CSC2541, 2017 Winter Bin Yang 13 Feb. 2017

"If I have seen further it is by standing on the shoulders of giants." - Isaac Newton

slides adopted from Ross Girshick, Chris McIntosh, Sanja Fidler, Mubarak Shah and many others

Object Detection

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region-CNN
 - Fast versions of R-CNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region-CNN
 - Fast versions of R-CNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

Image understanding

Snack time in the lab

photo by "thomas pix" http://www.flickr.com/photos/thomaspix/2591427106

slide credit: Ross Girshick

What objects are where?

slide credit: Ross Girshick

robot: "I see a table with twinkies, pretzels, fruit, and some mysterious chocolate things ... "

Formalizing the object detection task

Many possible ways, this one is popular:

slide credit: Ross Girshick

Formalizing the object detection task

Many possible ways, this one is popular:

slide credit: Ross Girshick

Performance summary:

Average Precision (AP) 0 is worst 1 is perfect

Example 1: Find Waldo!

image *I*

slide credit: Chris McIntosh

1. Make the template as a filter

image *I*

slide credit: Chris McIntosh

filter F

2. Result of normalized cross-correlation

slide credit: Chris McIntosh

3. Find the highest peak

slide credit: Chris McIntosh

4. Put a bounding box (the size of template) at the point

slide credit: Chris McIntosh

Example 2: Find all persons?

slide credit: Chris McIntosh

Example 2: Find all persons?

slide credit: Chris McIntosh

A template for all instances?

Example 2: Find all persons?

slide credit: Chris McIntosh

A template for all instances?

We need features!

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region CNN
 - Fast versions of RCNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

The HOG Detector

N. Dalal and B. Triggs

Histograms of oriented gradients for human detection CVPR, 2005

Paper: http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Slide credit: Sanja Fidler

cited by 17,502

HOG detector: pipeline

Object detections with bounding boxes

Slide credit: Sanja Fidler

I. Sliding window

Object detections with bounding boxes

Slide credit: Sanja Fidler

locations

Detection window

19

II. Histograms of Oriented Gradients

Slide credit: Sanja Fidler

Weighted vote

II. Histograms of Oriented Gradients

Slide credit: Sanja Fidler

II. Histograms of Oriented Gradients

Slide credit: Sanja Fidler

Compute gradients

Weighted vote into spatial & orientation cells

Contrast normalize over overlapping spatial blocks

			×.			1		÷	×			ι.	 -	-	-					÷	ι.	÷					+	÷		ų.	ι.		
																									Т								
											1																					2.	
										1																							
	1	1		1																													
																					-												
										2																							
						~																											
																-																	
														۴																			
																															٠		
																	••	•1	*	۰.													
																								-									
																	-	•••															
																	•																
														١.	••	N							×										
								•						•																			
						••						×																					
					•																												
											•																						
 •										•																							
								••																									
							•																									1	
																					_	_	-			_							

9-dim feature vector

22

Slide credit: Sanja Fidler

III. SVM classifier

Slide credit: Sanja Fidler

Training:

٠

Detection:

Train a classifier (eg, person vs no person)

Use the trained classifier to predict

presence/absence of object class in each

window in the image

24

III. SVM classifier - training

Slide credit: Sanja Fidler

Predict presence/absence of object class in each image window

object to also capture **context** (works better!)

25

III. SVM classifier - training

Slide credit: Sanja Fidler

III. SVM classifier - training

Slide credit: Sanja Fidler

Train classifier. SVM (Support Vector Machines) is typically used.

III. SVM classifier - detection

• Computing the score $\mathbf{w}^T \cdot \mathbf{x} + b$ in every location is the same as performing cross-correlation with template w (and add b to result).

Detection Phase

[Pic from: R. Girshik]

Slide credit: Sanja Fidler

28

IV. Non-Maxima Suppression (NMS)

Slide credit: Sanja Fidler

overlap =

Remove all boxes that overlap more than XX (typically 50%) with the chosen box

IV. Non-Maxima Suppression (NMS)

Slide credit: Sanja Fidler

Non-maxima suppression (NMS)

- ٠
- ٠

Greedy algorithm.

At each iteration pick the highest scoring box.

Remove all boxes that overlap more than XX (typically 50%) with the chosen box

HOG detector: summary

Dalal & Triggs '05

- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick

Example 3: How can we deal with this guy?

Dalal & Triggs '05

- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick Pic credit: <u>http://www.deceptology.com/2011/02/participants-in-facebook-game-of-lying.html</u>

HOG detector: limitations

Dalal & Triggs '05

- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

We need flexible models!

Fischler & Elschlager '73 Felzenszwalb & Huttenlocher '00

- Pictorial structures
- Weak appearance models
- Non-discriminative training

Slide credit: Sanja Fidler, Ross Girshick Pic credit: http://www.deceptology.com/2011/02/participants-in-facebook-game-of-lying.html

The DPM Detector

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan

Object Detection with Discriminatively Trained Part Based Models

Paper: http://cs.brown.edu/~pff/papers/lsvm-pami.pdf Code: http://www.cs.berkeley.edu/~rbg/latent/

cited by 5,084

Slide credit: Sanja Fidler

T-PAMI, 2010

Deformable Part Model (DPM): key idea

Port the success of Dalal & Triggs into a part-based model

Slide credit: Ross Girshick

DPM: Model representation

- A model has a root filter F_0 and npart models (F_i, v_i, d_i)
 - F_i: *i*-th part filter
 - v_i : anchor position of *i*-th part relative to the root
 - d_i : deformation parameters for *i*-th part

Slide credit: Mubarak Shah, Ross Girshick

Coarse root filter

Higher resolution part filters

Deformation models

DPM: Object Hypothesis

In HOG feature pyramid

- root filter coarser scale
- part filters finer scale

Slide credit: Mubarak Shah

 $z = (p_0, ..., p_n)$ p_0 : location of root $p_1, ..., p_n$: location of parts Score is sum of filter scores minus deformation costs

DPM: Score of a Hypothesis

Slide credit: Mubarak Shah

 $score(z) = \beta \cdot \psi(H, z)$

Unknown $\beta = (F_0, \dots, F_n, d_1, \dots, d_n, b) \qquad \text{Unknown} \\ \psi(H, z) = (\phi(H, p_0), \dots, \phi(H, p_n), -\phi_d(dx_1, dy_1), \dots, -\phi_d(dx_n, dy_n), 1)$ Known

38

DPM: Score of a Hypothesis

Slide credit: Mubarak Shah

Deformation models

DPM: Detection

- possible placement of the parts
- High-scoring root locations define detections
- Sliding-window approach
- distance transforms

root filter

part filters

Deformation models

The overall score of a root location is computed according to the best

```
score(p_0) = \max_{p_1, \dots, p_n} score(p_0, \dots, p_n)
```

Efficient computation (O(nk)): dynamic programming + generalized

DPM: Detection

Distance transform

- Response of the *i*-th part filter in the *l*-th level of the feature pyramid $R_{i,l}(x,y) = F_i \cdot \phi(H,(x,y,l))$
- Transformed response, given root is at (x,y) $D_{i,l}(x,y) = \max_{dx,dy} (R_{i,l}(x + dx, y + dy) - d_i \cdot \phi_d(dx, dy))$

(x,y)

Slide credit: Mubarak Shah

root filter

Higher resolution part filters

The *l*-th level of the feature pyramid $\phi(H, (x, y, l))$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$ $\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$

$$d_i = (0, 0, 1, 1)$$

41

DPM: Detection

Slide credit: Mubarak Shah, Ross Girshick

42

DPM: Training

- No part location is available during training (latent)

Slide credit: Mubarak Shah

Positive training examples are labeled with bounding boxes • Aim: learn model parameters $\beta = (F_0, \dots, F_n, d_1, \dots, d_n, b)$

DPM: Latent Variables

- The positions of the parts are not given in both the training and the testing images
- The variables that exist but not known in training samples are called latent variables
- The learning algorithm must be able to find/discover the optimal values for the latent variables, namely the position of the parts.

Slide credit: Mubarak Shah

44

DPM: Training

- The classifier scores an example x by
 - β : the model parameters
 - z: latent values
 - Z(x): the possible latent values for example x

Slide credit: Mubarak Shah

$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$

45

DPM: Training

- Minimize the objective function
 - Labeled training examples $D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$ • $y_i \in \{-1,1\}$

Slide credit: Mubarak Shah

DPM: Latent SVM

- A latent SVM is semi-convex
 - $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$ is convex in β
 - For negative examples ($y_i = -1$), the hinge loss is convex $\max(0,1-y_i f_\beta(x_i)) = \max(0,1+f_\beta(x_i))$
 - (the maximum of two convex function)
 - For positive examples ($y_i = 1$), the hinge loss is not convex $\max\left(0,1-y_if_\beta(x_i)\right)=\max(0,1-f_\beta(x_i))$
 - (the maximum of a convex function and a concave function) If the latent value for positive examples are fixed, the hinge loss is convex

Slide credit: Mubarak Shah

DPM: Latent SVM

- for all the positive examples
- Iterative optimization:
 - (exactly the same with detection!)
 - Optimize β : fix z, optimize β by solving the convex problem

Slide credit: Mubarak Shah

• Initialize β using standard SVM by assuming the same parts locations

• Relabel positive examples: fix β , find the best z for each positive example

DPM: Mixture model

- A mixture model consists of *m* components
- Captures extreme intra-class variation

Mixture Model Example - Person

Slide credit: Mubarak Shah

• Split the positive bounding boxes into *m* groups by aspect ratio

Mixture Model Example - Bicycle

DPM on PASCAL VOC

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

Slide credit: Ross Girshick

Ross Girshick

Lifetime Achievement Award by PASCAL VOC

41% Selective Search, DPM++, MKL

♦ Top competition results (2007 -2012)

VOC'12

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region CNN
 - Fast versions of RCNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

51

Object detection renaissance (2013-present)

Slide credit: Renjie Liao

52

Deep object detection

Object Detection

🛗 Published: 09 Oct 2015 🛛 🗁 Category: deep_learning

Slide credit: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

SSD

- Inside-Outside Net (ION)
- G-CNN
- HyperNet
- MultiPathNet
- CRAFT
- OHEM
- R-FCN
- MS-CNN
- PVANET
- GBD-Net
- StuffNet
- Feature Pyramid Network (FPN)
- YOLOv2
- DSSD

53

R-CNN: Regions with CNN features

Slide credit: Girshick R, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR2014

Training

Training

Training

R-CNN Results

- DPM v5 (Girshick
- Regionlets (Wang
 - R-CNN (Ale>
 - **R-CNN** (AlexNe
 - R-CNN (VGC
 - R-CNN (VGGNe

	VOC2007
et al. 2011)	33.7%
et al. 2013)	41.7%
xNet)	54.2%
et) + BB	58.5%
GNet)	62.2%
let) + BB	66.0%

R-CNN Results

- DPM v5 (Girshick
- Regionlets (Wang
 - R-CNN (Ale>
 - **R-CNN** (AlexNe
 - R-CNN (VGC
 - R-CNN (VGGNe
 - R-CNN (VG
 - Train
 - Test

	VOC2007
et al. 2011)	33.7%
et al. 2013)	41.7%
xNet)	54.2%
et) + BB	58.5%
GNet)	62.2%
let) + BB	66.0%
GNet)	Time
	84 hours
	47 s/im

Slow R-CNN

Slide credit: Ross Girshick

Object Detection System

Getting Proposals Feature Extraction

Classifier

Object Detection System

Getting Proposals Feature Extraction

Classifier

Spatial Pyramid Pooling

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014

Spatial Pyramid Pooling

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014

Frozen (13 layers)

Slide credit: Ross Girshick

SPP-net

R-CNN (ZFNet) R-CNN (VGGNet) SPP (ZFNet) SPP (VGGNet)

SPP-net Results

VOC2007	Speed			
59.2%	14.5 s/im			
66.0%	47.0 s/im			
59.2%	0.38 s/im			
63.1%	2.3 s/im			

Object Detection System

Getting Proposals Feature Extraction

Classifier

SPP

Object Detection System

Getting Proposals Feature Extraction Classifier

Fast R-CNN

Totally end-to-end!

Multi-task loss

Fast R-CNN Results

SPPNet BB R-CNN BB Fast RCNN Fast RCNN (07+12)

	C2		\bigcap	7
		U	U	

63.1%

66.0%

66.9%

70.0%

Object Detection System

Getting Proposals Feature Extraction Classifier Fast R-CNN

Object Detection System

Getting Proposals Feature Extraction Classifier

(e.g. selective search)

Faster R-CNN

Slide credit: Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS2015

Region Proposal Network

	$ 128^2, 2:1 $								
proposal	188×111	113×114	70×92	416×229	261×284	174×332	768×437	499×501	355×715

- Sliding window style
- Multi-scale predictions on fix-sized window for efficiency (take advantage of the large receptive field of CNN features)
- Same loss as R-CNN (cls+bbox)

Region Proposal Network

Faster R-CNN Results

• Fewer and better proposals not only bring speedup, but also detection performance boost.

method	# proposals	data	mAP (%)	time (ms)
SS	2k	07	66.9	1830
SS	2k	07+12	70.0	1830
RPN+VGG, unshared	300	07	68.5	342
RPN+VGG, shared	300	07	69.9	196
RPN+VGG, shared	300	07+12	73.2	196

Object Detection System

Getting ProposalsFeature ExtractionClassifierFaster R-CNN

Efficient Object Detection System

Getting Proposals Feature Faster R-CNN

66.0% 47 s/im

Feature ExtractionClassifierSPPFast R-CNN

66.0% —> 73.2%

47 s/im --> 0.2 s/im

Example 4: Driving car

	Pascal 2007 mAP		
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

Slide credit: Joseph Chet Redmon

1/3 Mile, 1760 feet

79

Example 4: Driving car

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img

Slide credit: Joseph Chet Redmon

Example 4: Driving car

	Pascal 2007 mAP	mAP Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

12 feet

Slide credit: Joseph Chet Redmon

81

Real-time object detectors?

Slide credit: Wei Liu

82

YOLO: You Only Look Once

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016

locations

class prob.

83

YOLO: output parameterization

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = **1470 outputs**

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016

84

YOLO: limitations

- Small objects
- Objects with different shapes/sizes
- Occluded objects

Slide credit: Redmon J, et al. You only look once: Unified, real-time object detection. CVPR2016

85

SSD: Single Shot MultiBox Detector

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

SSD: YOLO + default box shape + multi-scale

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

87

SSD: YOLO + default box shape + multi-scale

Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV2016

88

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region CNN
 - Fast versions of RCNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

89

3D object detection: camera model

w[x y 1] = [X Y Z 1] P

World points

3D object detection: pipeline

Candidate sampling in 3D space

2D candidate boxes

Chen X, et al. Monocular 3D Object Detection for Autonomous Driving. CVPR2016

3D NMS 2D detector **3D** detections

3D object detection: demo

Chen X, et al. Monocular 3D Object Detection for Autonomous Driving. CVPR2016

92

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region CNN
 - Fast versions of RCNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

93

Trick: Pre-trained model

Faster R-CNN baseline	mAP@.5	mAP@.5:.95
VGG-16	41.5	21.5
ResNet-101	48.4	27.2

COCO detection results (ResNet has 28% relative gain)

He K, et al. Deep Residual Learning for Image Recognition. CVPR2016

Trick: Sampling

1. Use 'ignore' labels:

Difficulties are defined as follows:

- 2. Use hard-example mining:
 - Heuristics
 - Offline
 - Online^[1]

[1] Shrivastava A, et al. Training region-based object detectors with online hard example mining. CVPR2016

Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 % Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 % Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

95

Trick: Multi-region ensemble

Gidaris S, et al. Object detection via a multi-region and semantic segmentation-aware cnn model. ICCV2015

Trick: Multi-scale feature fusion

Bell S, et al. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. CVPR2016

97

Trick: Iterative localization

- Iterative bounding box regression
- Voting NMS

(b) Step 2

(c) Step 3 (d) Step 4 (e) Step 5 Gidaris S, et al. Object detection via a multi-region and semantic segmentation-aware cnn model. ICCV2015

98

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region-CNN
 - Fast versions of R-CNN
 - · YOLO/SSD
- 3D object detection
- Devil's in the details

we need features! we need flexible models!

we need better features! we want to be fast! we want to be real-time! we like 3D! we hack!

99

"The only stupid question is the one you never asked." - Rich Sutton

