8 0.9 1 05 0.6 0.7 0.8
loU loU loU

Figure 2: Recall vs. IoU overlap ratio on the PASCAL VOC 2007 test set.




* Fewer and better proposals not only bring speed-
up, but also detection performance boost.

method # proposals time (ms)

SS 2k 66.9 1830
SS 2k O7+12 70.0 1830

RPN+VGG, unshared 300 68.5
RPN+VGG, shared 300 69.9 196
RPN+VGG, shared 300 O7+12 73.2 196




Object Detection System

7 acroplane? no.

>|person? yes.

tvmonitor? no.

Getting Proposals caiure Exiraction Classifier

Faster R-CNN



Efficient Object Detection System

7 acroplane? no.

Getting Proposals  Feature Extraction Classitier

Faster R-CNN SPP Fast R-CNN

66.0% —> 73.2%
47 s/im —> 0.2 s/im



Example: Driving

' Pascal 2007 mAP ' Speed

DPM v5 33.7 .07 FPS | 14 s/img
R-CNN 66.0 .05 FPS | 20 s/img

Y5 Mile, 1760 feet
 — >

Slide credit: Joseph Chet Redmon
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Example: Driving

‘ Pascal 2007 mAP ‘ Speed

DPM v5 33.7 .07 FPS | 14 s/img
R-CNN 66.0 .05 FPS | 20s/img
Fast R-CNN 70.0 SFPS |2s/img

7/ 176 Feet

Slide credit: Joseph Chet Redmon
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Example: Driving

Pascal 2007 mAP |Speed

DPM v5 33.7 .07 FPS | 14 s/img

R-CNN 66.0 .05 FPS | 20 s/img

Fast R-CNN 70.0 S FPS |2s/img

Faster R-CNN 73.2 7 FPS 140 ms/img
8 feet

/N 12 feet

Slide credit: Joseph Chet Redmon




Real-time object detectors”

A

SSD512
80 80% MAP / 19 fps

SSD300
— 77% MAP / 46 fps

|

al
< Faster R-CNN, Ren 2015
- 73% mAP / 7 fps e
) ‘\\;
g)) A ‘5\‘6%0\@59\
+ S
N ¢°
8 7OAFast R-CNN, Girshic‘l&moSQo%a\ ¥
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YOLO: You Only Look Once
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Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016



YOLO: output parameterization

Each cell predicts:

- For each bounding box: — o= ===

4 coordinates (x, y, w, h) :I ... ..... .
1 confidence value 7 II .-- -.... .
- Some number of class |= === ===== =
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7x7x(2x5+20)=7x7x30tensor = 1470 outputs

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016



YOLO: limitations

 Small objects
* Objects with different shapes/sizes
 Occluded objects

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016
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SSD: Single Shot MultiBox Detector
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Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016




SSD: Single Shot MultiBox Detector
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Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016




SoD: YOLO + default box shape + multi-scale
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Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

(c) 4 x 4 feature map
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SoD: YOLO + default box shape + multi-scale
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Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016
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Object detection

- Future directions
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Future directions:
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Future directions:

* Real-time 3D object detection —
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.......................................................................................................................................................................................................................................................................

5 : Method Setting : Code Moderate Easy Hard Runtime
1 AVOD w 85.44%  86.80% = 77.73% = 0.08s
2 F-PointNet [ 84.00%  88.70% = 75.33% = 0.17s
3 DFPCCNN [ 80.69 % 88.89% = 76.04 % 0.55
4 NVlidarNet [ 80.04% = 84.44% & 7431% 0.1s




Future directions:

* Real-time 3D object detection
 Adversarial examples for object detection

Original Image Detected = Whole Image Attacked
WS T | YGRS Y T P

Sign Region Attacked
‘.‘ « Rp'¥ ' (.‘.':«‘&j 1R 1“.’4/ WS ./V/, < o

-:'T'

- ] ; - 4 g
.. T L L .. A LU
’ - 4 'l:l'h .}’,- ' » N j i‘(:': e A
2 - [ ¥y e e » ! < | ¥y W v of
; 'Y s ‘ — ¥ 5 8 o

85



Future directions:

Real-time 3D object detection
 Adversarial examples for object detection
 Weakly-supervised instance segmentation
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Future directions:

* Real-time 3D object detection
 Adversarial examples for object detection
 Weakly-supervised instance segmentation
* High-level scene graph construction




Object detection

- Introduction
- Face detection: from Viola-Jones to CNN

+ (General object detection

- HOG detector

- Deformable Part-based Model
Region-CNN
Fast versions of R-CNN

- YOLO/SSD

- Future directions
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