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HD Maps for Motion Forecasting
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● Motion forecasting predicts future trajectories of actors given their past states
● HD maps provide useful clues for motion forecasting

○ Behaviors of traffic agents mostly depend on the map topology
○ Interactions of agents are conditioned on maps



Related Work: Heuristics
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● Rule-based vehicle & lane association
● Multi-model trajectories with follow-lane assumption

[1] Making Bertha Drive—An Autonomous Journey on a Historic Route. [J. Ziegler, et al. 2014]

● Drawbacks:
○ The vehicle & lane association is error-prone
○ Cannot generalize to complex driving behaviors (e.g., lane change)



Related Work: Raster Images
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● Lossy rendering of both trajectories and HD map
● 2D convolution on raster images is computation-intensive

[1] Short-term Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks. [N. Djuric, et al. 2018]
[2] ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst. [M. Bansal, et al. 2018]



Our Approach: Lane Graph
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● Minimal information loss of map geometry and semantics
● Efficient and effective feature learning on graph-structured data



Lane Graph: Nodes
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● Raw map:

○ A set of directed polylines representing the lane centerlines

Raw map data

● Lane graph:

○ Each node represents one directed line segment
○ Preserves full geometric shape, enables fine-grained lane-actor interaction 

Our lane graph



Lane Graph: Edges

7

● Raw map:

○ 4 connectivity types:

Raw map data

● Lane graph:

○ Multi-type & sparse connectivity between nodes
○ Enables structured information propagation

Our lane graph

predecessor, successor, left neighbor, right neighbor



Lane Graph: Node Feature
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● Node feature initialization:



Lane Graph: Node Feature Update
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● Multi-scale LaneConv: Self

Left neighbors & 
right neighbors

Multi-scale predecessors & 
successors



LaneGCN: Network Architecture
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● We apply a variant of graph convnet (namely LaneGCN) on the lane graph 
to extract node features

● LaneGCN architecture: a stack of 4 multi-scale LaneConv blocks



4-Way Lane-Actor Interactions
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● Actor-to-Lane: Propagate real-time traffic 
information to lane features. For example, 
if a lane is occupied.

● Lane-to-Lane: Propagate the traffic 
information along the lane graph.

● Lane-to-Actor: Fuse the latest lane 
information back to actors.

● Actor-to-Actor: Interaction between actors.



Prediction Header
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● Input: actor feature after 4-way lane-actor interactions

● Two branch outputs:

○ Regression: output K future trajectories

K confidence scoresMLP_classification

Actor feature MLP_regression K trajectories
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○ Classification: output K confidence scores conditioned on both actor 
feature and predicted trajectories



Evaluation Results on Argoverse
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Ablation Study on Modules

14



Ablation Study on Graph Operators
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Qualitative Comparison on Argoverse
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Qualitative Comparison on Argoverse
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Demo
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https://docs.google.com/file/d/1iLs7T2PCehzwI6TUZASmHmXTu8nEvwP7/preview


Conclusion
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● A new representation for HD maps: 
lane graph

● A new operator for feature extraction 
on lane graph: multi-scale LaneConv

● 4-way interactions between lanes and 
actors

● New state-of-the-art results on the 
Argoverse benchmark

Learning Lane Graph Representations for Motion Forecasting. [M. Liang, et al. ECCV 2020]


