
Introduction to ConvNets
CSC2541, 2017 Winter

Bin Yang
16 Jan. 2017

slides adopted from Raquel Urtasun, Geoffrey Hinton, A. G. Schwing, Kaiming He, Stanford CS231n and many others

Big Picture
2

Pic credit: NVIDIA blog

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Success of Deep Learning
3

Deep Learning in Vision
4

Pic credit: Kaiming He

Deep Learning in Vision
5

Pic credit: Kaiming He

What is Deep Learning?

Quote from Ilya Sutskever

Generalization ability

Back propagation

TensorFlow

Hierarchical representation

Universal function approximator

6

https://blog.gregbrockman.com/my-path-to-openai#the-dinner_1

Introduction to ConvNets

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

7

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

8

Introduction to ConvNets

What are neural networks?
...Neural networks (NNs) are computational models inspired by

biological neural networks [...] and are used to estimate or
approximate functions... [Wikipedia]

9

Pic credit: Stanford CS231n
Slide credit: A. G. Schwing

Activation functions / Nonlinearity
• Sigmoid: f(x) = 1 / (1+e-x)
• Tanh: f(x) = (ex - e-x) / (ex + e-x)
• ReLU (Rectified Linear Unit): f(x) = max(0, x)

10

Slide credit: Raquel Urtasun

Neural Network (Multi-Layer Perception)

The network approximates the function:
y = f(x; w)

which can be de-composed as:
h = g(w1*x+b1)
y = g(w2*h+b2)

Naming convention: a 2-layer neural network
• 1 layer of hidden units
• 1 output layer

(we do not count the inputs as a layer)

11

Pic credit: Stanford CS231n
Slide credit: Raquel Urtasun

Representational power
12

• One node is controlled by two parameters w, b

y
y = f(w1 * x + b)

where the activation function is sigmoid
f(x) = 1 / (1+exp(-x))

Slide credit: A. G. Schwing

Representational power
13

• One node is controlled by two parameters w, b
• We can get a bump function given a pair of nodes

Slide credit: A. G. Schwing

Representational power
14

• One node is controlled by two parameters w, b
• We can get a bump function given a pair of nodes
• Given more bumps, we get more accurate approximation

corresponds to one hidden layer
Slide credit: A. G. Schwing

Representational power
15

• One node is controlled by two parameters w, b
• We can get a bump function given a pair of nodes
• Given more bumps, we get more accurate approximation
• Neural network with at least one hidden layer is a universal function

approximator 
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko

Slide credit: Raquel Urtasun
Pic credit: Stanford CS231n

Representational power
16

• One node is controlled by two parameters w, b
• We can get a bump function given a pair of nodes
• Given more bumps, we get more accurate approximation
• Neural network with at least one hidden layer is a universal function

approximator 
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko

• The capacity of the network increases with more hidden units and more
hidden layers

Slide credit: Raquel Urtasun

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

17

Introduction to ConvNets

Forward pass
18

Efficient implementation via matrix operations.
x: 3-d vector y: 1-d vector
h1: 4-d vector h2: 4-d vector
W1: 4x3 matrix b1: 4-d vector
W2: 4x4 matrix b2: 4-d vector
W3: 1x4 matrix b3: 1-d vector

Pic credit: Stanford CS231n

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

19

Introduction to ConvNets

Back-propagation algorithm
20

An intuitive explanation:
• Compute approximation error at the output
• Propagate error back by computing individual contributions

of parameters to error

Slide credit: A. G. Schwing

Loss function
21

Classification
• Cross-entropy: sumi(-yi*log(f(xi)))
• Hinge loss: max(0, 1-yi*f(xi))
Regression
• L1: sumi(|yi-f(xi)|)
• L2: sumi((yi-f(xi))2)
Pair-wise similarity
• Contrastive loss:
• Triplet loss:

How do we update wki to minimize the loss?
22

Slide credit: Raquel Urtasun

Use gradient descent!
23

Update rule:

Pic credit: Sebastian Raschka

https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

Compute gradient: chain rule
24

• L2 loss
• g(z) = 1/(1+exp(-z))

Slide credit: Raquel Urtasun

Multi-layer NN case
25

If a node has multiple outputs, we have to sum over
all gradients from these paths back to that node.

Slide credit: Raquel Urtasun

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization (bag of tricks)

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

26

Introduction to ConvNets

Optimizing neural networks
27

• The back-propagation algorithm is an efficient way of computing
the error derivative dE/dw for every weight on a single training case.

• However, we still need to make other decisions about how to use
these error derivatives:
- Optimization issues

- how often to update the weights
- how much to update the weights

- Ways to reduce overfitting

Pic credit: Sebastian Raschka
Slide credit: Geoffrey Hinton

https://www.quora.com/When-should-we-use-logistic-regression-and-Neural-Network

Batch size
28

How often to update the weights:
– Online: after each training case
– Full batch: after a full sweep through the training data
– Mini-batch: after a small sample of training cases

• Theoretically, we should do full batch update, but the computation is expensive.
• When the dataset is highly redundant, we can get a good estimate of the gradient by

computing only a subset of samples. The extreme version of this is ‘online’.
• Mini-batch is a good trade-off. The computation for many cases simultaneously can

be implemented efficiently using matrix-matrix multiplies on GPUs.
• Mini-batches need to be balanced for classes.

Slide credit: Geoffrey Hinton

Learning rate
29

• Don’t start too big, and not too small.
• Start as big as you can without diverging, then when getting to a plateau start

reducing the learning rate. Be careful not to reduce the learning rate too early.

Slide credit: Geoffrey Hinton
Pic credit: Sebastian Raschka

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Momentum
30

Intuition: imagine a ball falling down along the hill of loss surface. Giving the ball
velocity would make it more likely to get out of local minima.

Pic credit: Stanford CS231n

Different optimizers
31

Different convergence speed. Notice
the over-shooting of momentum based

methods.

A visualization of saddle point. SGD has
a very hard time breaking symmetry and
gets stuck on top. RMSprop will see very

low gradients in the saddle direction.
Pic credit: Stanford CS231n

Data preprocessing
32

Normalization

PCA/whitening

Pic credit: Stanford CS231n

Weight initialization
33

Why we shouldn’t use all 0 initialization: if two neurons are initialized with
the same weights, they will give the same output, get the same gradient and
update, and therefore they will always be the same.

Random initialization from Gaussian: symmetry breaking. However, the
distribution of the outputs from a randomly initialized neuron has a variance
that grows with the number of inputs.

Random initialization from Gaussian/sqrt(n): where n is the number of
the neuron’s inputs.

Best practice: ReLU units with Gaussian*sqrt(2/n) (He et al.)

Batch normalization (Ioffe & Szegedy): normalize the activations through a
network to take on a unit gaussian distribution

Slide credit: Stanford CS231n

Prevent overfitting
34

1. Get more data!
2. Use L2 regularization on weights

The effects of regularization strength.
Pic credit: Stanford CS231n

Prevent overfitting
35

1. Get more data!
2. Use L2 regularization on weights
3. Dropout (Srivastava et al.)

Training time: keep a neuron active with
probability p
Testing time: keep all neurons active but
scale their activations by p

Pic credit: Stanford CS231n

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization (bag of tricks)

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

36

Introduction to ConvNets

Motivation
37

• Dimension of image data is usually large.
• We want our representation to be translation-invariant.

Pic credit: Markus, ECCV14

Convolutional layer (local connectivity + weight sharing)

38

fully connected layer local connectivity spatial weight-sharing

Pic credit: Stanford CS231n & Geoffrey Hinton

Convolution operation on 2D data
39

param: filter size, stride

Pic credit: Stanford CS231n & UFLDL & A. G. Schwing

Pooling layer
40

• Types:
- Max-pooling
- Average-pooling

• Advantages:
- Reduce representation dimensionality
- Robustness against tiny shifts

param: pool size, stride
Pic credit: Stanford CS231n

An example ConvNet architecture
41

Pic credit: Stanford CS231n

Revolution of depth
42

Pic credit: Kaiming He

Revolution of depth
43

Pic credit: Kaiming He

Revolution of depth
44

Pic credit: Kaiming He

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization (bag of tricks)

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

45

Introduction to ConvNets

Convolutional Feature Maps
46

Pic credit: http://www.cnblogs.com/cvision/p/CNN.html & Kaiming He

http://www.cnblogs.com/cvision/p/CNN.html

HOG by Convolutional Layers
47

Steps of computing HOG:
- Computing image gradients
- Binning gradients into 18 directions
- Computing cell histograms
- Normalizing cell histograms

HOG, dense SIFT, and many other “hand-engineered” features are
convolutional feature maps.

Convolutional perspective:
- Horizontal/vertical edge filters
- Directional filters + gating (non-linearity)
- Sum/average pooling
- Local response normalization (LRN)
[Mahendran & Vedaldi, CVPR2015]

Slide credit: Kaiming He

Feature maps = features and their locations
48

Slide credit: Kaiming He

Feature maps = features and their locations
49

Slide credit: Kaiming He

Receptive field
50

• Receptive field of the first layer is the filter size
• Receptive field (w.r.t. input image) of a deeper

layer depends on all previous layers’ filter
sizes and strides

• Correspondence between a feature map
pixel and an image pixel is not unique

• How to map a feature map pixel to the center
of the receptive field:

Slide credit: Kaiming He

Hierarchical feature maps
51

MD Zeiler, et al. Visualizing and Understanding Convolutional Networks, ECCV2014

52

Hierarchical feature maps

MD Zeiler, et al. Visualizing and Understanding Convolutional Networks, ECCV2014

Applications by exploiting conv feature maps
53

Spatial Pyramid Pooling / Roi-Pooling
• fix the number of bins instead of filter sizes
• adaptively-sized bins

Pic credit: Kaiming He

Applications by exploiting conv feature maps
54

Jonathan Long, et al. Fully Convolutional Networks for Semantic Segmentation, CVPR2015

Applications by exploiting conv feature maps
55

Saining Xie, et al. Holistically-Nested Edge Detection, ICCV2015

Applications by exploiting conv feature maps
56

David Eigen, et al. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture, ICCV2015

• Some Deep Learning figures
• Neural Networks

• Architecture
• Forward pass (inference)
• Backward pass (learning)
• Optimization (bag of tricks)

• Convolutional Neural Networks
• Architecture
• Feature maps

• TensorFlow demo

57

Introduction to ConvNets

The unreasonable easiness of deep learning
58

• Modify the network architecture (usually from a pre-
trained model) (the forward pass specifically,
backward pass is handled automatically by auto-
differentiation in most python based libraries)

• Define an objective function
• Pick a proper optimizer to train your network
• Feed your data properly to the net
• Show demo here

Slide credit: David Duvenaud
Codes adopted from Tensorflow tutorials

Q&A
59

“The only stupid question is the one you never asked” -Rich Sutton

