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Deep Learning In Vision
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Deep Learning In Vision

101 layers

HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*

PASCAL VOC 2007 Object Detection mAP (%)

Pic credit: Kaiming He



What is Deep Learning?

The goal of supervised deep learning is to solve almost any problem of the

form "map x to vy ". X caninclude images, speech, or text,and Yy can

iInclude categories or even sentences. Mapping images to categories, Universal function approximator
speech to text, text to categories, go boards to good moves, and the like,

Is extremely useful, and cannot be done as well with other methods.

An attractive feature of deep learning is that it is largely domain

independent: many of the insights learned in one domain apply in other Generalization ability
domains.

Under the hood, the model builds up layers of abstraction. These
abstractions get the job done, but it's really hard to understand how Hierarchical representation
exactly they do it. The model learns by gradually changing the synaptic

strengths of the neural network using the incredibly simple yet

mysteriously effective backpropagation algorithm. As a result, we can build Back propagatlon
massively sophisticated systems using very few lines of code (since we
only code the model and the learning algorithm, but not the end result). TensorFlow

Quote from llya Sutskever



https://blog.gregbrockman.com/my-path-to-openai#the-dinner_1
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What are neural networks”?

...Neural networks (NNs) are computational models inspired by
biological neural networks [...] and are used to estimate or
approximate functions...

. . L() Wo
Impulses carried @ synapse
toward cell body axon from a neuron
branches woL(
dendrites % C of axon
cell body -
axon > i Wi y (Zz: - b)
nucleus @ = terminals Z w;T; + b >
> - output axon
Wimpulses carried activation
G Mo away from cell body Wo X9 function

Slide credit: A. G. Schwing
Pic credit; Stanford CS231n
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Activation functions / Nonlinearity

- Sigmoid: f(x) =1/ (1+eX)
- Tanh: f(x) = (ex - eX) / (eX + eX)
RelLU (Rectified Linear Unit): f(x) = max(0, x)

Sigmoid: f(z) = 1/1+exp(-2)) Tanh: #(2) = [exp(z)-exp(-2)] / [exp(z)+exp(-2)] _ RelU: #(z)=max(0, 2)

A | | L A |
8 -4 -2 0 2 4 8

Slide credit: Raquel Urtasun



Neural Network (Multi-Layer Perception)

The network approximates the function:
y = f(x; w)
which can be de-composed as:
h = g(w1*x+b1)
y = g(w2"h+by)

output layer . o
input layer Naming convention: a 2-layer neural network

hidden layer e 1 layer of hidden units
e 1 output layer
(we do not count the inputs as a layer)

Slide credit: Raquel Urtasun
Pic credit: Stanford CS5231n
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Representational power

 One node is controlled by two parameters w, b

X€ER vy = f(wl* X + D)
VAR

[ where the activation function is sigmoid
beR f(x) =1/ (1+exp(-x))

wy = 1.0, b changes b = 0, wy changes

Slide credit: A. G. Schwing
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Representational power

 One node is controlled by two parameters w, b
 \We can get a bump function given a pair of nodes

l 2
h, | 1.8 ] |
X € Ryv%
1.6.. .................................
W3 W d - # H
\/ﬁ\/ 1.4; ....................... becdbodlicsssssssss
w
T § Db N
b2 1 L A
-5 0 5
X
— Bump(xy, Xz, h) — f wy = —100, by = 40, w3 = 100, b, =60, wo = 1, wy = 1

Slide credit: A. G. Schwing



Representational power

 One node is controlled by two parameters w, b
 \We can get a bump function given a pair of nodes
e (Given more bumps, we get more accurate approximation

Bump(OO 0.2, h )

Bump(O 2,04, h»,v)

(—»Bump(04 0.6. m)—* f

Bump(OS 0.8, he )

Bump(08 1.0, h_)’

—Target
Approximation|:
-0.5, - ;

X

. . , corresponds to one hidden layer
Slide credit: A. G. Schwing



Representational power

* One node is controlled by two parameters w, b

* \We can get a bump function given a pair of nodes

* (Given more bumps, we get more accurate approximation

* Neural network with at least one hidden layer is a universal function
approximator

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko

3 hidden neurons | 6 hidden neurons 20 hidden neurons

Pic credit: Stanford CS231n
Slide credit: Raguel Urtasun
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Representational power

* One node is controlled by two parameters w, b

* \We can get a bump function given a pair of nodes

* (Given more bumps, we get more accurate approximation

* Neural network with at least one hidden layer is a universal function
approximator

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko

3 hidden neurons | 6 hidden neurons 20 hidden neurons
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* The capacity of the network increases with more hidden units and more
hidden layers

Slide credit: Raguel Urtasun
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INntroduction to ConvNets

Neural Networks

Forward pass (inference)
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axon from a neuron
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cell body

f (Z w; T; + b)

=

activation
function

output axon
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Forward pass

input layer

hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(=-x))
output layer x = np.random.randn(3, 1)
input |ayer hl = f(np.dot(Wl, x) + bl)
. h2 = f(np.dot(W2, hl) + b2)
hldden Iayer out = np!?dot(w3, h2) + b3
D —fficient implementation via matrix operations.
hi(x) = f(vio+ Yy xivi) x: 3-d vector y: 1-d vector
i=1 h1: 4-d vector h2: 4-d vector
J W1: 4x3 matrix b1: 4-d vector
or(x) = hi(X)wy; i | '
() g(wio + z} i(X)w) W2: 4x4 matrix b2: 4-d vector
J= 4 .
W3: 1x4 matrix b3: 1-d vector

Pic credit; Stanford CS231n



INntroduction to ConvNets

- Neural Networks

- Backward pass (learning)
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BacK-propagation algorithm

An Intuitive explanation:

e Compute approximation error at the output

e Propagate error back by computing individual contributions
of parameters to error

Slide credit: A. G. Schwing
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| 0SS function

Classification

« Cross-entropy: sumi(-yi*log(f(xi)))

* Hinge loss: max(0, 1-yi*f(x;))

Regression

o L1: sumi(|yi-f(xi)|)

o L2: sumi((yi-f(xi))?)

Pair-wise similarity

e Contrastive \O?VS: E =% i (y) & + (1 — y) max (margin — d, 0)?

n

=]
* Iriplet loss: Z[Hf(x?)—ﬂwf)ui—Hf(:v?)—f(:v?)lliwL
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How do we update wii to minimize the loss?

Output layer O
Input layer £
Output of unit k

Output layer Output layer activation function

Net input to output unit k

Weight from input i to k

Input layer Input unit |

Slide credit: Raguel Urtasun
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Use gradient descent!

' .
/,/ Gradient

Global cost minimum
- Jin(W)

min

Pic credit: Sebastian Raschka

Output layer

Input layer

Update rule:

OE

Wi < Wi — an
ki
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https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

Compute gradient: chain rule

OE
nBWki

0E i OE |80\"|oz\"
Bwk,- o —1 30‘((") 82‘((") Bwk,-

Wki < Wi —

Output layer

Input layer — 6 ¢
e | 2]0ss 90" k,,) k
* 9(z) = (1+exp(-z) L% — o
82,((")
N (n) n) N
OE OE 0o, 0z, (n) (n)y ~(n) (n)y _(n)
— — o' —t ")o, (1 —o0,")x
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Slide credit: Raguel Urtasun
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Multi-layer NN case

Output layer @ @ @ It a node has multiple outputs, we have to sum over
all gradients from these paths back to that node.

OF _y~ OE 9ol 52" 3570 g i g0
on" 7 90" 92" on"” 4 f

i O O O @

Input layer

Slide credit: Raguel Urtasun



INntroduction to ConvNets

- Neural Networks

- Optimization (bag of tricks)
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A local

Optimizing neural networks

J(W)

Global
cost minimum

OE

Wi <— Wi

a T]aWki

* [he back-propagation algorithm is an efficient way of computing
the error derivative dE/dw for every weight on a single training case.
* However, we still need to make other decisions about how to use
these error derivatives:
- Optimization issues
- how often to update the weights
- how much to update the weights
- Ways to reduce overfitting

Slide credit: Geoffrey Hinton
Pic credit; Sebastian Raschka
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https://www.quora.com/When-should-we-use-logistic-regression-and-Neural-Network
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Batch size

How often to update the weights:

— Online: after each training case

— Full batch: after a full sweep through the training data
— Mini-batch: after a small sample of training cases

Small Batch Larg;nich

* Theoretically, we should do full batch update, but the computation is expensive.
 \When the dataset is highly redundant, we can get a good estimate of the gradient by
computing only a subset of samples. The extreme version of this is ‘online’.

* Mini-batch is a good trade-off. The computation for many cases simultaneously can
be implemented efticiently using matrix-matrix multiplies on GPUSs.
 Mini-batches need to be balanced for classes.

Slide credit: Geoffrey Hinton



|_earning rate

OE
Wki <— Wi Wk'

 Don't start too big, and not too small.
o Start as big as you can without diverging, then when getting to a plateau start
reducing the learning rate. Be caretul not to reduce the learning rate too early.

A A
J(w) J(w)
- reduce
learning rate
: l
/ o
> -
W W epoch
| | Large learning rate: Overshooting. Small learning rate: Many iterations
Slide credit: Geoffrey Hinton until convergence and trapping in

Pic credit: Sebastian Raschka local minima.



http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

J(w)

Viomentum

Intuition: iImagine a ball falling down along the hill of loss surface. Giving the ball
velocity would make it more likely to get out of local minima.

Vv=mu * v - learning rate * dx # integrate velocity

x += v # integrate

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

>

gradient
step

Pic credit; Stanford CS231n
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Different optimizers

SGD
Momentum
NAG

Adagrad
Adadelta
Rmsprop

nrrirTrT g

Different convergence speed. Notice
the over-shooting of momentum based
methods.

Pic credit; Stanford CS231n

- SGD

- Momentum
== NAG

- Adagrad
Adadelta
Rmsprop

1.0

A visualization of saddle point. SGD has
a very hard time breaking symmetry and
gets stuck on top. RMSprop will see very

low gradients in the saddle direction.
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Data preprocessing

Normalization

PCA/whitening

Pic credit; Stanford CS231n
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Welignt initialization

Why we shouldn’t use all 0 initialization: if two neurons are initialized with
the same weights, they will give the same output, get the same gradient and
update, and therefore they will always be the same.

Random initialization from Gaussian: symmetry breaking. However, the
distribution of the outputs from a randomly initialized neuron has a variance

that grows with the number of inputs.

Random initialization from Gaussian/sgrt(n): where n is the number of
the neuron’'s Inputs.

Best practice: RelLU units with Gaussian*sqgrt(2/n) (He et al.)

Batch normalization (loffe & Szegedy): normalize the activations through a

network to take on a unit gaussian distribution
Slide credit: Stanford CS231n
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Prevent overfitting

1. Get more datal o
2. Use L2 regularization on weights  E(/) = % 3" (tn — y(an, @) +

n=0

| A=0.1

The eftects of regularization strength.
Pic credit: Stanford CS231n

A
§||’¢3||2
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Prevent overfitting

1. Get more data!
2. Use L2 regularization on weights
3. Dropout (Srivastava et al.)

(a) Standard Neural Net (b) After applying dropout.

Pic credit; Stanford CS231n

Training time: keep a neuron active with
porobabillity p

Testing time: keep all neurons active but
scale thelir activations by p

35
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- Convolutional Neural Networks
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Motivation
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 Dimension of image data is usually large.
 \We want our representation to be translation-invariant.

Pic credit: Markus, ECCV14
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Convolutional \ayer (local connectivity + weight sharing)

/32 Q
i/>p©ooo lﬂ
bewe e output layer /32
hidden layer 3
fully connected layer local connectivity spatial weight-sharing

Pic credit: Stanford CS231n & Geoffrey Hinton



1x11x01x10 0
O 1,3]1]0
0,01 1)1
0 61111 (0
0 11108 0
Image

Convolution operation on 2D data

Convolved
Feature

param: filter size, stride

Pic credit: Stanford CS231n & UFLDL & A. G. Schwing
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Pooling layer

Types:

- Max-pooling

- Average-pooling 224x224x64

Advantages: 112x112x64
- Reduce representation dimensionality -

- Robustness against tiny shifts

Single depth slice 294 > 112
A ~— downsampling

" i 2 | 4 112
max pool with 2x2 filters 224
HSEmeN 7 | 8 and stride 2 b 8
3 | 2 S 3 Nt
1 | 2
y

param: pool size, stride
Pic credit; Stanford CS231n
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An example ConvNet architecture

RELU RELU
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Pic credit; Stanford CS231n



Revolution of depth

AlexNet, 8 layers
(ILSVRC 2012)

Pic credit: Kaiming He

11x11 conv, 96, /4, pool/2

 /

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

 /

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000
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Revolution of depth

AlexNet, 8 layers
(ILSVRC 2012)

Pic credit: Kaiming He

11x11 conv, 96, /4, pool/2

\ 4

5x5 conv, 256, pool/2

3x3 conv, 384

v

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

v

fc, 4096

v

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

3x3 conv, 64

\ 4

3x3 conv, 64, pool/2

\ 4

3x3 conv, 128

\ 4

3x3 conv, 128, pool/2

\ 4

3x3 conv, 256

\ 4

3x3 conyv, 256

\ 4

3x3 conv, 256

\ 4

3x3 conv, 256, pool/2

v

3x3 conv, 512

\ 4

3x3 conv, 512

\ 4

3x3 conv, 512

\ 4

3x3 conv, 512, pool/2

\

3x3 conv, 512

\ 4

3x3 conv, 512

\ 4

3x3 conv, 512

\ 4

3x3 conv, 512, pool/2

fc, 4096

\ 4

fc, 4096

\ 4

fc, 1000

GoogleNet, 22 layers
(ILSVRC 2014)
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Revolution of depth

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

28.2

25.8

152 layers

\ 16.4

\ 11.7

22 Iayers 19 Iayers J
3 57 l B I 8 layers 8 layers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

ImageNet Classification top-5 error (%)

Pic credit: Kaiming He

ResNet, 152 layers
(ILSVRC 2015)
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INntroduction to ConvNets

- Convolutional Neural Networks

- Feature maps

45



Convolutional Feature Maps

Convolutional:
sliding-window
operations
Inpuc layer (S1) 4 feature maps
L (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps : g
[ convolution layer l sub-sampling layer l convolution layer I sub-sampling layer | fully connected MLP |
\ p

Feature: | |
| Map:
encoding “what”
explicitly encoding

(and implicitly encoding “where”

“where”) |

Pic credit: http://www.cnblogs.com/cvision/p/CNN.html & Kaiming He



http://www.cnblogs.com/cvision/p/CNN.html

HOG by Convolutional Layers

Steps of computing HOG: Convolutional perspective:
- Computing image gradients - Horizontal/vertical edge filters
SINNINg gradients into 18 directions - Directional tilters + gating (non-linearity)
Computing cell histograms - Sum/average pooling
Normalizing cell histograms - Local response normalization (LRN)

HOG, dense SIFT, and many other “hand-engineered” features are
convolutional feature maps.

Slide credit: Kaiming He
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Feature maps = features and their locations

ImageNet images with strongest responses of this channel

~—— Intuition of this response:
1 Thereis a “circle-shaped” object (likely a tire) at this position.

one feature map of conv.
(#55 in 256 channels of a model What Where

trained on ImageNet)

Slide credit: Kaiming He



Feature maps = features and their locations

ImageNet images with strongest responses of this channel
¥ | |

~ Intuition of this response:

one feature map of conv.
(#66 in 256 channels of a model ‘ What Where

trained on ImageNet)

Slide credit: Kaiming He

There is a “A-shaped” object (likely an underarm) at this position.
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Receptive fielo

Map 1

5x5 convl

 Receptive field of the first layer is the filter size
* Receptive field (w.r.t. input image) of a deeper | \J
layer depends on all previous layers’ filter MR
Sizes and strides

Map 2

 Correspondence between a feature map A
| . L . 44
pixel and an image pixel is not unique ;ﬁ;/z
 How to map a feature map pixel to the center ///4?
g

9z

of the receptive field:

* For each layer, pad | F /2] pixels for a filter size F
(e.g., pad 1 pixel for a filter size of 3)

* On each feature map, the response at (0, 0) has a receptive
field centered at (0, 0) on the image

* On each feature map, the response at (x, y) has a receptive
field centered at (Sx,Sy) on the image (stride )

Slide credit: Kaiming He



Hierarchical feature maps

MD Zeiler, et al. Visualizing and Understanding Convolutional Networks, ECCV2014
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Hierarchical feature maps

A
AN, _UN

Layer 4 o, W sl @ ol | Layer 5

MD Zeiler, et al. Visualizing and Understanding Convolutional Networks, ECCV2014
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Applications by exploiting conv feature maps

CNN -
y /

ALl 7

pooling

e

"

SPP-net & Fast R-CNN (the same forward pipeline)
Spatial Pyramid Pooling / Roi-PooIing * Complexity: ~600 x 1000 x 1
* fix the number of bins instead of filter sizes e ~160x faster than R-CNN
* adaptively-sized bins

Pic credit: Kaiming He



Applications by exploiting conv feature maps

FCN-8s

o g
|- -\ 0 Ry
forward /inference &C‘ N~
. LS X
f . \
backward/learning . _.e% .Qy
! 3 h:\
N

90,00 21

/,5%& ’5%& ’f’b

21

Jonathan Long, et al. Fully Convolutional Networks for Semantic Segmentation, CVPR2015
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Applications by exploiting conv feature maps

w/ deep supervlslon w/o deep supervision
v - » ! 'r -~

Input image X

% f! ot o | | K P i - $
Side-output 1 m : - ~
/ r - s o < side 00.
Side-output 2 P < R Y e e e )
i - e

Side-output 3 {’g‘:.’g .
_______ . Y
|

Receptive Field Size :

Side-output 4
[ 5] [14] [40] [ 92 196]  siseouputs
o LLLLLLLLL Weighted-fusion layer Error Propagation Path \ | :" A | )

_____ [ . A\ * 1l jground truth

* s Side-output layer Error Propagation Path

Saining Xie, et al. Holistically-Nested Edge Detection, ICCV2015



56

Applications by exploiting conv feature maps

I

niut

Scale 1

-_ /
conv/pool full conn.- :
) upsample
________________________________ ;
/ Scale 2
----- >
concat > e —p -
conv/nool > convolutions I
P | upsample
I
................................ )

|
|
: Scale 3
I
|

/
concat “es -
convolutions
conv/ pool

David Eigen, et al. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture, ICCV2015
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- TensorFlow demo
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The unreasonable easiness of deep learning

- Modify the network architecture (usually from a pre-
trained model) (the forward pass specifically,
pbackward pass Is handled automatically by auto-
differentiation in most python based libraries)

- Define an objective function

- Pick a proper optimizer to train your network

- Feed your data properly to the net

-+ Show demo here

Slide credit: David Duvenaud Tensor

Codes adopted from Tensorflow tutorials
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Q&A

“The only stupid question is the one you never asked” -Rich Sutton
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