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Big Picture
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Pic credit: NVIDIA blog

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/


Success of Deep Learning
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Deep Learning in Vision
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Pic credit: Kaiming He



Deep Learning in Vision
5

Pic credit: Kaiming He



What is Deep Learning?

Quote from Ilya Sutskever

Generalization ability

Back propagation

TensorFlow

Hierarchical representation

Universal function approximator
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https://blog.gregbrockman.com/my-path-to-openai#the-dinner_1
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What are neural networks?
...Neural networks (NNs) are computational models inspired by 

biological neural networks [...] and are used to estimate or 
approximate functions... [Wikipedia] 
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Pic credit: Stanford CS231n
Slide credit: A. G. Schwing



Activation functions / Nonlinearity
• Sigmoid: f(x) = 1 / (1+e-x)
• Tanh: f(x) = (ex - e-x) / (ex + e-x)
• ReLU (Rectified Linear Unit): f(x) = max(0, x)
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Slide credit: Raquel Urtasun



Neural Network (Multi-Layer Perception)

The network approximates the function:  
y = f(x; w)

which can be de-composed as: 
h = g(w1*x+b1)
y = g(w2*h+b2)

Naming convention: a 2-layer neural network 
• 1 layer of hidden units 
• 1 output layer 

(we do not count the inputs as a layer)
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Pic credit: Stanford CS231n
Slide credit: Raquel Urtasun



Representational power
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• One node is controlled by two parameters w, b 

y
y = f(w1 * x + b) 

where the activation function is sigmoid  
f(x) = 1 / (1+exp(-x))

Slide credit: A. G. Schwing



Representational power
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• One node is controlled by two parameters w, b 
• We can get a bump function given a pair of nodes

Slide credit: A. G. Schwing



Representational power
14

• One node is controlled by two parameters w, b 
• We can get a bump function given a pair of nodes 
• Given more bumps, we get more accurate approximation

corresponds to one hidden layer
Slide credit: A. G. Schwing



Representational power
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• One node is controlled by two parameters w, b 
• We can get a bump function given a pair of nodes 
• Given more bumps, we get more accurate approximation 
• Neural network with at least one hidden layer is a universal function 

approximator 
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko

Slide credit: Raquel Urtasun
Pic credit: Stanford CS231n



Representational power
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• One node is controlled by two parameters w, b 
• We can get a bump function given a pair of nodes 
• Given more bumps, we get more accurate approximation 
• Neural network with at least one hidden layer is a universal function 

approximator 
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko

• The capacity of the network increases with more hidden units and more 
hidden layers

Slide credit: Raquel Urtasun
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Forward pass
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Efficient implementation via matrix operations. 
x: 3-d vector                y: 1-d vector 
h1: 4-d vector            h2: 4-d vector 
W1: 4x3 matrix          b1: 4-d vector 
W2: 4x4 matrix          b2: 4-d vector 
W3: 1x4 matrix          b3: 1-d vector

Pic credit: Stanford CS231n
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Back-propagation algorithm
20

An intuitive explanation:
• Compute approximation error at the output 
• Propagate error back by computing individual contributions 

of parameters to error

Slide credit: A. G. Schwing



Loss function
21

Classification
• Cross-entropy: sumi(-yi*log(f(xi))) 
• Hinge loss: max(0, 1-yi*f(xi)) 
Regression
• L1: sumi(|yi-f(xi)|) 
• L2: sumi((yi-f(xi))2) 
Pair-wise similarity
• Contrastive loss: 
• Triplet loss: 



How do we update wki to minimize the loss?
22

Slide credit: Raquel Urtasun



Use gradient descent!
23

Update rule:

Pic credit: Sebastian Raschka

https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html


Compute gradient: chain rule
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• L2 loss 
• g(z) = 1/(1+exp(-z))

Slide credit: Raquel Urtasun



Multi-layer NN case
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If a node has multiple outputs, we have to sum over 
all gradients from these paths back to that node.

Slide credit: Raquel Urtasun
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Optimizing neural networks
27

• The back-propagation algorithm is an efficient way of computing 
the error derivative dE/dw for every weight on a single training case. 

• However, we still need to make other decisions about how to use 
these error derivatives: 
- Optimization issues 

- how often to update the weights 
- how much to update the weights 

- Ways to reduce overfitting

Pic credit: Sebastian Raschka
Slide credit: Geoffrey Hinton

https://www.quora.com/When-should-we-use-logistic-regression-and-Neural-Network


Batch size
28

How often to update the weights: 
– Online: after each training case 
– Full batch: after a full sweep through the training data 
– Mini-batch: after a small sample of training cases

• Theoretically, we should do full batch update, but the computation is expensive. 
• When the dataset is highly redundant, we can get a good estimate of the gradient by 

computing only a subset of samples. The extreme version of this is ‘online’. 
• Mini-batch is a good trade-off. The computation for many cases simultaneously can 

be implemented efficiently using matrix-matrix multiplies on GPUs. 
• Mini-batches need to be balanced for classes.

Slide credit: Geoffrey Hinton



Learning rate
29

• Don’t start too big, and not too small. 
• Start as big as you can without diverging, then when getting to a plateau start 

reducing the learning rate. Be careful not to reduce the learning rate too early.

Slide credit: Geoffrey Hinton
Pic credit: Sebastian Raschka

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html


Momentum
30

Intuition: imagine a ball falling down along the hill of loss surface. Giving the ball 
velocity would make it more likely to get out of local minima.

Pic credit: Stanford CS231n



Different optimizers
31

Different convergence speed. Notice 
the over-shooting of momentum based 

methods.

A visualization of saddle point. SGD has 
a very hard time breaking symmetry and 
gets stuck on top. RMSprop will see very 

low gradients in the saddle direction.
Pic credit: Stanford CS231n



Data preprocessing
32

Normalization

PCA/whitening

Pic credit: Stanford CS231n



Weight initialization
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Why we shouldn’t use all 0 initialization: if two neurons are initialized with 
the same weights, they will give the same output, get the same gradient and 
update, and therefore they will always be the same.

Random initialization from Gaussian: symmetry breaking. However, the 
distribution of the outputs from a randomly initialized neuron has a variance 
that grows with the number of inputs. 

Random initialization from Gaussian/sqrt(n): where n is the number of 
the neuron’s inputs.

Best practice: ReLU units with Gaussian*sqrt(2/n) (He et al.)

Batch normalization (Ioffe & Szegedy): normalize the activations through a 
network to take on a unit gaussian distribution

Slide credit: Stanford CS231n



Prevent overfitting
34

1. Get more data! 
2. Use L2 regularization on weights

The effects of regularization strength.
Pic credit: Stanford CS231n



Prevent overfitting
35

1. Get more data! 
2. Use L2 regularization on weights 
3. Dropout (Srivastava et al.)

Training time: keep a neuron active with 
probability p 
Testing time: keep all neurons active but 
scale their activations by p

Pic credit: Stanford CS231n
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Motivation
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• Dimension of image data is usually large. 
• We want our representation to be translation-invariant.

Pic credit: Markus, ECCV14



Convolutional layer (local connectivity + weight sharing)

38

fully connected layer local connectivity spatial weight-sharing

Pic credit: Stanford CS231n & Geoffrey Hinton



Convolution operation on 2D data
39

param: filter size, stride

Pic credit: Stanford CS231n & UFLDL & A. G. Schwing



Pooling layer
40

• Types:
- Max-pooling 
- Average-pooling 

• Advantages:
- Reduce representation dimensionality 
- Robustness against tiny shifts

param: pool size, stride
Pic credit: Stanford CS231n



An example ConvNet architecture
41

Pic credit: Stanford CS231n



Revolution of depth
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Pic credit: Kaiming He



Revolution of depth
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Pic credit: Kaiming He



Revolution of depth
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Pic credit: Kaiming He
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Convolutional Feature Maps
46

Pic credit: http://www.cnblogs.com/cvision/p/CNN.html & Kaiming He

http://www.cnblogs.com/cvision/p/CNN.html


HOG by Convolutional Layers
47

Steps of computing HOG:
- Computing image gradients 
- Binning gradients into 18 directions 
- Computing cell histograms 
- Normalizing cell histograms

HOG, dense SIFT, and many other “hand-engineered” features are 
convolutional feature maps.

Convolutional perspective:
- Horizontal/vertical edge filters 
- Directional filters + gating (non-linearity) 
- Sum/average pooling 
- Local response normalization (LRN)
[Mahendran & Vedaldi, CVPR2015]

Slide credit: Kaiming He



Feature maps = features and their locations
48

Slide credit: Kaiming He



Feature maps = features and their locations
49

Slide credit: Kaiming He



Receptive field
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• Receptive field of the first layer is the filter size 
• Receptive field (w.r.t. input image) of a deeper 

layer depends on all previous layers’ filter 
sizes and strides 

• Correspondence between a feature map 
pixel and an image pixel is not unique 

• How to map a feature map pixel to the center 
of the receptive field:

Slide credit: Kaiming He



Hierarchical feature maps
51

MD Zeiler, et al. Visualizing and Understanding Convolutional Networks, ECCV2014
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Hierarchical feature maps

MD Zeiler, et al. Visualizing and Understanding Convolutional Networks, ECCV2014



Applications by exploiting conv feature maps
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Spatial Pyramid Pooling / Roi-Pooling
• fix the number of bins instead of filter sizes 
• adaptively-sized bins

Pic credit: Kaiming He



Applications by exploiting conv feature maps
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Jonathan Long, et al. Fully Convolutional Networks for Semantic Segmentation, CVPR2015



Applications by exploiting conv feature maps
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Saining Xie, et al. Holistically-Nested Edge Detection, ICCV2015



Applications by exploiting conv feature maps
56

David Eigen, et al. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture, ICCV2015
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The unreasonable easiness of deep learning
58

• Modify the network architecture (usually from a pre-
trained model) (the forward pass specifically, 
backward pass is handled automatically by auto-
differentiation in most python based libraries) 

• Define an objective function
• Pick a proper optimizer to train your network
• Feed your data properly to the net
• Show demo here

Slide credit: David Duvenaud
Codes adopted from Tensorflow tutorials



Q&A
59

“The only stupid question is the one you never asked” -Rich Sutton


