Learning Lane Graph Representations for Motion Forecasting

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, Raquel Urtasun

HD Maps for Motion Forecasting

- Motion forecasting predicts future trajectories of actors given their past states
- HD maps provide useful clues for motion forecasting
 - Behaviors of traffic agents mostly depend on the map topology
 - Interactions of agents are conditioned on maps

Related Work: Heuristics

- Rule-based vehicle & lane association
- Multi-model trajectories with follow-lane assumption
- Drawbacks:
 - The vehicle & lane association is error-prone
 - Cannot generalize to complex driving behaviors (e.g., lane change)

Related Work: Raster Images

- Lossy rendering of both trajectories and HD map
- 2D convolution on raster images is computation-intensive

[1] Short-term Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks. [N. Djuric, et al. 2018] [2] ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst. [M. Bansal, et al. 2018]

Our Approach: Lane Graph

- Minimal information loss of map geometry and semantics
- Efficient and effective feature learning on graph-structured data

Lane Graph: Nodes

- Raw map:
 - A set of *directed polylines* representing the lane centerlines
- Lane graph:
 - Each node represents one *directed line segment*
 - Preserves full geometric shape, enables fine-grained lane-actor interaction

Lane Graph: Edges

- Raw map:
 - 4 connectivity types: predecessor, successor, left neighbor, right neighbor
- Lane graph:
 - Multi-type & sparse connectivity between nodes
 - Enables structured information propagation

Lane Graph: Node Feature

• Node feature initialization: $\mathbf{x}_{i} = \mathrm{MLP}_{\mathrm{shape}} \left(\mathbf{v}_{i}^{\mathrm{end}} - \mathbf{v}_{i}^{\mathrm{start}} \right) + \mathrm{MLP}_{\mathrm{loc}} \left(\mathbf{v}_{i} \right)$

Lane Graph: Node Feature Update

• Multi-scale LaneConv: $Y = XW_0$ Self

$$+ \sum_{i \in \{\text{left,right}\}} A_i X W_i \qquad \begin{array}{c} \text{Left neighbors \&} \\ \text{right neighbors} \end{array} \\ + \sum_{c=1}^{C} \left(A_{\text{pre}}^{k_c} X W_{\text{pre},k_c} + A_{\text{suc}}^{k_c} X W_{\text{suc},k_c} \right) \qquad N \end{array}$$

Multi-scale predecessors & successors

LaneGCN: Network Architecture

- We apply a variant of graph convnet (namely LaneGCN) on the lane graph to extract node features
- LaneGCN architecture: a stack of 4 multi-scale LaneConv blocks

4-Way Lane-Actor Interactions

- Actor-to-Lane: Propagate real-time traffic information to lane features. For example, if a lane is occupied.
- Lane-to-Lane: Propagate the traffic information along the lane graph.
- Lane-to-Actor: Fuse the latest lane information back to actors.
- Actor-to-Actor: Interaction between actors.

Prediction Header

- Input: actor feature after 4-way lane-actor interactions
- Two branch outputs:
 - Regression: output K future trajectories
 - Classification: output K confidence scores conditioned on both actor feature and predicted trajectories

Model		K=1		K=6			
Model	minADE	$\min FDE$	MR	minADE	$\min FDE$	MR	
Argoverse Baseline	2.96	6.81	0.81	2.34	5.44	0.69	
Argoverse Baseline (NN)	3.45	7.88	0.87	1.71	3.29	0.54	
Holmes (7th)	2.91	6.54	0.82	1.38	2.66	0.42	
cxx (3rd)	1.91	4.31	0.66	0.99	1.71	0.19	
uulm-mrm (2nd)	1.90	4.19	0.63	0.94	1.55	0.22	
Jean $(1st)$	1.86	4.18	0.63	0.93	1.49	0.19	
Our Model	1.71	3.78	0.59	0.87	1.36	0.16	

Back	bone	Fusion Cycle		K	=1	K=6			
ActorNet	MapNet	A2L	L2L	L2A	A2A	minADE	minFDE	minADE	$\min FDE$
\checkmark						1.90	4.38	0.91	1.66
\checkmark					\checkmark	1.58	3.61	0.79	1.29
\checkmark	\checkmark			\checkmark		1.55	3.52	0.76	1.23
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1.35	2.97	0.71	1.08

Ablation Study on Graph Operators

	K=	=1	K=6				
$\operatorname{GraphConv}$	Residual	Multi-Type	Dilate	minADE	$\min FDE$	minADE	$\min FDE$
\checkmark				1.72	3.93	0.82	1.41
\checkmark	\checkmark			1.53	3.48	0.79	1.33
\checkmark	\checkmark	\checkmark		1.48	3.33	0.74	1.19
\checkmark	\checkmark	\checkmark	\checkmark	1.39	3.05	0.72	1.10

Qualitative Comparison on Argoverse

Qualitative Comparison on Argoverse

Conclusion

- A new representation for HD maps: lane graph
- A new operator for feature extraction on lane graph: multi-scale LaneConv
- 4-way interactions between lanes and actors
- New state-of-the-art results on the Argoverse benchmark

