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Abstract

In this paper, we tackle the problem of depth comple-
tion from RGBD data. Towards this goal, we design a sim-
ple yet effective neural network block that learns to extract
joint 2D and 3D features. Specifically, the block consists
of two domain-specific sub-networks that apply 2D convo-
lution on image pixels and continuous convolution on 3D
points, with their output features fused in image space. We
build the depth completion network simply by stacking the
proposed block, which has the advantage of learning hi-
erarchical representations that are fully fused between 2D
and 3D spaces at multiple levels. We demonstrate the ef-
fectiveness of our approach on the challenging KITTI depth
completion benchmark and show that our approach outper-
forms the state-of-the-art.

1. Introduction
In the past few years, the use of sensors that contain both

image information as well as depth has increased signifi-
cantly. They are typically used in applications such as self-
driving vehicles, robotic manipulation as well as gaming.
While passive sensors like cameras typically generate dense
data, active sensors like LiDAR (Light Detection and Rang-
ing) produce sparse depth observation of the environment.
As a result, this semi-dense representation of the world can
be inaccurate at regions close to object boundaries. One so-
lution is to use high-end depth sensors with higher data den-
sity, but they are usually very expensive. A more affordable
alternative is depth completion (shown in Figure 1), which
takes the sparse depth observation and dense image as in-
put, and estimates the dense depth map. In practice, depth
completion is often employed as a precursor to downstream
perception tasks such as detection, semantic segmentation
or instance segmentation.

Despite many attempts to solve the problem, depth com-
pletion remains unsolved. Challenges such as the inherent
ambiguity in extracting depth from images, as well as the
noise and uncertainty in the unstructured sparse depth ob-
servation, make depth completion a non-trivial task.

Sparse Depth Input
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Figure 1. Illustration of the depth completion task. The model
takes a sparse depth map (projection of the LiDAR point cloud)
and a dense RGB image as input, and produces a dense depth map.

Many approaches [33, 7, 21, 26, 34] reason in the 2D
space only by projecting the 3D point cloud to 2D image
space. Convolutional neural networks (CNNs) are typically
used to learn multi-modality representations in 2D space.
However, as the metric space is distorted after the camera
projection, such approaches have difficulty capturing pre-
cise 3D geometric clues. As a result, auxiliary task like
surface normal estimation is added to better supervise the
feature learning [26]. Other methods [32] reason in 3D
space only by extracting 3D features (e.g. Truncated Signed
Distance Function [24]) from the sparse depth image of the
scene and applies 3D CNN to learn 3D representations and
complete the scene densely in 3D. The drawback is the lack
of exploitation of the dense image data, which can provide
discriminative appearance clues.

In contrast, in this paper, we take advantage of repre-
sentations in both 2D and 3D spaces and design a simple
yet effective architecture that fuses the information between
these representations at multiple levels. Specifically, we
design a 2D-3D fuse block that takes feature map in 2D



image space as input, branches into two sub-networks that
learn representations in 2D and 3D spaces via multi-scale
2D convolutions and continuous convolutions [37] respec-
tively, and then fuses back into the 2D image space. Thanks
to the modular design, we can create networks of various
model sizes by simply stacking the 2D-3D fuse blocks se-
quentially. Compared with other multi-sensor fusion based
representations [38, 17] that typically fuse the features from
each sensor only once in the whole network, our proposed
modular based model has the advantage of dense feature
fusion at multiple levels through the network. As a result,
while the domain-specific sub-networks inside the block
extract specialized 2D and 3D representations separately,
stacking such blocks together leads to hierarchical joint rep-
resentation learning that fully exploits the complementary
information between the two sensor modalities.

We validate our approach on the challenging KITTI
depth completion benchmark [33], and show that our ap-
proach outperforms all previous state-of-the-art methods in
terms of Root Mean Square Error (RMSE) on depth. Note
that our model is trained from scratch using KITTI training
data only, and still surpasses other methods that exploit ex-
ternal data or multi-task learning. This further showcases
the superiority of the proposed model in learning joint 2D-
3D representations. We also conduct detailed ablation study
to investigate the effect of each component of the model,
and show that our model achieves better trade-off in accu-
racy versus model size compared with the state-of-the-art.

2. Related Work
In this section, we review previous literatures on the top-

ics of depth estimation from RGB data, depth completion
from RGBD data, and representation learning for RGBD
data.

2.1. Depth Estimation from RGB data

Early approaches [20, 14, 15, 28] estimated depth from
single RGB images by applying probabilistic graphical
models to hand-crafted features. With the recent advance
in image recognition by deep convolutional neural networks
(CNNs), CNN based methods are applied to depth estima-
tion as well. Eigen et al. [6] designed a multi-scale deep
network for depth estimation from a single image. Laina
et al. [16] tackled the problem at a single scale by us-
ing a deep fully convolutional neural network. Liu et al.
[18] combined deep representation with a continuous con-
ditional random field (CRF) to get smoother estimations.
Roy and Todorovic [27] proposed to combine deep repre-
sentations with random forests and achieved a good trade-
off between prediction smoothness and efficiency. Recently
unsupervised approaches [9, 10] exploited view synthesis
as the supervisory signal, while some [22, 35, 40] further
extended the idea to videos. However, due to the inherent

ambiguity in depth from images, these approaches have dif-
ficulty producing high-quality dense depth.

2.2. Depth Completion from RGBD data

Different from depth estimation, the task of depth com-
pletion tries to exploit a sparse depth map (e.g. point cloud
scan from a LiDAR sensor) and possibly image data as
well to predict high-resolution dense depth. Early work
[11, 19] resorted to wavelet analysis to generate dense
depth/disparity from sparse samples. Recently, deep learn-
ing methods achieve superior performance in depth comple-
tion. Uhrig et al. [33] proposed sparse invariant CNNs to
extract better representation from sparse input only. Ma et
al. [23] proposed to concatenate sparse depth together with
RGB image and fed into an encoder-decoder based CNN
for depth completion. A similar approach was also applied
to the self-supervised setting [21]. Instead of using CNN,
Cheng et al. [2] used a recurrent convolution to estimate the
affinity matrix for depth completion. Apart from the net-
work architecture side, other methods exploited semantic
contexts from multi-task learning. Schneider et al. [29] ex-
tracted object boundary cues for cleaner depth estimation.
Semantic segmentation task was also exploited to jointly
learn better semantic features of the scene [13, 34]. Qiu et
al. [26] added the auxiliary task of surface normal estima-
tion to depth completion. Yang et al. [39] learned a depth
prior on images by training on large-scale simulation data.
Compared with these approaches that focused on better net-
work architecture and exploiting more context or prior from
other dataset and labels. Our method improves performance
simply by learning better representations. This is achieved
by a new neural network block that’s specially designed for
RGBD data. We show in experiments that we are able to
learn strong joint 2D-3D representations from the RGBD
data with the proposed method and achieve state-of-the-art
performance in depth completion.

2.3. Representation for RGBD data

Song et al. [30] extracted multiple hand-crafted features
(TSDF [24], point density, 3D normal, 3D shape) from
depth image for 3D object detection. In [31] RGBD based
joint representation was learned by applying 3D CNN to a
3D volume of depth image and 2D CNN to the RGB image
and concatenating them together. Chen et al. [1] extracted
3D features by applying 2D CNN on multi-view projection
of the 3D point cloud and combining with image features
at ROI level. Xu et al. [38] used the similar approach but
adopted a PointNet [25] to extract 3D features on raw points
directly. In [36] the same representation was further ex-
tended to pixel-level by fusing pixel feature with point fea-
ture. Liang et al. [17] first discretized the sparse LiDAR
points into a dense bird’s eye view voxel representation,
and applied 2D CNN to extract BEV representations. The
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Figure 2. Architecture of the 2D-3D fuse block. The 2D-3D fuse block consists of two branches, a multi-scale 2D convolution branch
and a 3D continuous convolution branch. Conv(k, s, c) denotes 2D convolution with kernel size k, stride s and output channels c. The
gray numbers in brackets denote the shape of features. The multi-scale 2D branch has two scales. One has the same scale as the input
and is composed of one convolution. The other is downsampled by a stride 2 convolution, followed by a convolution and then bilinearly
upsampled by 2. In the 3D branch, we first extract point features as the image features at the projection locations of the points, then apply
two continuous convolutions, and finally project the points to image space to form a sparse image feature map. Continuous convolution
uses K-Nearest-Neighbors algorithm to find the neighbors of each point. In the figure, we use K=3 as an example and only show the
convolution operation on the red point. Note that the neighboring points in 2D space are not necessarily close to each other in 3D space.
All convolutions are followed by batch normalization and ReLU.

2D image features are fused back to BEV space densely via
continuous convolution [37] to interpolate the sparse cor-
respondence. Compared with these methods, our approach
uses domain specific network for 2D and 3D representa-
tion learning, and both features are fused back to 2D image
space at multiple levels across the whole network instead
of only fusing once. As a result, we are able to learn more
densely fused representation from the RGBD data.

3. Learning Joint 2D-3D Representations

We tackle the problem of depth completion from RGBD
sensors. Existing approaches typically rely on either 2D or
3D representations to solve this task. In contrast, in this
paper, we take advantage of both types of representations
and design a simple yet effective architecture that fuses the
information between these representations at multiple lev-
els. In particular, we propose a new building block for neu-
ral networks that operates on RGBD data. It is composed
of two branches that live in different metric spaces. In one
branch we use traditional 2D convolutions to extract appear-
ance features from dense pixels in 2D metric space. In the
other branch, we use continuous convolutions [37] to cap-
ture geometric dependencies from sparse points in 3D met-
ric space. Our approach can be seen as spreading features
to both 2D and 3D metric spaces, learning appearance and

geometric features in each metric space separately, and then
fusing them together.

We build our depth completion networks simply by
stacking the 2D-3D fuse blocks. This modular design has
two benefits. First, the network is able to learn joint 2D and
3D representations which are fully fused at multiple lev-
els (all blocks). Second, the network architecture is simple
and convenient to modify for the desired trade-off of perfor-
mance and efficiency.

The remainder of the section is organized as follows: we
first introduce our 2D-3D fuse block. We then give an ex-
ample of deploying the proposed block to build a neural
network for depth completion. Finally, we provide training
and inference details of our depth completion network.

3.1. 2D-3D Fuse Block

We show a diagram of the proposed 2D-3D fuse block
in Figure 2. The block takes as input a 2D feature map of
shape C ×H ×W and a set of 3D points of shape N × 3.
We assume that we are also given the projection matrix with
which we can project the points from the 3D metric space
to the 2D feature map. The output of the block is a 2D
feature map with the same resolution as the input, which
makes it straightforward to build a network by stacking the
blocks for pixel-wise prediction tasks like depth comple-
tion. Inside the block, its architecture can be divided as two



Figure 3. Example receptive fields of conv(3, 1), conv(3, 2)
and continuous convolution. In 2D convolution, the neighbors
are defined over image grids and are not necessarily close to each
other in 3D space. The receptive field may cover both foreground
and background objects. In the shown example convolution is per-
formed at the red pixel. Green pixels are on the near car, and
yellow pixels are on the distant car. In contrast, the neighbors in
continuous convolution are based on the exact 3D geometric cor-
relation.

sub-networks: a multi-scale 2D convolution network and a
3D continuous convolution network. The input features are
distributed to and processed in each sub-network, and their
outputs are combined with a simple fusion layer. We refer
readers to Figure 2 for an illustration of our method.

Multi-scale 2D convolution net: We use a 2D convolu-
tion network to extract appearance features. We denote a
2D convolutional layer as conv(k, s, c), where k repre-
sents k × k filter size, s denotes the convolution stride,
and c denotes the number of output channels. We adopt
a two-branch network structure in order to extract multi-
scale features. The first branch has the same resolution as
the input and we simply apply conv(3, 1, C). The sec-
ond branch consists of conv(3, 2, C), conv(3, 1, C) and
upsample(2), where the first layer down-samples the fea-
ture map by 2, and the last layer up-samples the feature map
back to original resolution via bilinear interpolation. Batch
normalization and ReLU non-linearity are used after each
convolution. The outputs of both branches have the same

shape C ×H ×W as the input, and we combine them sim-
ply by element-wise summation.

3D continuous convolution net: We exploit continuous
convolutions [37] directly on the 3D points to learn geo-
metric features in 3D metric space. The key concept of
continuous convolution is the same as traditional 2D convo-
lution, in that the output feature of each point is a weighted
sum of transformed features of neighbors in a geometric
space. But they use different ways to find neighbors and
perform the weighted sum. For 2D convolution the data
is grid-structured so it is natural to use surrounding pixels
as the neighbors of a center pixel. Moreover, each neigh-
bor has its corresponding weight which is used to transform
its feature before the summation. However, 3D points can
be arbitrarily placed and their neighbors are not so natu-
ral as in grid data. In continuous convolution, we use K-
Nearest-neighbors algorithms to find the K neighbors of a
point based on the Euclidean distance. We also parameter-
ize the weighting function using a Multi-layer Perceptron
(MLP). In practice, we use the following implementation of
continuous convolution:

hi =W (
∑
k

MLP(xi − xk)� fk) (1)

where i is the index of points, k is the index of neighbors,
x denotes the 3-dimensional location of points, fk and hi

denote the features, W is a weight matrix, and � denotes
element-wise product. Note that the output of MLP has
the shape as fk. This implementation can be regarded as
a continuous version of separable convolution. The MLP
and weighted sum perform depth-wise convolution, while
the linear transformation resembles 1 × 1 convolution. We
make this separation to reduces the memory and computa-
tion overhead.

In our block, we first query the feature of each 3D point
by projecting the point to the 2D feature map and extracting
the feature at the projected pixel. After this step, we get 3D
points of shape N × 3 along with point features of shape
N × C. We then apply two continuous convolutions to the
point feature. We use a two-layer MLP whose hidden fea-
ture dimension and output feature dimensions are C/2 and
C respectively. Each continuous convolution is followed
by batch normalization and ReLU non-linearity. We then
project the N × 3 3D points back to an empty 2D feature
map and assign the N × C point features to corresponding
projected pixels. In this way, we obtain a sparse 2D feature
map as the output of the 3D sub-network. The output has
the same shape as the outputs of the 2D sub-network.

Fusion: Since the output feature maps of the 2D and 3D
sub-networks have the same shape, we fuse them simply by
element-wise summation. We then apply a conv(3, 1, C)
layer to get the output of the 2D-3D fuse block. To facilitate
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Figure 4. Depth completion network based on 2D-3D fuse blocks. The 2D-3D fused network takes image and sparse depth as input and
predicts dense depth output. The main part of the network is the stacking of N 2D-3D fuse blocks. We also apply some convolution layers
at the input and the output stage.

training, we also add a shortcut connection from the input
to the output when they have the same feature dimension.

Figure 3 illustrates the receptive field of 2D convolution
and continuous convolution. While 2D convolution oper-
ates on neighboring pixels on grid-structured image feature
maps, continuous convolution finds neighbors based on dis-
tance in 3D geometric space. By fusing the outputs of the
two branches, the learned representation captures correla-
tions in both spaces. At object boundaries, where depth es-
timation is usually hard for 2D convolution based methods,
our approach has the potential to capture non-smooth repre-
sentations for more accurate shape reconstruction by lever-
aging the geometric features in 3D space. We will show in
experiments that our model predicts sharper and clear bor-
ders than other 2D representation methods.

3.2. Stack 2D-3D Fuse Blocks into a Network

Our 2D-3D fuse block can be used as a basic module to
build the network. We simply stack a set of blocks plus a
few convolution layers at the input and output stages to get
our depth completion model. In Figure 4 we show the archi-
tecture of an example network with N 2D-3D fuse blocks.

The inputs to the network include a depth image and an
RGBD image. We first apply two convolution layers sep-
arately to each of the inputs. For the depth image, we use
conv(3, 2, 16) and conv(3, 1, 16). For the RGBD im-
age, we use conv(3, 2, 32) and conv(3, 1, 32). We then
concatenate the two outputs and feed them to a stack of N
2D-3D fuse blocks. The 3D points are obtained from the
depth image and used by the blocks. We up-sample the out-
put of the block set by 2 so that it has the same size as the
input images. Finally, we apply another two convolution
layers to obtain the output dense depth image. By stacking
the blocks, the deep network is able to capture both large-
scale context and local-scale clues, and the geometric and
appearance features are fully fused in multiple levels.

3.3. Learning and Inference

We use a weighted sum of `2 loss and smooth `1 loss
averaged over all image pixels that have depth labels as our
default objective function.

L = `2 + γ`1 (2)

where γ is the coefficient to control the balance between the
two losses. The smooth `1 loss of a pixel i is defined as:

`1(di, li) =

{
0.5(di − li)2 if |di − li| < 1

|di − li| − 0.5 otherwise,
(3)

where di and li are the predicted and ground truth depth,
respectively.

Note that some other approaches use multi-task objec-
tive functions which leverage other tasks such as semantic
segmentation to improve depth completion. Although we
expect further performance gain with the multi-task objec-
tive function, we opt for the single task loss as the objective
function is orthogonal to this work. During both training
and inference, we pre-compute the indexes of nearest neigh-
bors for all 3D points for continuous convolution, and apply
the network to RGBD data and get the predicted results. No
post-processing is required.

4. Experimental Evaluation

We conduct extensive experiments on KITTI depth com-
pletion benchmark [33] to validate the effectiveness of our
approach. Specifically, we compare with other depth com-
pletion methods on the test set by submitting to the KITTI
evaluation server and show that our approach surpasses all
previous state-of-the-art methods. We also conduct exten-
sive ablation studies on the validation set to compare and
analyze different model variants. Lastly, we provide some
qualitative results of our approach.



4.1. Experimental Setting

Dataset: The KITTI depth completion benchmark [33]
contains 86, 898 frames for training, 1, 000 frames for val-
idation, and 1, 000 frames for testing. Each frame has one
sweep of LiDAR scan and an RGB image from the cam-
era. The LiDAR and camera are calibrated already with
the known transformation matrix. For each frame, a sparse
depth image is generated by projecting the 3D LiDAR point
cloud to the image. The ground-truth for depth completion
is represented as a dense depth image, which is generated
by accumulating multiple sweeps of LiDAR scans and pro-
jecting to the image. Note that depth outliers that are in-
consistent with the stereo disparity label [12] (caused by
occlusion, dynamic objects or measurement artifacts) are
removed from the ground-truth by ignoring the correspond-
ing pixels during training and evaluation. We use both the
RGB image and the sparse depth image as the input to our
model.

Evaluation metrics: Four metrics are reported by the
KITTI depth completion benchmark, which are Root Mean
Square Error and Mean Absolute Error on depth (RMSE,
MAE) and inverse depth (iRMSE, iMAE) respectively. We
mainly focus on RMSE among all these metrics when com-
paring to other methods as it measures the error directly
on depth and penalizes more on larger errors. The KITTI
leaderboard also ranks methods based on RMSE. Addi-
tionally, we conduct an ablation study where we optimize
the model with different objective functions and show that
trade-off in different metrics can be controlled by different
objective functions. Finding the best objective function for
depth completion is out of the scope of this paper and we
leave that for future work.

Implementation details: All images in KITTI validation
and test sets are already cropped to the uniform size of
1216 × 352, while the training images are not. Therefore
we randomly crop the training images (RGB, sparse depth
and dense depth) to the size of 1216× 352 during training.
Thanks to the modular design of the proposed model, we
can create different variants by changing the width (number
of feature channels C) and depth (number of blocks N ) of
the network. For all model variants we initialize the net-
work weights randomly, and train on 16 GPUs with a batch
size of 32 frames. The training schedule goes as follows.
We first train the model with `2 loss for 100 epochs, with
0.0016 initial learning rate which is decayed by 0.1 at 65,
80, 85, 90 epochs respectively. We then fine-tune the model
with the sum of `2 and smooth `1 loss for 50 epochs, with
0.00016 initial learning rate which is decayed by 0.1 at 30
epochs. In the 3D continuous convolution branch of the
2D-3D fuse block, we randomly sample 10, 000 points and
apply a K-D tree to calculate the indices of 9 nearest neigh-
bors and their relative distances for each point in advance.

Method RMSE MAE iRMSE iMAE
(mm) (mm) (1/km) (1/km)

SparseConvs [33] 1601.33 481.27 4.94 1.78
NN+CNN [33] 1419.75 416.14 3.25 1.29
MorphNet [4] 1045.45 310.49 3.84 1.57
CSPN [2] 1019.64 279.46 2.93 1.15
Spade-RGBsD [13] 917.64 234.81 2.17 0.95
NConv-CNN-L1 [7] 859.22 207.77 2.52 0.92
DDP† [39] 832.94 203.96 2.10 0.85
NConv-CNN-L2 [7] 829.98 233.26 2.60 1.03
Sparse2Dense [21] 814.73 249.95 2.80 1.21
DeepLiDAR† [26] 775.52 245.28 2.79 1.25
FusionNet† [34] 772.87 215.02 2.19 0.93
Our FuseNet 752.88 221.19 2.34 1.14

Table 1. Comparison with state-of-the-art methods on the test set
of KITTI depth completion benchmark, ranked by RMSE. † indi-
cates models trained with additional data and labels.

4.2. Comparison with State-of-the-art

We evaluate our best single model on the KITTI test set,
which has N = 12 blocks stacked sequentially in the net-
work, each with C = 64 feature channels. We show the
comparison results with other state-of-the-art methods on
the KITTI depth completion benchmark in Table 1. For a
fair comparison, we mark methods that use external train-
ing data and labels in addition to KITTI training data. For
example, DDP [39] exploits the Virtual KITTI dataset [8]
to learn the conditional prior of dense depth given an im-
age. DeepLiDAR [26] pre-trains the model on the synthetic
dataset generated from the CARLA simulator [5] to jointly
learn the dense depth and surface normal tasks. Fusion-
Net [34] uses pre-trained semantic segmentation network
on Cityscapes dataset [3]. These methods rely on more data
and various types of labels to learn good representations for
depth completion. In contrast, our model, which is trained
on KITTI training data only, outperforms all these methods
considerably. This shows the superiority of the proposed
model in learning joint 2D-3D representations from RGBD
data over other methods. Specifically, our model signifi-
cantly surpasses the second-best method with/without ex-
ternal data by 20/62 mm in RMSE respectively. We also
achieve state-of-the-art results in other three metrics among
methods that are trained on KITTI data only.

4.3. Ablation Studies

We conduct extensive ablation studies on the validation
set of KITTI depth completion benchmark to justify the mi-
cro and macro design choices in the proposed model. We
first compare different variants of the 2D-3D fuse block
and then analyze the effect of different network configu-
rations and objective functions. For faster experimentation,



K nearest neighbors 3 6 9 12 15
RMSE 813 810 810 816 812

Table 2. Ablation study on number of nearest neighbors in the con-
tinuous convolution branch. Network config: C = 32, N = 9.

stride 1 stride 2 cont. RMSE
conv conv conv (mm)

X X 840
X X 826
X X 817
X X X 803

Table 3. Ablation study on the architecture of the 2D-3D fuse
block. Network config: C = 32, N = 12.

Loss RMSE MAE iRMSE iMAE
`2 790 232 2.51 1.16
smooth `1 839 197 2.23 0.91
`2, `2 + smooth `1 785 217 2.36 1.08

Table 4. Ablation study on objective function. Network config:
C = 64, N = 12.

we conduct ablation studies on different network configura-
tions with 100 training epochs only.

Receptive field of the continuous convolution branch:
The proposed 2D-3D fuse block is composed of three
branches, one 2D convolution branch, another 2D convo-
lution branch with stride 2, and one 3D continuous convo-
lution branch. Since we have varied the receptive fields of
the 2D convolution by explicitly enumerating two differ-
ent scales (stride 1 and stride 2), we wonder how to choose
the receptive field of the 3D continuous convolution branch,
which is controlled by the number of nearest neighbors. We
show the ablation results in Table 2, where we can see that
the model is quite robust to this hyper-parameter. In prac-
tice, we use K = 9 nearest neighbors.

Architecture of the 2D-3D fuse block: We compare dif-
ferent architecture design of the 2D-3D fuse block in Table
3. In particular, we want to know how much each convolu-
tion branch: the stride 1 and stride 2 2D convolutions and
the continuous convolution, contributes to the final perfor-
mance. As shown in Table 3, multi-scale 2D convolution
and continuous convolution are complementary. We rely on
stride 1 convolution to extract the local features and contin-
uous convolution to get 3D geometric features. Also, we
need stride 2 convolution to extract better global features
and propagate the sparse 3D geometric feature to a larger
field. The results indicate that these three components are
all necessary to the design of the 2D-3D fuse block for depth
completion.
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Figure 5. Trade-off between accuracy and model size by varying
feature channel number C and block number N of the network.

Network configuration: We compare different network
configuration by varying the width (number of feature chan-
nel C) and depth (number of blocks N ) of the network.
As a result, we are able to achieve different trade-offs be-
tween performance and model size. We plot the results in
comparison with other methods in Figure 5, where we show
that our model achieves better performance with a smaller
model size compared with other methods.

Objective function: We note that performance on different
metrics can be controlled by employing different loss func-
tions. Intuitively better RMSE metric could be achieved by
`2 loss, while better MAE metric could be achieved by `1
loss. We validate this by comparing models trained with `2
loss and smooth `1 loss respectively for 100 epochs. The
results are shown in Table 4. To get a better balance on all
four metrics, our best single model is trained with `2 loss
for 100 epochs first and then trained with the sum of `2 and
smooth `1 loss for another 50 epochs.

4.4. Qualitative Results

We show some qualitative results of the proposed
method in comparison with two state-of-the-art methods
NConv-CNN [7] and Sparse2Dense [21] on the test set of
KITTI depth completion benchmark. As shown in Figure 6,
due to the use of continuous convolution that captures accu-
rate 3D geometric features, our approach produces cleaner
and sharper object boundaries in both near and distant re-
gions. We get significantly better results for distant objects
where 2D convolution can barely handle due to limited ap-
pearance clues. This suggests that in the task of depth com-
pletion, the description of the scale-invariant geometric fea-
ture in 3D is very important, and the proposed 2D-3D fuse
block provides a simple yet effective solution to learn joint
2D and 3D representations.



Sparse2Dense [21] NConv-CNN-L2 [7] Ours

Figure 6. Qualitative results in comparison with two state-of-the-art methods (better viewed in color). Our model produces sharper bound-
aries of objects especially in the long range.

5. Conclusion

In this paper, we have proposed a simple yet effective ar-
chitecture that fuses information between 2D and 3D repre-
sentations at multiple levels. We have demonstrated the ef-

fectiveness of our approach on the challenging KITTI depth
completion benchmark and show that our approach outper-
forms the state-of-the-art. In the future, we plan to extend
our approach to fuse other sensors and reason about video
sequences.
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