

Bin Yang\*, Runsheng Guo\*, Ming Liang, Sergio Casas, Raquel Urtasun







# Sensors for Self-Driving

#### Camera



**LiDAR** 



Radar



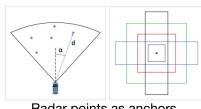
- Rich texture information
- Cheap and high-resolution
- No explicit depth information
- Sensitive to lighting conditions
- Accurate geometry
- Invariant to ambient light
- Limited resolution
- Sensitive to weather

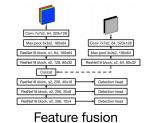
- Measures radial distance & velocity
- Operates at longer range
- More robust to weather
- Lower resolution than LiDAR
- Noisy returns from clutter & multipaths

## Related Work: Radar as 3D Points

#### Radar + Camera

- Cascade fusion [1]
- Feature fusion [2,3]





Radar points as anchors

### Strengths

Radar provides sparse but reliable 3D depth information for images

#### Weaknesses

The performance cannot match LiDAR based systems

<sup>[1]</sup> RRPN: Radar Region Proposal Network for Object Detection in Autonomous Vehicles. [R. Nabati, et al. ICIP 2019]

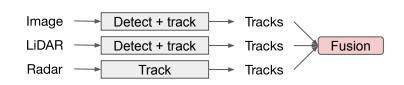
<sup>[2]</sup> RVNet: Deep Sensor Fusion of Monocular Camera and Radar for Image-based Obstacle Detection in Challenging Environments. [V. John, et al. PSIVT 2019]

<sup>[3]</sup> Distant Vehicle Detection Using Radar and Vision. [S. Chadwick, et al. ICRA 2019]

## Related Work: Radar as Objects

### Radar tracks + LiDAR tracks [1]

 Track-level sensor fusion with simple object association



#### Strengths

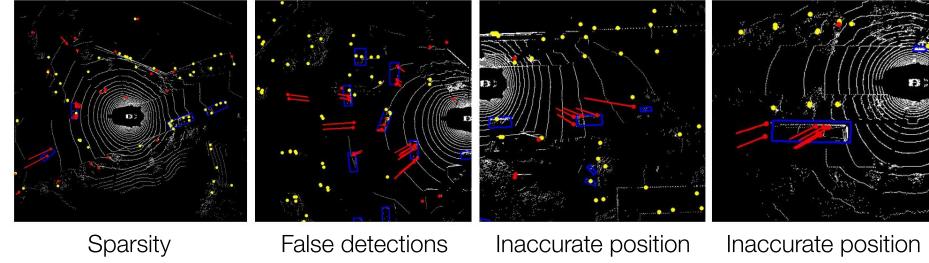
Higher object recall by multi-sensor fusion

#### Weaknesses

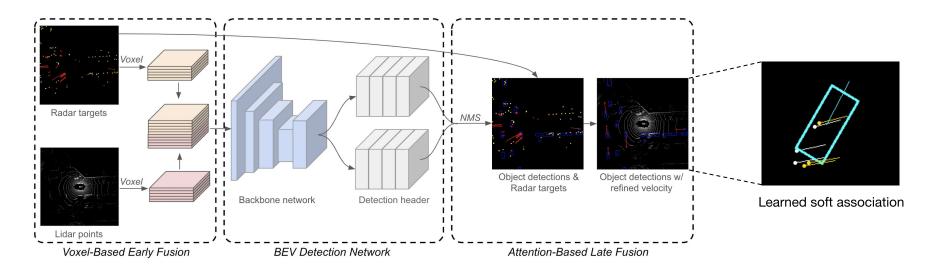
Limited exploitation of complementary information between sensors

# LiDAR v.s. Radar

| Sensor<br>Modality | Detection<br>Range | Range<br>Accuracy                   | Azimuth Resolution                                                 | Velocity<br>Accuracy |
|--------------------|--------------------|-------------------------------------|--------------------------------------------------------------------|----------------------|
| LiDAR              | 100 m              | 2 cm                                | $0.1^{\circ} \sim 0.4^{\circ}$                                     | -                    |
| Radar              | 250 m              | 10 cm near range<br>40 cm far range | $3.2^{\circ} \sim 12.3^{\circ}$ near range $1.6^{\circ}$ far range | 0.1  km/h            |



## RadarNet: Multi-Level Radar Fusion



- Early fusion: supplements sparse LiDAR points at long range with Radar returns
- Late fusion:
  - takes into account uncertainties in object detections and Radar returns
  - learns soft association between them

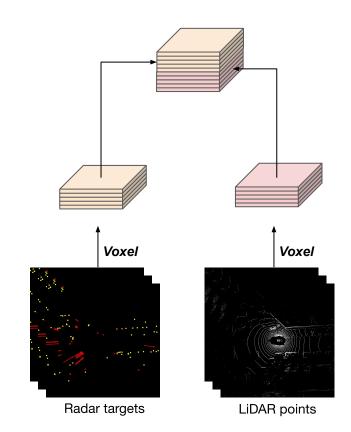
# Voxel-Based Early Fusion

#### LiDAR BEV voxel

- Multi-sweep point clouds in current ego coordinates
- #channels = #height slices \* #sweeps
- Voxel feature: distance-weighted density

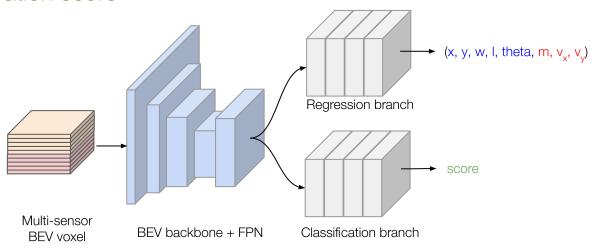
#### Radar BEV voxel

- Multi-cycle point clouds in current ego coordinates
- #channels = #cycles (ignore height)
- Voxel feature: motion-aware occupancy

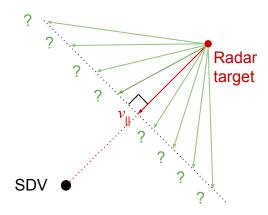


### **Detection Network**

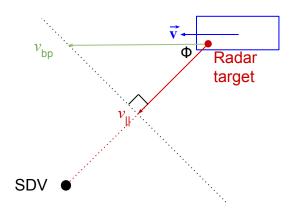
- Multi-scale BEV Backbone: same as PnPNet [1]
- Detection Output:
  - BEV bounding box: (x, y, w, I, theta)
  - $\circ$  Velocity estimate: moving probability, 2D velocity ( $v_x, v_y$ )
  - Classification score



- Step 1: Alignment of Radar velocity to objects
  - $\circ$  It's ambiguous to infer the 2D object velocity given radial velocity  $v_{\parallel}$  alone

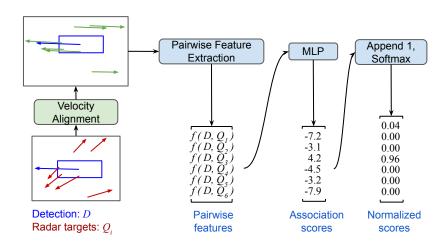


- Step 1: Alignment of Radar velocity to objects
  - $\circ$  It's ambiguous to infer the 2D object velocity given radial velocity  $v_{\parallel}$  alone
  - $\circ$  To address this, we alignment the radial velocity  $v_{\parallel}$  from Radar with the velocity estimate  $\vec{v}$  from detection, and get the back-projected velocity  $v_{\rm bp}$

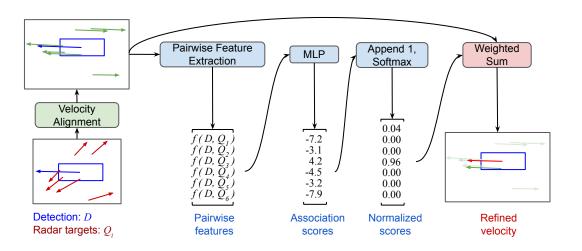


- **Step 2:** Soft association between Radar targets & object
  - Pairwise features = Detection feature + Radar feature

$$(w, l, \|\mathbf{v}\|, \frac{v_x}{\|\mathbf{v}\|}, \frac{v_y}{\|\mathbf{v}\|}, \cos(\gamma))$$
  $(dx, dy, dt, v^{\mathrm{bp}})$ 

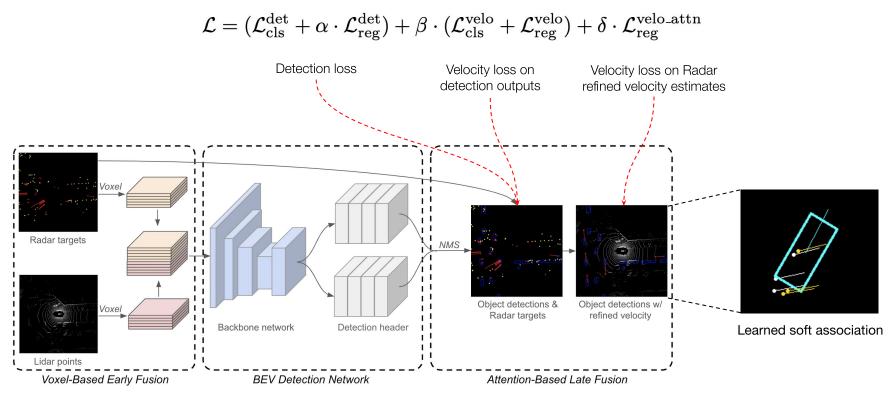


- Step 3: Information aggregation
  - The refined velocity is the weighted sum of
    - back-projected velocities from Radar targets
    - ii. the initial velocity estimate from detection



# **Model Training**

Multi-task loss function:



## Evaluation Results on nuScenes

| Method                       | Innut   | Cars |                              | Motorcycles  |                         |
|------------------------------|---------|------|------------------------------|--------------|-------------------------|
| Method                       | Input   | AP↑  | $\mathrm{AVE}\!\!\downarrow$ | $AP\uparrow$ | $	ext{AVE}{\downarrow}$ |
| MonoDIS                      | I       | 47.8 | H                            | 28.1         | -                       |
| $\operatorname{PointPillar}$ | ${f L}$ | 70.5 | 0.269                        | 20.0         | 0.603                   |
| PointPillar+                 | ${f L}$ | 76.7 | 0.209                        | 35.0         | 0.371                   |
| PointPainting                | L+I     | 78.8 | 0.206                        | 44.4         | 0.351                   |
| 3DSSD                        | ${f L}$ | 81.2 | 0.188                        | 36.0         | 0.356                   |
| CBGS                         | L       | 82.3 | 0.230                        | 50.6         | 0.339                   |
| RadarNet (LiDAR only)        | L       | 84.2 | 0.203                        | 51.0         | 0.316                   |
| RadarNet (Full model)        | L+R     | 84.5 | 0.175                        | <b>52.9</b>  | 0.269                   |

Model Input: I = image, L = LiDAR, R = Radar

# **Ablation Study**

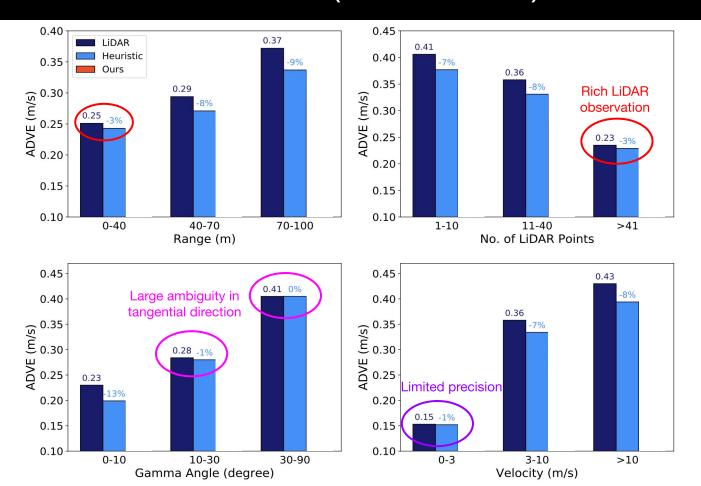
### nuScenes (<50m range)

| Model     | LiDAR | Radar        |           | Cars   |                 | Motorcycles |                            |
|-----------|-------|--------------|-----------|--------|-----------------|-------------|----------------------------|
|           |       | Early        | Late      | AP@2m↑ | $AVE\downarrow$ | AP@2m↑      | $\text{AVE}\!\!\downarrow$ |
| LiDAR     | ✓     | =            | _         | 87.6   | 0.203           | 53.7        | 0.316                      |
| Early     | ✓     | ✓            | =         | +0.3   | -2%             | +1.9        | -0%                        |
| Heuristic | ✓     | $\checkmark$ | heuristic | +0.3   | -9%             | +1.9        | -4%                        |
| RadarNet  | ✓     | ✓            | attention | +0.3   | -14%            | +1.9        | -15%                       |

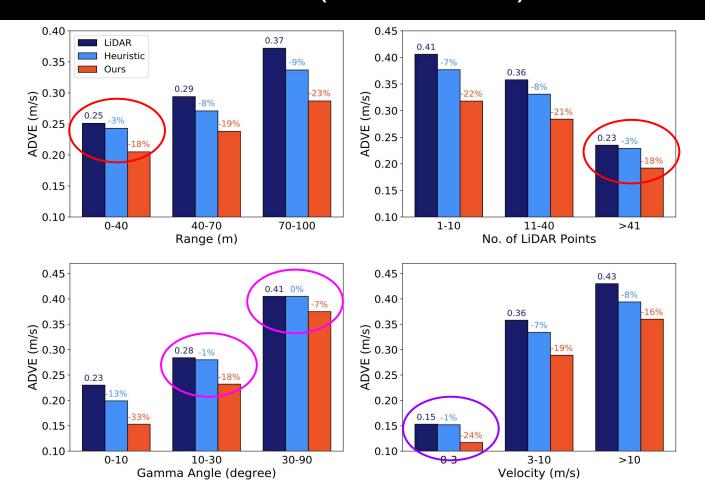
### DenseRadar (<100m range)

| Model     | LiDAR | Radar        |           | Vehicles AP ↑ |                          |                           | ADVE ↓ |
|-----------|-------|--------------|-----------|---------------|--------------------------|---------------------------|--------|
|           |       | Early        | Late      | 0-40m         | $40\text{-}70\mathrm{m}$ | $70\text{-}100\mathrm{m}$ | ADVE   |
| LiDAR     | ✓     | -            | -         | 95.4          | 88.0                     | 77.5                      | 0.285  |
| Early     | ✓     | ✓            | -         | +0.3          | +0.5                     | +0.8                      | -3%    |
| Heuristic | ✓     | $\checkmark$ | heuristic | +0.3          | +0.5                     | +0.8                      | -6%    |
| RadarNet  | ✓     | $\checkmark$ | attention | +0.3          | +0.5                     | +0.8                      | -19%   |

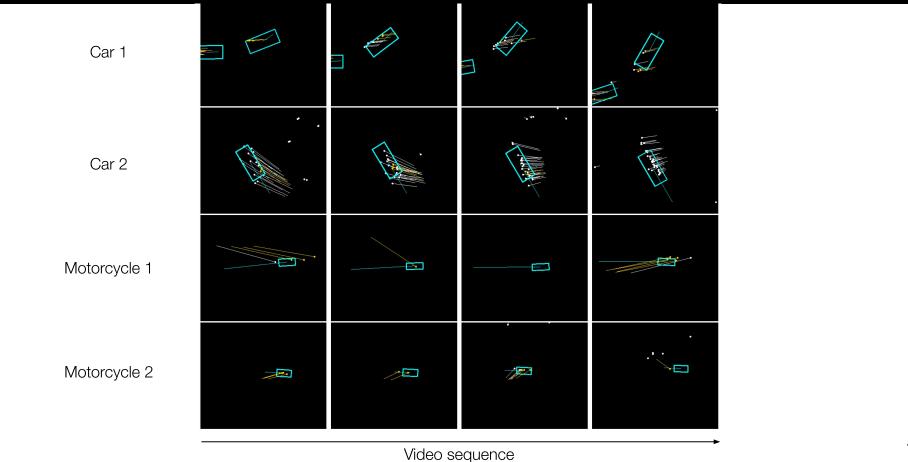
## Evaluation on Heuristics (Late Fusion)



# Evaluation on Attention (Late Fusion)



# Qualitative Results of Object-Radar Association



18

## Conclusion

- Voxel-based early fusion of LiDAR and Radar to exploit long-range evidence of Radar
- Attention-based late fusion of Radar targets and detections to exploit the uncertain Radar velocities
- State-of-the-art results in dynamic object perception

